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This paper establishes the local exact null controllability of the diffusion equa-
tion in one dimension using distributed controls in the case of the Dirichlet
boundary value problem. Most of the techniques used in the course of the proof
are borrowed from Barbu (2002).

1. Formulation of the problem

Consider the diffusion equation

yt −
(
a(y)

)
xx =mu, ∀(x, t)∈Q= I × (0,T),

y(x, t)= 0, ∀(x, t)∈ Σ= ∂I × (0,T),

y(x,0)= y0, x ∈ I,
(1.1)

where I = (i1, i2) is a bounded real interval and m is the characteristic function
of an open subset ω of I .

The ellipticity of this operator is insured by the condition 0 < µ ≤ a′(x), for
all x ∈ R. We need |a′(x)|, |a′′(x)|, and |a′′′(x)| ≤M <∞ as well in order to
establish the desired controllability result.

Equation (1.1) is said to be exactly null controllable if there is u∈ L2(Q) such
that y(T)≡ 0, where y ∈ C([0,T];L2(I)) is the solution to (1.1).

We will first establish some controllability results for the linearized equation

yt −
(
a′( ỹ)yx

)
x =mu, ∀(x, t)∈Q,

y(x, t)= 0, ∀(x, t)∈ Σ,

y(x,0)= y0, x ∈ I,
(1.2)

where ỹ is some function with ỹx,
√
t ỹt ∈ L∞(Q), ỹxt ∈ L2(Q), and ỹ|Σ = 0.

Henceforth, a′( ỹ) will be denoted by b.
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In order to establish the controllability of (1.2), it is sufficient to prove a
Carleman-type inequality concerning the dual system

pt +
(
bpx

)
x = g, ∀(x, t)∈Q,

p(x, t)= 0, ∀(x, t)∈ Σ,

p(x,T)= pT, x ∈ I.
(1.3)

However, this only solves the problem for the linearized equation. Our pur-
pose will be to eventually show that we can make y = ỹ in (1.2), since then the
controllability of this equation would also imply that of the diffusion equation
(1.1).

We will arrive at the desired conclusion by means of the Kakutani fixed-point
theorem and Pontryagin’s principle. Indeed, under strong regularity conditions
for the initial data ((a(y0))xx, (y0)x, and y0 belonging to L2(I) and of sufficiently
small norm), we will see that the multifunction y = Φ( ỹ), where y is any so-
lution to (1.2), takes an L2(Q)-compact set into itself. The other conditions for
applying Kakutani’s theorem are easily met.

The final step will be to prove that we can dispense with at least some of the
conditions on the initial data, due to the regularizing properties of the diffusion
equation. We are going to show that, for every y0 ∈H1(I) of sufficiently small
norm, the diffusion equation is null controllable.

2. The Carleman inequality

In the following, we will assume the function a to be fixed, and therefore we will
not mention the constants µ and M explicitly. However, we will keep track of ỹ
and its derivatives.

In the course of the proof, we are going to need the following lemma.

Lemma 2.1. There exists a function ψ ∈ C2(I) such that ψ(x) > 0 for all x ∈ I ,
ψ(x)= 0 on ∂I , and |ψx(x)| > 0 for all x ∈ I \ω0, where ω0 is an open set such that
ω0 ⊂ I .

The proof is obvious (see [1] for a more general case).
Throughout the paper, we will use a fixed ψ and a fixed ω0 ⊂ ω.
In addition, we define, for any λ > 0, the functions α and φ :Q→R by

α(x, t)= eλψ(x)− e2λ‖ψ‖C(I)

t(T − t) , φ(x, t)= eλψ(x)

t(T − t) . (2.1)

Note that φ(x, t)≥ c > 0 for all (x, t)∈Q, and eδαφk ≤ C <∞ for all δ > 0, k ∈R.
We are now ready to formulate the Carleman inequality concerning (1.3).

The proof below is, by many ways, identical to the one given by Imanuvilov in a
different case (see [2]).
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Theorem 2.2. For any solution p of the dual system (1.3), with ‖bx‖L∞(Q),
‖√tbt‖L∞(Q) ≤ ρ and for every λ≥ λ0(ρ), s≥ s0(λ), the following inequality holds:

∫
Q
e2sα(s3φ3p2 + sφp2

x + s−1φ−1(p2
t + p2

xx

))

≤ C(λ,ρ)

(∫
Qω

e2sαs3φ3p2 +
∫
Q
e2sαg2

)
,

(2.2)

where C(λ,ρ) is a constant independent of p, g, and s, but which may depend on ψ,
λ, and ρ, and Qω = ω× (0,T).

Proof. This proof follows step by step the one given for [1, Theorem 1.2.1] (the
Carleman inequality concerning the heat equation [1, pages 145–152]).

By taking z = esα p in the dual system (1.3), we obtain

zt − sαtz+
(
bzx

)
x − 2sλφψx · bzx +

(
s2λ2φ2ψ2

x − sλ2φψ2
x − sλφψxx

)
bz

− sλφψxbxz = esαg,
z(0)= z(T)= 0 on I,

z|Σ = 0.

(2.3)

If we set

B(t)z =−(bzx)x − (s2λ2φ2ψ2
x + sλ2φψ2

x

)
bz+ sαtz,

X(t)z =−2sλ2φψ2
xbz− 2sλφψx · bzx,

Z(t)z = sλφψxbxz+ sλφψxxbz,

(2.4)

the equation can be rewritten as zt −B(t)z+X(t)z = Z(t)z+ esαg. Then, starting
with the relation

d

dt

∫
I
B(t)z · zdx =

∫
I
B(t)zt · z+B(t)z · zt +Bt(t)z · zdx

= 2
∫
I
B(t)z

(
B(t)z−X(t)z+Z(t)z+ esαg

)
dx+

∫
I
Bt(t)z · zdx

(2.5)

and integrating it on (0,T), we obtain

2
∫
Q

(
B(t)z

)2
+ 2Y =−2

∫
Q
B(t)z

(
Z(t)z+ esαg

)−∫
Q
Bt(t)z · z, (2.6)

where Y =−∫QB ·X , that is,

Y =−
∫
Q

(
2sλφψx · bzx + 2sλ2φψ2

xbz
) · ((bzx)x +

(
s2λ2φ2ψ2

x + sλ2φψ2
x

)
bz− sαtz

)
.

(2.7)
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Then, we evaluate∫
Q
Bt(t)z · z =

∫
Q
btz

2
x −

∫
Q

(
s2λ2φ2ψ2

xb+ sλ2φψ2
xb
)
tz

2 + sαttz2. (2.8)

Set γ(λ)= e2λ‖ψ‖C(I) and we take s≥ γ(λ) and λ≥ λ0. In addition, put

D(s,λ,z)=
∫
Q
s3λ3φ3z2 + sλφz2

x. (2.9)

We eventually obtain that

∣∣∣∣
∫
Q
Bt(t)z · z

∣∣∣∣≤ C(1 +
∥∥φ−1bt

∥∥
L∞(Q)

)
D(s,λ,z). (2.10)

Furthermore,

2
∣∣∣∣
∫
Q
B(t)z

(
Z(t)z+ esαg

)∣∣∣∣
≤
∫
Q

(
B(t)z

)2
+C

(
1 +

∥∥φ−1b2
x

∥∥
L∞(Q)

)
D(s,λ,z) +C

∫
Q
e2sαg2.

(2.11)

From (2.6), (2.10), and (2.11), we obtain

Y ≤ C
(

1 +
∥∥√tbt∥∥L∞(Q) +

∥∥bx∥∥2
L∞(Q)

)
D(s,λ,z) +C

∫
Q
e2sαg2. (2.12)

On the other hand, we have the following inequalities that will give lower esti-
mates: ∣∣∣∣∣

∫
Q

(
2sλφψx · bzx + sλφψxbxz

)
sαtz

∣∣∣∣∣≤ CD(s,λ,z) (2.13)

for s≥ γ(λ); then

∣∣∣∣∣
∫
Q
sλφψxbxz · sαtz

∣∣∣∣∣≤ C∥∥bx∥∥L∞(Q) ·D(s,λ,z),

∣∣∣∣∣
∫
Q

(
sλ2φψ2

xbz
)
sαtz

∣∣∣∣∣≤ CD(s,λ,z).

(2.14)

Moreover,

−
∫
Q
sλ2φψ2

xbz ·
(
bzx

)
x =

∫
Q
sλ2(φψ2

xbz
)
x · bzx

≥
∫
Q
sλ2φψ2

xb
2z2
x −C

(
1 +

∥∥bx∥∥2
L∞(Q)

)
D(s,λ,z).

(2.15)



Marius Beceanu 797

Furthermore,

−
∫
Q

(
2sλφψx · bzx

)(
s2λ2φ2ψ2

x + sλ2φψ2
x

)
bz

=
∫
Q

(
s3λ3φ3ψ3

xb
2 + s2λ3φ2ψ3

xb
2)
x · z2

≥
∫
Q

(
3s3λ4φ3ψ4

x + 2s2λ4φ2ψ4
x

) · b2z2−C
(

1 +
∥∥bx∥∥L∞(Q)

)
D(s,λ,z).

(2.16)

Finally,

−
∫
Q

2sλφψx · bzx
(
bzx

)
x ≥−

∫
Σ
sλφ

dψ

dν
· b2z2

xdσ −CD(s,λ,φ). (2.17)

Since ψ > 0 on I and ψ = 0 on ∂I , we have dψ/dν≤ 0, and therefore

−
∫
Σ
sλφ

dψ

dν
· b2z2

xdσ ≥ 0. (2.18)

Combining inequalities (2.13), (2.14), (2.15), (2.16), and (2.17), we obtain

Y ≥
∫
Q
s3λ4φ3ψ4

xb
2z2 + sλ2φψ2

xb
2z2
x −C

(
1 +

∥∥bx∥∥2
L∞(Q)

)
D(s,λ,z). (2.19)

From (2.19) and (2.12), we get

∫
Q
s3λ4φ3ψ4

xb
2z2 + sλ2φψ2

xb
2z2
x

≤ C
(

1 +
∥∥√tbt∥∥L∞(Q) +

∥∥bx∥∥2
L∞(Q)

)
D(s,λ,z) +C

∫
Q
e2sαg2

≤ C(ρ)D(s,λ,z) +C
∫
Q
e2sαg2.

(2.20)

Because b ≥ µ and |ψx| ≥ c on I \ω0, by making λ sufficiently large, it follows
that ∫

Q
s3λ4φ3z2 + sλ2φz2

x

≤ C(ρ)
∫
Qω0

s3λ4φ3z2 + sλ2φz2
x +C

∫
Q
e2sαg2.

(2.21)

Hence, we can obtain, by exactly the methods used in [1, page 151], that

∫
Q
e2sαs3λ4φ3p2 + sλ2φp2

x

≤ C(ρ)
∫
Qω0

e2sαs3λ4φ3p2 + sλ2φp2
x +C

∫
Q
e2sαg2.

(2.22)
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Choose χ ∈ C∞0 (ω) such that χ = 1 in ω0. If we multiply (1.3) by e2sαχφp and
integrate on Q, we obtain that

∫
Q
e2sαχφbp2

x =−
∫
Q

(
e2sαχφ

)
x · bppx +

∫
Q
e2sαχφpg +

∫
Q
χ
(
e2sαφ

)
t p

2

≤ C
(

1 +
∥∥bx∥∥L∞(Q)

)∫
Qω

e2sαs2λ2φ3z2 +C
∫
Q
e2sαg2.

(2.23)

Consequently, we get

∫
Q
e2sαs3λ4φ3p2 + sλ2φp2

x ≤ C(ρ)
∫
Qω

e2sαs3λ4φ3p2 +C
∫
Q
e2sαg2. (2.24)

Equivalently, we may say that, for λ≥ λ0(ρ) and s≥ s0(λ),

∫
Q
e2sαs3φ3p2 + sφp2

x ≤ C(ρ,λ)
∫
Qω

e2sαs3φ3p2 +C
∫
Q
e2sαg2. (2.25)

Next, by squaring (1.3), multiplying it with e2sαs−1φ−1, and integrating on Q,
we obtain

∫
Q
e2sαs−1φ−1

(
pt +

(
bpx

)
x

)2 ≤ C
∫
Q
e2sαg2. (2.26)

At the same time,

∫
Q
e2sαs−1φ−1pt ·

(
bpx

)
x

=−
∫
Q

(
e2sαφ−1pt

)
x · bpx

≥ 1
2

∫
Q

(
e2sαφ−1)

t · p2
x −

1
2

∫
Q
e2sαs−1φ−1p2

t −C
∫
Q
sλ2φp2

x

≥−1
2

∫
Q
e2sαs−1φ−1p2

t −C
∫
Q
sλ2φp2

x.

(2.27)

By (2.26) and (2.27), we obtain

∫
Q
e2sαs−1φ−1

(
p2
t +

(
bpx

)2
x

)
≤ C

∫
Q
e2sαg2 +C

∫
Q
sλ2φp2

x. (2.28)

Combining inequalities (2.25) and (2.28), we obtain the final result (2.2). �

Proceeding as in [1, Corollary 1.2.1, page 145], one may obtain the following
corollary.
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Corollary 2.3. Under the assumptions of Theorem 2.2, the following inequality
holds:

∫
I
p2(0)dx ≤ C(s,λ,ρ)

(∫
Qω

e2sαs3φ3p2 +
∫
Q
e2sαg2

)
, (2.29)

where C(s,λ,ρ) is a constant that does not depend on p or g.

3. Estimates for y

First, we denote Qt = I × (0, t) and f =mu. Thus, system (1.2) can be rewritten
as

yt −
(
byx

)
x = f , ∀(x, t)∈Q,

y(x, t)= 0, ∀(x, t)∈ Σ,

y(x,0)= y0, x ∈ I.
(3.1)

We will prove a few estimates concerning the solution y of system (3.1).
Multiplying (3.1) by yt and integrating on Qt, we get

∫
Qt

y2
t +

∫
Qt

d

dt
by2

x(t)≤ C
(∫

Qt

f 2 +
∫
Qt

bt y
2
x

)
, (3.2)

so

∫
Q
y2
t + sup

t∈[0,T]

∫
I
y2
x(t)dx

≤ C
(∫

I
y2
x(0)dx+

∫
Q
f 2 +

∫ T
0

dt√
t
·∥∥√tbt∥∥L∞(Q) · sup

t∈[0,T]

∫
I
y2
x(t)dx

)

≤ C0

(∫
I
y2
x(0)dx+

∫
Q
f 2 +

∥∥√tbt∥∥L∞(Q) · sup
t∈[0,T]

∫
I
y2
x(t)dx

)
.

(3.3)

Making ‖√tbt‖L∞(Q) sufficiently small (‖√tbt‖L∞(Q) ≤ 1/2C0), from (3.3) we in-
fer that y ∈ L∞((0,T);H1

0 (I))⊂ L∞(Q) and

‖y‖2
L∞(Q) ≤ C sup

t∈[0,T]

∫
I
y2
x(t)dx ≤ C

(∫
I
y2
x(0)dx+

∫
Q
f 2

)
. (3.4)
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As a consequence of the fact that (byx)x = yt − f , we also obtain from (3.3),
when ‖tbt‖L∞(Q) is sufficiently small, that

∫
Q

(
byx

)2
x ≤ C

(∫
I
y2
x(0)dx+

∫
Q
f 2

)
. (3.5)

Multiplying (3.1) by (byx)xt and integrating on Qt, we get

∫
Qt

yt
(
byx

)
xt −

∫
Qt

(
byx

)
x

(
byx

)
xt =

∫
Qt

f
(
byx

)
xt, (3.6)

and, by Green’s formula,

∫
Qt

(
by2

xt + bt yx yxt
)

+
1
2

∫
Qt

d

dt

(
byx

)2
x =−

∫
Qt

f
(
byx

)
xt. (3.7)

Through integration by parts, we obtain

−
∫
Qt

f
(
byx

)
xt

=−
∫
I
f
(
byx

)
xdx

∣∣∣∣t
0

+
∫
Qt

ft
(
byx

)
x

≤
∫
I

(
f 2(0) + f 2(t)

)
dx+

1
4

∫
I

((
byx

)2
x(0) +

(
byx

)2
x(t)

)
dx+

∫
Qt

(
byx

)2
x +

∫
Qt

f 2
t

≤ 1
4

∫
I

((
byx

)2
x(0) +

(
byx

)2
x(t)

)
dx+

∫
Qt

(
byx

)2
x +C

∫
Qt

(
f 2
t + f 2).

(3.8)

An elementary computation also proves that

∫
Qt

yxtbt yx ≤ 1
4c

∫
Qt

y2
xt + c

∫ t
0

∥∥bt(s)∥∥2
L∞(I)ds · sup

s∈[0,t]

∫
I
y2
x(s)dx

≤ 1
4c

∫
Qt

y2
xt +C

∥∥bxt∥∥2
L2(Q) · sup

s∈[0,T]

∫
I
y2
x(s)dx.

(3.9)

Applying the preceding estimates into the equality (3.7) gives us

∫
Qt

by2
xt +

∫
I

(
byx

)2
x(t)dx

≤ C
(∫

I

(
byx

)2
x(0)dx+

∫
Qt

(
byx

)2
x +

∫
Qt

(
f 2
t + f 2)+

∥∥bxt∥∥2
L2(Q) · sup

s∈[0,t]

∫
I
y2
x(s)dx

)
.

(3.10)
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Taking into account (3.4) and (3.5), for any t ∈ [0,T], it is true that

∫
Q
y2
xt +

∫
I

(
byx

)2
x(t)dx

≤ C
(∫

I

(
byx

)2
x(0)dx+

∫
Q
f 2
t +

(
1 +

∥∥bxt∥∥2
L2(Q)

)(∫
I
y2
x(0)dx+

∫
Q
f 2

))
.

(3.11)

One consequence of this relation and of (3.4) is that byx ∈ L∞((0,T);H1(I)) ⊂
L∞(Q), and we get the estimate

∥∥yx∥∥2
L∞(Q)

≤ C
(∫

I

(
byx

)2
x(0)dx+

∫
Q
f 2
t +

(
1 +

∥∥bxt∥∥2
L2(Q)

)(∫
I
y2
x(0)dx+

∫
Q
f 2

))
.

(3.12)

Taking the derivative of (3.1) with respect to t, we obtain

ytt −
(
bytx

)
x −

(
bt yx

)
x = ft. (3.13)

Multiplying this with tytt and integrating on Qt, we have

∫
Qt

ty2
tt +

∫
Qt

tbyxt yxtt =
∫
Qt

t
((
bt yx

)
x + ft

)
ytt. (3.14)

It follows that

∫
Qt

ty2
tt +

1
2

∫
Qt

d

dt

(
tby2

xt

)≤ C
(∫

Qt

t f 2
t + t

(
bt yx

)2
x +

∫
Qt

(
tbt + b

)
y2
xt

)
. (3.15)

Then, since (bt yx)x = btx yx + bt yxx,

∫
Qt

t
(
bt yx

)2
x ≤ 2

(∫
Q
tb2
tx y

2
x +

∫
Q
tb2
t y

2
xx

)

≤ C∥∥bxt∥∥2
L2(Q) ·

∥∥yx∥∥2
L∞(Q) +

∥∥√tbt∥∥2
L∞(Q) ·

∫
Q
y2
xx.

(3.16)

Furthermore, it is clearly true that

∫
Qt

tbt y
2
xt ≤

∫ t
0

ds√
s
·∥∥√tbt∥∥L∞(Q) · sup

s∈[0,t]

∫
I
sy2

xt(s)dx

≤ C∥∥√tbt∥∥L∞(Q) · sup
t∈[0,T]

∫
I
ty2

xt(t)dx.
(3.17)
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It follows that

∫
Q
y2
tt + sup

t∈[0,T]

∫
I
ty2

xt(t)dx

≤ C1

(∫
Q
ft

2 +
∥∥yx∥∥2

L∞(Q) ·
∥∥bxt∥∥2

L2(Q)

+
∥∥√tbt∥∥2

L∞(Q)

∫
Q
y2
xx +

∫
Q
y2
xt +

∥∥√tbt∥∥L∞(Q) · sup
t∈[0,T]

∫
I
ty2

xt(t)dx

)
.

(3.18)

Since byxx = (byx)x − bx yx, from (3.4) and (3.5) we can infer that

∫
Q
y2
xx ≤ C

(
1 +

∥∥bx∥∥2
L∞(Q)

)(∫
I
y2
x(0)dx+

∫
Q
f 2

)
. (3.19)

Making this substitution, as well as those possible in virtue of (3.12) and
(3.11), into (3.18), we get (for every b with ‖√tbt‖L∞(Q) ≤ 1/2C1)

∫
Q
y2
tt + sup

t∈[0,T]

∫
I
ty2

xt(t)dx

≤ C
(∫

Q
ft

2 +
(∥∥bxt∥∥2

L2(Q) +
∥∥√tbt∥∥2

L∞(Q)

(
1 +

∥∥bx∥∥2
L∞(Q)

))(∫
I
y2
x(0)dx+

∫
Q
f 2

)

+
∫
I

(
byx

)2
x(0)dx+

∫
Q
f 2
t +

(
1 +

∥∥bxt∥∥2
L2(Q)

)(∫
I
y2
x(0)dx+

∫
Q
f 2

))
,

(3.20)

which becomes (after sorting out the terms)

∫
Q
y2
tt + sup

t∈[0,T]

∫
I
ty2

xt(t)dx

≤ C
(∫

Q
ft

2 +
∫
I

(
byx

)2
x(0)dx

+
(

1 +
∥∥bxt∥∥2

L2(Q) +
∥∥√tbt∥∥2

L∞(Q)

(
1 +

∥∥bx∥∥2
L∞(Q)

))(∫
I
y2
x(0)dx+

∫
Q
f 2

))
.

(3.21)

As a consequence, we see that
√
tyt∈L∞((0,T);H1

0 (I))⊂L∞(Q) (with ‖√tyt‖L∞(Q)

≤ C‖√tyxt‖L∞((0,T);L2(I))).
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Coming back to ỹ (recall that b = a′( ỹ)), we note that

∥∥bx∥∥L∞(Q) ≤ C
∥∥ ỹx∥∥L∞(Q),

∥∥√tbt∥∥L∞(Q) ≤ C
∥∥√t ỹt∥∥L∞(Q),∥∥bxt∥∥L2(Q) ≤ C

(∥∥ ỹx∥∥L∞(Q) ·
∥∥ ỹt∥∥L2(Q) +

∥∥ ỹxt∥∥L2(Q)

)
≤ C∥∥ ỹx∥∥L∞(Q)

(
1 +

∥∥ ỹxt∥∥L2(Q)

)
.

(3.22)

We also recall that f =mu.
Taking into account all these facts, we obtain

∥∥yx∥∥2
L∞(Q) +

∥∥yxt∥∥2
L2(Q) ≤ C

(
1 +

∥∥ ỹx∥∥2
L∞(Q)

(
1 +

∥∥ ỹxt∥∥2
L2(Q)

))

·
(∫

I

(
byx

)2
x(0) + y2

x(0)dx+
∫
Q
u2
t +u2

)
,

∥∥√tyt∥∥2
L∞(Q) ≤ C

(
1 +

∥∥√t ỹt∥∥2
L∞(Q)

)(
1 +

∥∥ ỹx∥∥2
L∞(Q)

(
1 +

∥∥ ỹxt∥∥2
L2(Q)

))

·
(∫

I

(
byx

)2
x(0) + y2

x(0)dx+
∫
Q
u2
t +u2

)
,

(3.23)

for all ỹ with ‖√t ỹt‖L∞(Q) ≤ C2 = (1/µ)max(1/2C0,1/2C1), where C2 is a con-
stant which does not depend on ỹ, u, or y.

Further combining these results, we arrive at

∥∥yx∥∥2
L∞(Q) +

∥∥√tyt∥∥2
L∞(Q) +

∥∥yxt∥∥2
L2(Q)

≤ C
(

1 +
∥∥√t ỹt∥∥2

L∞(Q)

)

·
(

1 +
∥∥ ỹx∥∥4

L∞(Q) +
∥∥ ỹxt∥∥4

L2(Q)

)(∫
I

(
byx

)2
x(0) + y2

x(0)dx+
∫
Q
u2
t +u2

)
.

(3.24)

4. Optimization and the main result

Now, we are ready to establish the main theorem, first for y0 in a narrower class
of functions, then for y0 ∈H1(I).

Theorem 4.1. For any δ > 0, there exists η > 0 such that, for every y0 ∈ L2(I)
with ‖(a(y0))xx‖L2(I) + ‖(y0)x‖L2(I) + ‖y0‖L2(I) ≤ η, (1.1) is exactly null control-
lable, with a controller u satisfying

∫
Q
e2s(δ−1)α(u2 +u2

t

)≤ C3(δ)
∥∥y0

∥∥2
L2 . (4.1)
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Proof. We define

K =
{
y | ∥∥yx∥∥L∞(Q) ≤ ρ,

∥∥√tyt∥∥L∞(Q) ≤ ρ,
∥∥yxt∥∥L2(Q) ≤ ρ, y(0)= y0

}
. (4.2)

Note that this set is compact in the L2(Q) topology. Indeed, it can be easily seen
that the set is closed, and the fact that ‖y‖H1(Q) is bounded insures its precom-
pactness.

Consider the linearized equation (1.2) for ỹ ∈ K . By the definition of K , for
all ỹ ∈ K , we have a fixed ρ (which does not depend on ỹ) in the Carleman
inequality (Theorem 2.2). Setting a sufficiently small ρ (ρ ≤ C4), we also find
that we can apply the main result of Section 3, (3.24), for all the elements of K .

For brevity, in the following we will denote any constant which does not de-
pend on p, y, ỹ, g, and u by C (such a constant may, however, depend on s, λ, ρ,
or δ).

Consider the optimal control problem: minimize

∫
Q
e−2sαφ−3u2 + ε−1

∫
I
y2(T)dx (4.3)

subject to (1.2). By the Pontryagin principle, this problem has a unique solution
(uε, yε). We have uε =mpεe2sαφ3, where pε is a solution of the dual system

(
pε
)
t +
(
b · (pε)x)x = 0, ∀(x, t)∈Q,

pε(x, t)= 0, ∀(x, t)∈ Σ,

pε(x,T)=−1
ε
yε(x,T), ∀x ∈ I.

(4.4)

Multiplying (4.4) by yε and (1.2) by pε, adding the two equations together, and
integrating on Q, we get

∫
Qω

e2sαφ3p2
ε + ε−1

∫
I
y2
ε(T)dx =−

∫
I
y0p(0)dx

≤ 1
2k

∫
I
y2

0dx+
k

2

∫
I
p(0)2dx.

(4.5)

Applying Corollary 2.3 and choosing a small enough k in (4.5), we further obtain

∫
Qω

e2sαφ3p2
ε + ε−1

∫
I
y2
ε(T)dx ≤ C

∫
I
y2

0dx. (4.6)
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Clearly, considering the Carleman inequality (2.2),

∫
Q
e2s(δ−1)αu2

ε =
∫
Qω

e2sαφ3p2
ε · e2sδαφ3 ≤ C

∫
Qω

e2sαφ3p2
ε,

∫
Q
e2s(δ−1)α(uε)2

t =
∫
Qω

e2s(δ−1)α
(
e2sαφ3(pε)t + 2se2sααtφ

3pε + 3e2sαφ2φt pε
)2

≤ C
(∫

Q
e2sαφ−1(pε)2

t · e2sδαφ7 +
∫
Qω

e2sαφ3p2
ε · e2sδαφ7

)

≤ C
∫
Qω

e2sαφ3p2
ε.

(4.7)

Combining (4.7) and (4.6) gives

∫
Q
e2s(δ−1)α

(
u2
ε +

(
uε
)2
t

)
+ ε−1

∫
I
y2
ε(T)dx ≤ C3

∫
I
y2

0dx. (4.8)

Taking δ = 1 and applying (3.24) (and also considering that ‖ ỹx‖L∞(Q) ≤ ρ,
‖√t ỹt‖L∞(Q) ≤ ρ, ‖ ỹxt‖L2(Q) ≤ ρ) give

∥∥∥(yε)x∥∥∥2

L∞(Q)
+
∥∥√t(yε)t∥∥2

L∞(Q) +
∥∥∥(yε)xt∥∥∥2

L2(Q)

≤ C(1 + ρ2)(1 + 2ρ4)(∫
I

(
b · (y0

)
x

)2

x
+
(
y0
)2
xdx+

∫
Q

(
uε
)2
t +u2

ε

)

≤ C4
(
1 + ρ6)∫

I

(
b · (y0

)
x

)2

x
+
(
y0
)2
x + y2

0dx.

(4.9)

Furthermore, since b(0)= a′( ỹ(0))= a′(y0), we obtain

∫
I

(
b · (y0

)
x

)2

x
+
(
y0
)2
x + y2

0dx =
∫
I

(
a
(
y0
))2

xx +
(
y0
)2
x + y2

0dx, (4.10)

hence the condition imposed on y0 in the statement of the theorem. Thus we get

∥∥∥(yε)x∥∥∥2

L∞(Q)
+
∥∥∥√t(yε)t∥∥∥2

L∞(Q)
+
∥∥∥(yε)xt∥∥∥2

L2(Q)

≤ C4
(
1 + ρ6)∫

I

(
a
(
y0
))2

xx(0) +
(
y0
)2
x + y2

0dx.

(4.11)

By making

∫
I

(
a
(
y0
))2

xx +
(
y0
)2
x + y2

0dx < η (4.12)

for a sufficiently small η (such as η = ρ/C4(1 + ρ6)), we obtain that yε ∈ K .
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In conclusion, by (4.8) with δ = 1, uε and (uε)t belong to a bounded set in
L2(Q), the same for every ε, and we have also proved that yε belongs to K , a set
that is compact in L2(Q).

Choose a sequence of (uε, yε), ε→ 0, that achieves the optimum in expression
(4.3). From the above, it follows that (on a subsequence)

uε −→ u weakly in L2(Q),(
uε
)
t −→ v weakly in L2(Q),

yε −→ y strongly in L2(Q).

(4.13)

Obviously, v = ut. Other immediate consequences are that (yε)t tends to yt in
H−1(Q) and that (b(yε)x)x tends to (byx)x in L2((0,T);H−2(I)); then (u, y)
satisfies the linearized equation (1.2). Furthermore, the strong convergence of
yε implies that y ∈ K . Last but not least, by making ε→ 0 in (4.6), we see that
y(T)≡ 0.

As for ‖es(1−δ)αu‖L2(Q) and ‖es(1−δ)αut‖L2(Q), we recall that, for any sequence
( fn)n∈N that converges weakly to f in L2, we have ‖ f ‖L2(Q) ≤ liminf ‖ fn‖L2(Q).

Thus, for any auxiliary function ỹ ∈ K , we have obtained a pair (y,u) that
satisfies system (1.2), with y ∈ K , y(T)≡ 0, and

∫
Q
e2s(δ−1)α(u2 +u2

t

)≤ C3
∥∥y0

∥∥2
L2 . (4.14)

We are now ready to apply Kakutani’s theorem. Consider Φ : K → 2K ,

Φ( ỹ)=
{
y | y ∈ K, y(T)≡ 0, and ∃u∈H1([0,T];L2(I)

)
,

with
∫
Q
e2s(δ−1)α(u2 +u2

t

)≤ C3
∥∥y0

∥∥
L2 , such that (u, y) satisfies (1.2)

}
.

(4.15)

Clearly Φ is well defined, takes nonempty values for every ỹ ∈ K , and has
convex values.

In order to prove that Φ has closed values, first we fix a ỹ, consider a conver-
gent sequence

yn −→ y in the L2(Q) norm, (4.16)

with yn ∈ Φ( ỹ), and choose the corresponding un as in the definition of Φ
(4.15). Since yn ∈ K , for all n, and K is compact, it follows that their limit y
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is also in K . Furthermore,

∥∥yn(T)− y(T)
∥∥
L2(I) ≤

∥∥yn− y
∥∥
C([0,T];L2(I))

≤ ∥∥yn− y
∥∥1/2
H1([0,T];L2(I))

∥∥yn− y
∥∥1/2
L2(Q)

≤ Cρ1/2 ·∥∥yn− y
∥∥1/2
L2(Q),

(4.17)

so y(T)≡ 0.
Since

∫
Q e

2s(δ−1)α(u2
n + (un)2

t )≤ C3‖y0‖2
L2(I), we may select a weakly convergent

subsequence which tends to a limit uwith
∫
Q e

2s(δ−1)α(u2 +u2
t )≤ C3‖y0‖2

L2(I) (the
proof is as above). It can be seen that (yn)t → yt strongly in the H−1(Q) norm
and (b · (yn)x)x → (byx)x strongly in the L2((0,T);H−2(I)) norm. By passing to
the weak limit in (1.2), satisfied by (un, yn), we obtain that (u, y) also satisfies the
equation for the same ỹ. Therefore, y ∈Φ( ỹ), and thus Φ( ỹ) is closed; in fact,
since Φ( ỹ)⊂ K , it follows that Φ( ỹ) is compact for every ỹ ∈ K .

In such a case, the lower semicontinuity of Φ can be obtained from the fact
that it has a closed graph. Indeed, if ỹn ∈ K , ỹn → ỹ, and yn ∈ Φ( ỹn) → y in
the L2(Q) norm, consider the corresponding un, as above, and we obtain (on a
subsequence) that

un −→ u weakly in L2(Q),

(
un
)
t −→ ut weakly in L2(Q), with

∫
Q
e2s(δ−1)α(u2 +u2

t

)≤ C3
∥∥y0

∥∥
L2 ;

(
yn
)
t −→ yt strongly in H−1(Q);

(
yn
)
x −→ yx strongly in L2((0,T);H−1(I)

)
;

ỹn −→ ỹ strongly in L2(Q).

(4.18)

Since |a′( ỹn)− a′( ỹ)| ≤ C|yn − y|, it also follows that a′( ỹn)→ a′( ỹ) strongly
in L2(Q) (and weakly-star in L∞(Q)). Then a′( ỹn)(yn)x → a′( ỹ)yx weakly in
L2((0,T);H−1(I)), or, equivalently, (a′( ỹn)(yn)x)x → (a′( ỹ)yx)x weakly in
L2((0,T);H−2(I)). By going to the weak limit in (1.2), we obtain that the pair
(u, y) also satisfies the linearized system, with b = a′( ỹ). The other conditions
( ỹ, y ∈ K , y(T)≡ 0) are obviously satisfied (see above the details of the proof),
so ( ỹ, y) belongs to the graph of Φ.

Thus we can apply Kakutani’s theorem and obtain that there is y ∈ K such
that y∈Φ(y). Such a y is a solution of the diffusion equation (1.1) with y(0)= y0

and y(T)≡ 0. In addition, its controller u satisfies the required estimate. �

Now, we come back to the more general case, y0 ∈H1(I).
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Theorem 4.2. For any δ > 0, there exists η > 0 such that, for every y0 ∈ H1(I)
with ‖y0‖H1(I) ≤ η, (1.1) is exactly null controllable, with a controller u satisfying

∫
Q
e2s(δ−1)α(u2 +u2

t

)≤ C3
∥∥y0

∥∥2
L2(I). (4.19)

Proof. We are going to divide the interval [0,T] into two parts by choosing
0 < T0 < T . On the first part of the interval, we will make u ≡ 0; the equation
becomes

yt −
(
byx

)
x = 0, ∀(x, t)∈Q,

y(x, t)= 0, ∀(x, t)∈ Σ,

y(x,0)= y0, x ∈ I,
(4.20)

where we have renamed I × [0,T0] ≡ QT0 ≡ Q and ∂I × [0,T0] ≡ Σ for greater
convenience. We will use the regularizing properties of (4.20), eventually ob-
taining that

∫
I

(
a(y)

)2
xx

(
T0
)

+ y2
x

(
T0
)

+ y2(T0
)
dx ≤ C

∫
I
y2

0 + y2
x(0)dx. (4.21)

Then, applying Theorem 4.1, we will be able to establish the null controllability
of y on the interval [T0,T]. Finally, we note that the function u defined by

u(x, t)=

0, for t ∈ [0,T0

]
,

u∗(x, t), for t ∈ [T0,T
]
,

(4.22)

where u∗ is a controller for y on [T0,T], still has all the desired properties (it
belongs to H1([0,T];L2(I)) and it satisfies (4.19)). Then the proof is complete.

Now, we establish estimate (4.21). For the beginning, we will only assume in
(4.20) that bt ∈ L2(Q) and bx ∈ L∞([0,T0];L2(I)).

Multiplying (4.20) by y and integrating on Qt, we get

∫
I
y2(t)dx+ 2

∫
Qt

by2
x =

∫
I
y2(0)dx. (4.23)

Multiplying the same equation by yt and integrating by parts for t, we get

∫
Qt

y2
t +

1
2

∫
I
by2

x(t)= 1
2

∫
I
by2

x(0) +
1
2

∫
Qt

bt y
2
x . (4.24)

Then, it is true that

∫
Qt

y2
t +

∫
I
y2
x(t)dx ≤ C

(∫
I
y2
x(0)dx+

(∫
Qt

b2
t

)1/2

·
(∫

Qt

y4
x

)1/2)
, (4.25)
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and, consequently, (since 0≤ t ≤ T0)

∫
Q
y2
t + sup

t∈[0,T0]

∫
I
y2
x(t)dx

≤ C
(∫

I
y2
x(0)dx+

∥∥bt∥∥L2(Q) ·
∥∥yx∥∥L2((0,T0);L∞(I)) · sup

t∈[0,T0]

∥∥yx(t)
∥∥
L2(I)

)
.

(4.26)

We note that ‖yx‖L2((0,T0);L∞(I)) ≤ C‖(byx)x‖L2(Q) = C‖yt‖L2(Q), so

∫
Q
y2
t + sup

t∈[0,T0]

∫
I
y2
x(t)dx

≤ C5

(∫
I
y2
x(0)dx+

∥∥bt∥∥L2(Q)

(∫
Q
y2
t + sup

t∈[0,T0]

∫
I
y2
x(t)dx

))
.

(4.27)

Making ‖bt‖L2(Q) sufficiently small (e.g., ‖bt‖L2(Q) ≤ 1/2C5), we obtain

∫
Q
y2
t + sup

t∈[0,T0]

∫
I
y2
x(t)dx ≤ C

∫
I
y2
x(0)dx. (4.28)

As an immediate consequence, we also get
∫
Q (byx)2

x ≤ C
∫
I y

2
x(0) (this will be

useful later on).
Rewriting (4.28) and recalling that, by definition, b=a′( ỹ), we obtain

∥∥yt∥∥L2(Q) + sup
t∈[0,T0]

∥∥yx(t)
∥∥
L2(I) ≤ C6

∥∥yx(0)
∥∥
L2(I) (4.29)

if ‖ ỹt‖L2(Q) ≤ 1/2MC5.
Consider the set

K =
{
y | ∥∥yt∥∥L2(Q) + sup

t∈[0,T0]

∥∥yx(t)
∥∥
L2(I) ≤

1
2MC5

, y(0)= y0

}
, (4.30)

which is clearly compact in L2(Q) (being closed in L2(Q) and bounded inH1(Q)).
Then, define Φ : K → 2K by

Φ( ỹ)= {y | y ∈ K, y is a solution of (4.20)
}
. (4.31)

For ‖yx(0)‖L2(I) ≤ 1/(C6 · 2MC5), the multifunction Φ has nonempty values
everywhere. It can be easily checked that it also has convex values.
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Consider a sequence of solutions yn ∈ Φ( ỹ) which converges in L2(Q) to
a limit y. Then, (yn)t → yt in H−1(Q) and (b · (yn)x)x → (byx)x in L2((0,T0);
H−2(I)). By going to the limit in (4.20) for yn, we obtain that yt − (byx)x = 0 in
the weak sense (in H−2(Q)), and therefore y ∈Φ( ỹ). Thus we have proved that
Φ has closed values (compact, as a matter of fact).

All that is left is to show that Φ has a closed graph (and thus is upper semi-
continuous). Indeed, if we take two sequences yn and ỹn, yn ∈Φ( ỹn), converging
to y and to ỹ, respectively, we successively obtain, in the same manner as in the
proof of Theorem 4.1, that(

yn
)
t −→ yt in H−1(Q),(

yn
)
x −→ yx in L2((0,T0

)
;H−1(I)

)
,

ỹn −→ ỹ in L2(Q),

a′
(
ỹn
)−→ a′( ỹ) weakly-star in L∞(Q),

a′
(
ỹn
) · (yn)x −→ a′( ỹ)yx in L2((0,T0

)
;H−1(I)

)
,(

a′
(
ỹn
) · (yn)x)x −→ (

a′( ỹ)yx
)
x in L2((0,T0

)
;H−2(I)

)
.

(4.32)

By going to the limit in (4.20), satisfied by all the functions yn with b = a′( ỹn),
we obtain that y ∈Φ( ỹ), so the graph is closed.

Now, all the conditions needed to apply Kakutani’s theorem are fulfilled and
we obtain thatΦ has a fixed point y ∈Φ(y), and therefore the diffusion equation

yt −
(
a(y)

)
xx = 0, ∀(x, t)∈Q = I × (0,T0

)
,

y(x, t)= 0, ∀(x, t)∈ Σ= ∂I × (0,T0
)
,

y(x,0)= y0, x ∈ I,
(4.33)

has a solution y with

∥∥yt∥∥L2(Q) + sup
t∈[0,T0]

∥∥yx(t)
∥∥
L2(I) ≤

1
2MC5︸ ︷︷ ︸

C

∥∥yx(0)
∥∥
L2(I), (4.34)

for ‖yx(0)‖L2(I) ≤ 1/(C6 · 2MC5).
However, the solution of (4.33) has further regularity properties, of which

we are going to employ only one. For convenience, we will keep the notation
b = a′( ỹ)≡ a′(y). By multiplying (3.1) by (byx)xt, we get∫

Qt

(
byx

)
x

(
byx

)
xt +

∫
Qt

by2
xt +

∫
Qt

yxtbt yx = 0, (4.35)

hence

1
2

∫
I
t
(
byx

)2
x(t)dx+

∫
Qt

tby2
xt +

∫
Qt

tyxtbt yx = 1
2

∫
Qt

(
byx

)2
x. (4.36)
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In this equation, we have

∣∣∣∣∣
∫
Qt

tyxtbt yx

∣∣∣∣∣≤ µ

2

∫
Qt

ty2
xt +

1
2µ

∫
Qt

tb2
t y

2
x , (4.37)

where we may take µ to be the same constant as in the beginning of the paper
(µ≤ a′(x), for all x ∈R, so that µ≤ a′(y)= b). Then,∫

Qt

tb2
t y

2
x ≤

∫
Q
b2
t ·
∥∥tby2

x

∥∥
L∞(Q) ≤ C

∫
Q
y2
t · sup

t∈[0,T0]

∫
I
t
(
byx

)2
x(t)dx. (4.38)

Consequently, we obtain (by using evaluation (4.34) for ‖yt‖L2(Q)) that

sup
t∈[0,T0]

∫
I
t
(
byx

)2
x(t)dx+

∫
Q
ty2

xt

≤ C7

(
1 + sup

t∈[0,T0]

∫
I
t
(
byx

)2
x(t)dx

)∫
I
y2
x(0)dx, ∀t ∈ [0,T0].

(4.39)

Again, for sufficiently small ‖yx(0)‖L2(I) (such as ‖yx(0)‖2
L2(I) ≤ 1/2C7), we have

proved that

sup
t∈[0,T0]

∫
I
t
(
byx

)2
x(t)dx+

∫
Q
ty2

xt ≤ C
∫
I
y2
x(0)dx. (4.40)

By choosing t = T0 in (4.23), (4.34), and (4.40), we obtain

∫
I

(
a(y)

)2
xx

(
T0
)

+ y2
x

(
T0
)

+ y2(T0
)
dx ≤ C

(∫
I
y2

0dx+
∫
I
y2
x(0)dx

)
, (4.41)

for any y0 with ‖(y0)x‖L2(I) sufficiently small. The proof of Theorem 4.2 is thus
concluded. �
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