LOCAL EXACT CONTROLLABILITY OF THE
DIFFUSION EQUATION IN ONE DIMENSION
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This paper establishes the local exact null controllability of the diffusion equa-
tion in one dimension using distributed controls in the case of the Dirichlet
boundary value problem. Most of the techniques used in the course of the proof
are borrowed from Barbu (2002).

1. Formulation of the problem

Consider the diffusion equation

ye—(a(y)),,=mu, Y(xt)eQ=Ix(0,T),
y(x,t) =0, V(xt)eX=0Ix(0,T), (1.1)
y(x,0) =y, x€I,

where I = (i1, 1) is a bounded real interval and m is the characteristic function
of an open subset w of I.

The ellipticity of this operator is insured by the condition 0 < y < a’(x), for
all x € R. We need |a’(x)|, la” (x)], and |a”" (x)| < M < o as well in order to
establish the desired controllability result.

Equation (1.1) is said to be exactly null controllable if there is u € L>(Q) such
that y(T) = 0, where y € C([0, T];L2(I)) is the solution to (1.1).

We will first establish some controllability results for the linearized equation

ye— (@' (Pyx), =mu, V(xt)€Q
y(x,t) =0, V(xt)eX, (1.2)
y(x,0) =y, x€I,

where 7 is some function with jx, ty: € L*(Q), y« € L*(Q), and 7|5z = 0.
Henceforth, a’(¥) will be denoted by b.
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794 Local exact controllability of the diffusion equation in 1D

In order to establish the controllability of (1.2), it is sufficient to prove a
Carleman-type inequality concerning the dual system

Pt+(be)x:g) V(x,t)EQ,
plx,t) =0, V(xt)e, (1.3)
px,T)=pr, x€L

However, this only solves the problem for the linearized equation. Our pur-
pose will be to eventually show that we can make y = j in (1.2), since then the
controllability of this equation would also imply that of the diffusion equation
(1.1).

We will arrive at the desired conclusion by means of the Kakutani fixed-point
theorem and Pontryagin’s principle. Indeed, under strong regularity conditions
for the initial data ((a(yo))xx> (¥0)x> and yo belonging to L?(I) and of sufficiently
small norm), we will see that the multifunction y = ®(y), where y is any so-
lution to (1.2), takes an L?(Q)-compact set into itself. The other conditions for
applying Kakutani’s theorem are easily met.

The final step will be to prove that we can dispense with at least some of the
conditions on the initial data, due to the regularizing properties of the diffusion
equation. We are going to show that, for every y, € H'(I) of sufficiently small
norm, the diffusion equation is null controllable.

2. The Carleman inequality

In the following, we will assume the function a to be fixed, and therefore we will
not mention the constants y and M explicitly. However, we will keep track of y
and its derivatives.

In the course of the proof, we are going to need the following lemma.

LemMa 2.1. There exists a function y € C*(I) such that y(x) >0 for all x € I,
y(x) =00n9dl, and |y,(x)| >0 forall x € I\ wy, where wy is an open set such that
wy C L.

The proof is obvious (see [1] for a more general case).
Throughout the paper, we will use a fixed ¥ and a fixed Wy C .
In addition, we define, for any A > 0, the functions « and ¢ : Q — R by

eM//(x) — ezM‘W”C(D ( t) ehl/(x)
N X, = .
HT—1t) ¢ HT—1t)

alx, t) = (2.1)

Note that ¢(x,t) > ¢ >0 for all (x,t) € Q, and e?*¢* < C < o forall § >0, k € R.

We are now ready to formulate the Carleman inequality concerning (1.3).
The proof below is, by many ways, identical to the one given by Imanuvilov in a
different case (see [2]).
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THEOREM 2.2. For any solution p of the dual system (1.3), with [|byll1~(q)
I/tbllL~(q) < p and for every X = do(p), s = so(A), the following inequality holds:

IQ e (s*¢’p? +sppr+sT o7 (pf + i)
(2.2)
< 250 3 2sa 2
_C(A,p)(JQw sSP’p +JQe g)

where C(A, p) is a constant independent of p, g, and s, but which may depend on v,
A, and p, and Q, = w X (0, T).

Proof. This proof follows step by step the one given for [1, Theorem 1.2.1] (the
Carleman inequality concerning the heat equation [1, pages 145-152]).
By taking z = e**p in the dual system (1.3), we obtain

zt — sz + (bzy) . — 25APYy - bz, + (SPA2P2y2 — sA? Py — sy, ) bz
— sAQybyz = €%,

(2.3)
z(0)=2z(T)=0 onl,

Z|2=0.

If we set

B(t)z = —(bzy), — (A2 ¢*y2 + sA2py?) bz + sz,
X(t)z = —2sA*ylbz — 250y, - bz, (2.4)
Z(t)z = sAdpy bz + sAdpy. bz,

the equation can be rewritten as z; — B(t)z + X(t)z = Z(t)z + e**g. Then, starting
with the relation

:lit J B(t)z-zdx = J B(t)z; - z+B(t)z - z: + Bi(t)z - zdx

- 2LB(t)z(B(t)z—X(t)z+Z(t)z+e5"‘g)dx+ JIBt(t)z zdx
(2.5)

and integrating it on (0, T'), we obtain
zj (B(1)2) +2Y——2J B(1)z(Z(1)z + eg) — J B(z-z  (2.6)
Q
where Y = — fQB - X, that is,

Y = —J (2sAyy - bz, +2sA2ylbz) - ((bzy), + (SPA2 Y2 + sA?py2) bz — saz).
(2.7)
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Then, we evaluate
J Bi(t)z-z = J bzt — J XYk + N2Py2b) 2 + o2,
Set y(A) = e2M¥llco and we take s > (1) and A = Ao. In addition, put
D(s,\,z) = JQ SV 2% + Az,
We eventually obtain that
| JQBt(t)z-z‘ < C(1+]1¢" bl g)) D5 1, 2)
Furthermore,
2’ JQB(t)z(Z(t)ZwLeS"‘g) '
< J (B(t)z2) +c(1 +l¢7" b2~ )D(s,A z) +CJ 2sag
From (2.6), (2.10), and (2.11), we obtain

¥ < C(1+|[Vibi] e g + 1b:l2 g )D(s,)tz)+CJ 2

(2.9)

(2.10)

(2.11)

(2.12)

On the other hand, we have the following inequalities that will give lower esti-

mates:

‘ J (2sAQyy - bzy + sAPyybiz) sz | < CD(s, A, 2)
Q

for s = y(1); then

U Apybez - saiz| < Cllbel oo - D(s A, 2),
Q

‘ JQ (sA?pyibz)saz| < CD(s,A, 2).

Moreover,

—J sA2pyibz - (bzx)x—J sA? (pyibz) - bz,

zj N2gy2b?z — C(1+][bal[1q) ) D51, 2).

(2.13)

(2.14)

(2.15)
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Furthermore,
- J (2sAgyy - bzy) (A2 P? w2 +sA2py?) bz
Q
= [ rgup gy, 2 2.16)
Q
> J (324 9° Y +25A4¢2yd) - b222 = C(1+[bul 1 ) ) D5 A, 2).
Q
Finally,
7}[ 25y - bzy(bzy) , = ,J’ s/\¢d—w - b*z2do — CD(s, A, §). (2.17)
Q s dvy
Since ¥ >0 on I and ¥ = 0 on 91, we have dy/dv < 0, and therefore
—J sM)d—w -b*z2do = 0. (2.18)
s dy T
Combining inequalities (2.13), (2.14), (2.15), (2.16), and (2.17), we obtain
Y zj SNPYI2 + X29y2b2 - C(1+ ||yl fui ) D(s A2 (2.19)
Q
From (2.19) and (2.12), we get
J SMP b2 +sA?pylb’z2
Q
< C(1+ ]|Vt gy + [1Bellie () ) D(s A, 2) + CIQ gt (2.20)

< C(p)D(s,A,z) + CI e**g?,
Q

Because b = p and |y, | = ¢ on I \ wy, by making A sufficiently large, it follows
that

I SAP3 22 + 502 ¢z2
) (2.21)
< C(P)J 53A4¢322 + S)LZ(PZ,ZC + CJ eZsagZ.

Qug Q

Hence, we can obtain, by exactly the methods used in [1, page 151], that
[ SN p + A2 p?
Q

< C(p)J 6250653A4¢3p2 +5A2¢p32¢ + CJ eZsagz.
Q

@

(2.22)
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Choose y € Ci°(w) such that y =1 in wo. If we multiply (1.3) by e**y¢p and
integrate on Q, we obtain that

JQ X pbp = - JQ (ex¢) - bpp+ J e X$pg+ J x(e9),p*

(2.23)
<C(1+ bx . J 2soc ZAZ 322+CJ Zsa 2
(1+llexll@) |, 2
Consequently, we get
J e2sa53A4¢3p2+SA2¢px C(P)J 2sa 3/\4¢3p +CI 250c (224)
Q
Equivalently, we may say that, for A = A¢(p) and s = so(A),
J 2sa 3¢3p +5¢p <C(P:A)J 2sa 3¢3p +CI 2$oc (225)
Q

Next, by squaring (1.3), multiplying it with e*%s~!¢~!, and integrating on Q,
we obtain

J e s 1! (pt+ bps), <CJ Mg (2.26)
Q
At the same time,
J ezso‘s’lqﬁ’lpt . (bpx)x
Q

Q

X T e o (2.27)
ZEJQ(e ¢ )t-px—nge s¢ pt—CJQsMpx
[ entgtgi-cf e
By (2.26) and (2.27), we obtain
J s (o + (bpa?) s €] egiec| sgpt 2w

Combining inequalities (2.25) and (2.28), we obtain the final result (2.2). O

Proceeding as in [1, Corollary 1.2.1, page 145], one may obtain the following
corollary.
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CoRrOLLARY 2.3. Under the assumptions of Theorem 2.2, the following inequality
holds:

2 < 25 3 43 2 25 2
Lp (0)dx < C(s,)t,p)(JQwe sS¢’p +JQe g ) (2.29)

where C(s, A, p) is a constant that does not depend on p or g.

3. Estimates for y

First, we denote Q; = I X (0,¢) and f = mu. Thus, system (1.2) can be rewritten
as

_(bJ’x)x:f, V(x>t)€Q;
y(x,t) =0, V(xt) e, (3.1)
y(x,0) =y, x€l

We will prove a few estimates concerning the solution y of system (3.1).
Multiplying (3.1) by y; and integrating on Q;, we get

J e [ orwsc( ], ], o02) (2)

SO

J yi+ sup yx( )dx

te[0,T]

2 . 2
<C<Jyx(0 dx+J i+ J 7 NVEb | - sup, Iyx(t)dx) (3.3)

_C0<Jy§(0)dx+J £+ Vbl ey - sup y,%(t)dx).
I Q tefo, 1] /1

Making [|/#b; | L~(q) sufficiently small (||/#b;|l1~(q) < 1/2Cy), from (3.3) we in-
fer that y € L*((0, T); Hy(I)) € L*(Q) and

7117+ < C sup yx(t Ydx < C(J yi( 0)dx+J fz) (3.4)

te(0,T]
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As a consequence of the fact that (byy)x = y: — f, we also obtain from (3.3),
when |[|tb;]|1~(q) is sufficiently small, that

J (byx)’ (Jyx(o dx+J f2> (3.5)

Multiplying (3.1) by (byx)x and integrating on Q;, we get

JQt}’t(b)’x)xt J (bys), (byx) I f(byx) (3.6)

and, by Green’s formula,

1 d
| @b+ | Sl for. 67
Q Q Q

t

Through integration by parts, we obtain

- f(byx)xt
Q[

[ s [ e,
0 Q
< |, PO+ s L | (20 + Gpi0)dxs | oie | £

1
< ZL ((by0)20) + (byx)i(t))dx+IQ (byx)i+cJQ (f2+ 1),
(3.8)
An elementary computation also proves that
[, b= o [ ve Olngds: sup [ 2o
Q 4c Jo, 0 L= ond” (3.9)

eJo v bl - sr |7
< — o+ Cllbsel| 1200y - SU ~(s)dx.
ac o Vet Cllbullizg - sup |y
Applying the preceding estimates into the equality (3.7) gives us

[RCERY ROBHOLS

<c(J erioes [ @nie [ G2 #liballig - sup [ s2coas).

selo,t] /I
(3.10)
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Taking into account (3.4) and (3.5), for any ¢ € [0, T'], it is true that
j 2t J (bye)2(1)dx

< c(L (byx) 3 (0)dx + jQﬁz + (14 bl 720 (Ilyﬁ(o)de,Isz))'

(3.11)

One consequence of this relation and of (3.4) is that by, € L*((0, T); H'(I)) C
L*(Q), and we get the estimate

||)’x||iw(Q)
< C(L byt [ g+ (1411l <Ly§(0)dx+ ij2>).

(3.12)

Taking the derivative of (3.1) with respect to ¢, we obtain
Vit = (byix) . = (beyx) , = fre (3.13)

Multiplying this with ty, and integrating on Q;, we have
| ode | toane= | ()t e G.14)
Q Q Q

It follows that

2 lj i 2 J 2 2 J 2
J o3|, gy =cl | endle | whirbi). G

Then, since (bt yx)x = bex Vi + b Y

Jtt(bryx)i (J thi.y? + thtyxx>

(3.16)
2
= C||bxl‘||L2(Q) ' ||yx||L°°(Q) + ||\/¥bt||L“’(Q) : IQ}’ﬁx-
Furthermore, it is clearly true that
2 " ds 2
thyg < | —=- ||\/Ebt||L°°(Q) csup | syy(s)dx
Q 0/$ selo] I (3.17)

= C||\/Ebf||L”(Q) © sup ty,zd(t)dx.

tef0,T] Y1
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It follows that

I ytzt-i- sup tyit(t)dx
Q telo,T] 1

2 2
< J 52+ Il o

2
Al [ [t Vbl - sup [ o).
€10,
(3.18)

Since byyx = (byy)x — by yy, from (3.4) and (3.5) we can infer that

nyix < C(1+bellf~(g)) (Lyi(O)dH JQﬁ)- (3.19)

Making this substitution, as well as those possible in virtue of (3.12) and
(3.11), into (3.18), we get (for every b with [|/tb;||1~q) < 1/2C})

.[ yi+ sup | tyl(t)dx
Q tefo, 1] /1

= C(JQf’z + (sl + 11VEbel [y (1+ 1Bl ) (Lyﬁ(O)dx+ JQf2>

[ e [ e (14l ( [ 2o [ 1)),

(3.20)

which becomes (after sorting out the terms)

J Y+ sup tyit(t)dx

te[0,T]

(Ifr bex (0)dx

(14 Il Vb (148 0)) [ 2005+ 1))
(3.21)

As a consequence, we see that /£y, €L* ((0, T); H} (I)) C L™ (Q) (with [|v/£y¢ll1=(q)
< ClIVtysell oo, ms12()-
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Coming back to y (recall that b = a’ (7)), we note that

||bx||L°°(Q) = C||)~/x||L“(Q)’ ||\/Zbi||L°°(Q) = C||\/?)~’t||Lw(Q)

||bxt||L2(Q) = C(”}N)X”L”(Q) ’ ||)7t||L2(Q) + ~|)~’xt||L2(Q)) (3.22)
< ClI7sllimio) (1+17ll@))-

We also recall that f = mu.
Taking into account all these facts, we obtain

2 2
[19ellF =0y + el i = C(1 41174l oy (14 1l ) )

(byx), 2(0) +yx(0)dx+J u? +u2),
I Q

(
IVEyillisig = CL+IVETIlaig) (1 +17el o (1 + 17l )

byx 0)+ y2(0 )dx+J uf+u2>,
Q

I
(3.23)

for all y with [|[V/t¥ll1~q < Cs = (1/u) max(1/2Co, 1/2Cy ), where C; is a con-
stant which does not depend on ¥, u, or y.
Further combining these results, we arrive at

2 2 2

el + ||\/Zyt||L°°(Q) +|yxell2 )
2

< C(1+|IVt7lli~ i)

(117l i) + 17l 12y ) (L (by<)£(0)+ y2(0)dx+ jQu§ +uz),
(3.24)

4. Optimization and the main result

Now, we are ready to establish the main theorem, first for y, in a narrower class
of functions, then for y, € H'(I).

THEOREM 4.1. For any & >0, there exists n >0 such that, for every y, € L*(I)

with [[(a(y0))xxllzza) + 1(yo)xllzay + lyollzay < 1, (1.1) is exactly null control-
lable, with a controller u satisfying

Jgezs(‘””“(u“ru?) < G |lyollz. (4.1)
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Proof. We define

K =4y 1l = p IVEpill e < 2o [1yalliog < po 70 = o} (4.2)

Note that this set is compact in the L?(Q) topology. Indeed, it can be easily seen
that the set is closed, and the fact that || y[|g1(q) is bounded insures its precom-
pactness.

Consider the linearized equation (1.2) for y € K. By the definition of K, for
all 7 € K, we have a fixed p (which does not depend on #) in the Carleman
inequality (Theorem 2.2). Setting a sufficiently small p (p < C4), we also find
that we can apply the main result of Section 3, (3.24), for all the elements of K.

For brevity, in the following we will denote any constant which does not de-
pend on p, y, 7, g, and u by C (such a constant may, however, depend on s, A, p,
or 0).

Consider the optimal control problem: minimize
J W J YA(T)dx (4.3)
Q I

subject to (1.2). By the Pontryagin principle, this problem has a unique solution
(e, ye). We have ue = mpce**$3, where pe is a solution of the dual system

(pe)i+(b- (pe),) =0, V(xHeQ
pe(x,t) =0, V(xt)€Z, (4.4)

PeT)= =2y (xT), Vxel

Multiplying (4.4) by y and (1.2) by p¢, adding the two equations together, and
integrating on Q, we get

J e p? +e‘1J Y2(T)dx = —J Jop(0)dx
Qu I I
(4.5)
Aoy K 2
< Lyodx+ ZLP(O) dx.

Applying Corollary 2.3 and choosing a small enough k in (4.5), we further obtain

J 625a¢3pg +€—1J yg(T)dx < CJ yédx (4-6)
Q I !
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Clearly, considering the Carleman inequality (2.2),

J 25(8— l)au2 _ I 625a¢3p2 . 625504(/)3 < CI 625a¢3p2
Q Q ¢ Qu ‘
2
JQeZS((?fl)a(uE)f :J 25(6 Da ( 250c¢3( )t+2562m0¢t¢3pe+3ezsa¢2¢tpe)
S A — 2 S0 S S0
(s g+ oo

<C| e**¢’p2.

Q(l)
(4.7)
Combining (4.7) and (4.6) gives
J 250D (u + (te Jye T)dx < ng yéd (4.8)
Q

Taking § = 1 and applying (3.24) (and also considering that ||yx|lr~(q) < p,
IVEPellL=@) < ps 1Fxell 2 < p) give

) 2
H(J’e)x 15(Q) + ||\/Z(y€)t||L”(Q) + H(yf)xt 2

Q)
C(1+P2)(1+2p4)<L(b-(yo)x)iJr(yo)idHJQ(ue)fWé) (4.9)
< Cul1+p) [ (b (0),), + o)} + yid
Furthermore, since b(0) = a’(y(0)) = a’(yo), we obtain
[ (0 00).) 2+ G0 s = [ @OOYL+ G0l 4s0dx @10

hence the condition imposed on y in the statement of the theorem. Thus we get

2

H(ye +H\/— )’6 H(yG)xt Q)
(4.11)
< Cil1+p°) L <a<yo)>ix<o>+(yo> + i
By making
| @OuDL+ o)+ sidx < (@.12)

for a sufficiently small 7 (such as 1 = p/C4(1+ p®)), we obtain that y. € K.
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In conclusion, by (4.8) with § = 1, uc and (u¢); belong to a bounded set in
L?(Q), the same for every €, and we have also proved that ye belongs to K, a set
that is compact in L2(Q).

Choose a sequence of (1, y¢), € — 0, that achieves the optimum in expression
(4.3). From the above, it follows that (on a subsequence)

uc — u weakly in L*(Q),
(ue), — v weakly in L*(Q), (4.13)
Ye — y stronglyin L*(Q).

Obviously, v = u;. Other immediate consequences are that (y¢); tends to y; in
H Q) and that (b(ye)x)x tends to (byy)x in L?((0, T);H2(I)); then (u, y)
satisfies the linearized equation (1.2). Furthermore, the strong convergence of
ye implies that y € K. Last but not least, by making € — 0 in (4.6), we see that
y(T) = 0.

As for ||e1=9%y |12 ) and || =%y, ||12(q), we recall that, for any sequence
(fu)nen that converges weakly to f in L2, we have || f ll12(q) < liminf || fll12(q)-

Thus, for any auxiliary function y € K, we have obtained a pair (y,u) that
satisfies system (1.2), with y € K, y(T) =0, and

JQEZS(S_I)“(uer”%) < Gs|lyollz- (4.14)

We are now ready to apply Kakutani’s theorem. Consider @ : K — 2K,

O(y) = {y ly€K, y(T)=0, and Ju € H' ([0, T];L*(])),

with J;) XD (y2 + u?) < Cs||yol| . such that (u, y) satisfies (1.2)}.
(4.15)

Clearly @ is well defined, takes nonempty values for every y € K, and has
convex values.

In order to prove that ® has closed values, first we fix a j, consider a conver-
gent sequence

ya — y in the L*(Q) norm, (4.16)

with y, € ®(y), and choose the corresponding u, as in the definition of ©
(4.15). Since y, € K, for all n, and K is compact, it follows that their limit y
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is also in K. Furthermore,

yn(T) - y(T)HLZ(I) <|lyn— )’||C([0,T];L2<1))

1/2 172
< lyn = Yl o rpzan!lyn = ¥l (4.17)

1/2
< Cp"* - lyn = ¥l

so y(T) =0.

Since fQ 2O Da(y2 + (u,)?) < Csllyo ||iz(1), we may select a weakly convergent
subsequence which tends to a limit u with [, e=0=Da (2 + 42y < Csllyo ”%Z(I) (the
proof is as above). It can be seen that (y,); — y; strongly in the H™!(Q) norm
and (b - (¥n)x)x — (byx)x strongly in the L2((0, T); H %(I)) norm. By passing to
the weak limit in (1.2), satisfied by (u,, y,), we obtain that (1, y) also satisfies the
equation for the same y. Therefore, y € ®(¥), and thus ®(y) is closed; in fact,
since () C K, it follows that O(y) is compact for every y € K.

In such a case, the lower semicontinuity of @ can be obtained from the fact
that it has a closed graph. Indeed, if ¥, € K, 7, — ¥, and y, € ®(j,) — y in
the L?(Q) norm, consider the corresponding u,,, as above, and we obtain (on a
subsequence) that

u, — u  weakly in L*(Q),
(tn), — uy  weakly in L*(Q), with L}.«zzs(‘s_l)"‘(u2 +uf) < Gsllyollp2s

(yn), — y¢  strongly in H'(Q); (4.18)
(yn), — yx strongly in L*((0, T); H (I));

a— 7  strongly in L*(Q).

Since |a’'(9,) —a’ ()] < Cly, — yl, it also follows that a’(¥,) — a’(y) strongly
in L*(Q) (and weakly-star in L*(Q)). Then a’(7,)(yn)x — a'(7)yx weakly in
L2((0,T);H (1)), or, equivalently, (a’(9)(¥n)x)x — (@' (7)yx)x weakly in
L2((0, T); H%(I)). By going to the weak limit in (1.2), we obtain that the pair
(u, y) also satisfies the linearized system, with b = a’(¥). The other conditions
(¥, y € K, y(T) = 0) are obviously satisfied (see above the details of the proof),
so (¥, y) belongs to the graph of ®.

Thus we can apply Kakutani’s theorem and obtain that there is y € K such
that y € ®(y). Such a y is a solution of the diffusion equation (1.1) with y(0) = y,
and y(T) = 0. In addition, its controller u satisfies the required estimate. a

Now, we come back to the more general case, y) € H ).
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TueOREM 4.2. For any § >0, there exists 1 > 0 such that, for every yo € H'(I)
with || yollm )y < #, (1.1) is exactly null controllable, with a controller u satisfying

‘[QeZS(ﬁfl)(x(uZ_'_u%) - C3H)’0||iza)- (4.19)

Proof. We are going to divide the interval [0, T] into two parts by choosing
0 < Ty < T. On the first part of the interval, we will make u = 0; the equation
becomes

yi—(bys), =0, V(xt)eQ
y(xt) =0, V(xt) e, (4.20)
( ) Yo, X S L
where we have renamed I X [0, Ty] = Qr, = Q and oI x [0, Ty] = X for greater

convenience. We will use the regularizing properties of (4.20), eventually ob-
taining that

JI (@))% (To) +y2(To) + y*(To)dx < cLyg T y2(0)dx. (421)

Then, applying Theorem 4.1, we will be able to establish the null controllability
of y on the interval [T, T]. Finally, we note that the function u defined by

w(e.t) = {0, fort € [0, Ty], (4.22)

u*(x,t), forte [Ty, T],
where u™* is a controller for y on [Ty, T], still has all the desired properties (it
belongs to H'([0, T];L?(I)) and it satisfies (4.19)). Then the proof is complete.
Now, we establish estimate (4.21). For the beginning, we will only assume in

(4.20) that b, € L*(Q) and b, € L™ ([0, T ]; L*(1)).
Multiplying (4.20) by y and integrating on Q;, we get

L yZ(t)deJQ by? = L 2(0)dx. (4.23)

Multiplying the same equation by y; and integrating by parts for ¢, we get

Lﬁ J%O JM@ th (4.24)

Then, it is true that

JQt e L YA(8)dx < c( L y2(0)dx + (JQ b%) " (JQ[ yg> 1/2), (4.25)
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and, consequently, (since 0 < t < Tj)

J yt + sup yx(t)dx
t€[0,T)]

= C(J y2(0)dx + ||bt||L2(Q) : ||yx||L2(((),To);L°°(I)) © sup ||)’x(f)||L2(1)>~
I tE[O,To]

(4.26)
We note that || yxllz2(0, 1)z 1)) < Cll(byx)xllzz@) = Cliyellrz(q), so
J yi+ sup | yi(t)dx
Q te[0,Ty] 71
(4.27)
< C5<I yﬁ(O)dx+Hb,||L2(Q) <J yi+ sup yﬁ(t)dx)).
I Q te[0,To] 71
Making || b¢ |l 12(q) sufficiently small (e.g., [|b:ll12(q) < 1/2Cs), we obtain
J y2 4 sup [ y2(0)dx < CJ 2(0)dx. (4.28)
Q te[0,Ty] /1 I
As an immediate consequence, we also get [, (by,): < C [; y2(0) (this will be

useful later on).
Rewriting (4.28) and recalling that, by definition, b=a’(#), we obtain

||)’t||L2(Q)+ sup ||}’x(t)||L2(1) SCt3||)’x(0)||L2(1) (4.29)
te[0,To]

if 194l 12(q) < 1/2MCs.
Consider the set

Dt s sl < 31 7O =) @30

te[0,Ty]

which is clearly compact in L?(Q) (being closed in L?(Q) and bounded in H'(Q)).
Then, define ® : K — 2K by

®(y) = {y | y €K, yisasolution of (4.20)}. (4.31)

For [l yx(0)llz2(y < 1/(Ce - 2MCs), the multifunction @ has nonempty values
everywhere. It can be easily checked that it also has convex values.
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Consider a sequence of solutions y, € ®(j) which converges in L*(Q) to
a limit y. Then, (y,); — y: in H'(Q) and (b - (yu)x)x — (byx)x in L*((0, To);
H~%(I)). By going to the limit in (4.20) for y,, we obtain that y; — (byy)x = 0 in
the weak sense (in H %(Q)), and therefore y € ®(7). Thus we have proved that
® has closed values (compact, as a matter of fact).

All that is left is to show that @ has a closed graph (and thus is upper semi-
continuous). Indeed, if we take two sequences y, and ¥,, y, € ®(j,), converging
to y and to ¥, respectively, we successively obtain, in the same manner as in the
proof of Theorem 4.1, that

)y — »e in H'(Q),

() e — in L*((0, To); H™' (1)),

In—7 in L*(Q),

a' (yu) — a' () weakly-star in L*(Q), (4.32)
"(Fn) - () — ' (P)yx in L*((0, To); H™'(I)),

~n) : (}’n)x>x - (a’(j’))’x)x in Lz((0> TO)3H_2(I))-

By going to the limit in (4.20), satisfied by all the functions y, with b = a’(j,),
we obtain that y € ®(7), so the graph is closed.

Now, all the conditions needed to apply Kakutani’s theorem are fulfilled and
we obtain that ® has a fixed point y € ®(y), and therefore the diffusion equation

ye—(a(y),, =0 V(xt)eQ=1Ix(0,T,),
Y1) =0, V(xt)€X=09Ix(0,Tp), (4.33)
y(x,0) =y, x€I,

has a solution y with

1
+ t < — 0 , 4.34
||yt||L2(Q) tes[l(ili)“o] ||)’x( )||L2(1) = 2MCs ||}’x( )||L2(1) ( )

S
C

for || yx(0)ll12¢) = 1/(Cs - 2MCs).

However, the solution of (4.33) has further regularity properties, of which
we are going to employ only one. For convenience, we will keep the notation
b=a'(y) = a'(y). By multiplying (3.1) by (by. )., we get

J (byx)x(byx)xﬁj byﬁﬁj Yxtbeyx =0, (4.35)
Q: Q; Q

hence

2

1 2 2 J _ lj
2Lt(byx)x(t)dx+JQttbyxt+ b= 5 | (902 (4.36)



Marius Beceanu 811

In this equation, we have

‘ JQ tysbiyy| < EJ tyZ + —J tb}yi, (4.37)

where we may take u to be the same constant as in the beginning of the paper
(< d'(x),forallx € R, so thaty < a’(y) = b). Then,

J, i = | b Nl =C 53+ sup | topindr  (@39)

te[0,To]

Consequently, we obtain (by using evaluation (4.34) for || y;ll12(q)) that

sup (byx) (t)dx+f ty
te[0,Ty]
(4.39)

sC7(1+ sup t(byx)i(t)dx) Ly,%(O)dx, vt e [0, To).

te(0,Ty] I

Again, for sufficiently small || y,(0)|lz2(s) (such as || yx(0) II%Z(I) < 1/2C;), we have
proved that

sup t(byx)i(t)dx+J b2 < CJ J2(0)dx. (4.40)
te[0,Ty] Y1 Q I

By choosing t = Ty in (4.23), (4.34), and (4.40), we obtain

L (a(y))ix(To) +y2(To) + y*(To)dx < C(Lyédx+ Lyﬁ(O)dx), (4.41)

for any yo with [[(yo)xllz2(r) sufficiently small. The proof of Theorem 4.2 is thus
concluded. O
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