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We consider the one-dimensional logistic problem (r*A(|u'|)u") = r*p(r) f (u)

n (0,00), u(0) >0, u'(0) = 0, where « is a positive constant and A is a continu-
ous function such that the mapping tA(|¢|) is increasing on (0, o). The frame-
work includes the case where f and p are continuous and positive on (0, ),
f(0) =0, and f is nondecreasing. Our first purpose is to establish a general
nonexistence result for this problem. Then we consider the case of solutions that
blow up at infinity and we prove several existence and nonexistence results de-
pending on the growth of p and A. As a consequence, we deduce that the mean
curvature inequality problem on the whole space does not have nonnegative so-
lutions, excepting the trivial one.

1. Introduction and the main results

As pointed out in the recent monograph by Buttazzo et al. [3], one-dimensional
variational problems deserve special attention. In fact, problems of this kind
have their own characters. Sometimes, as we will also see in this paper, higher-
dimensional variational problems can be reduced to one-dimensional ones.

We study the following problem:

[r Al '] = r*p(r) f(u), >0, u(0)>0, u'(0) =0, (1.1)

where a >0, and A satisfies

(A1) A € C[0,0), A(t) >0 for t >0, the mapping tA(|t|) is of class C(R) N
C'(0,0) and [tA(t)]’ >0 for t > 0.

We assume throughout the paper that f is a continuous and nondecreasing
function on [0, o) satisfying f(0) = 0, and f >0 on (0, ).
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996  Entire solutions to the logistic equation
We suppose that p is a positive continuous function on [0, co) such that the
mapping g(r) = r~* [ s*p(s)ds satisfies either

(gl) g(r) > 0 asr — coor
(g2) g'(r) =M >0forallr >0.

Obviously, (g2) implies (gl).
Remark 1.1. (i) For « = N — 1 and A(t) = #"2, m > 1, (1.1) becomes the m-
Laplacian equation

div (|Vul™2Vu) = p(r) f (u) (1.2)

in the radial case.
(ii) Fora = N —land A(t) = (1 +#2)~1/2, (1.1) becomes the radial mean cur-
vature equation, that is,

div (ﬁ) = p(") f(w). (1.3)

(iii) Typical functions A that verify (Al):

At)=1""2 m>1, (1.4)
A =(1+)"" a< % (1.5)
AW =" 2(1+2m 7 m= L (1.6)

(iv) Examples of functions p satisfying (gl): p(r) = r*(1 +r2)?, provided a +
2b>—1; p(r) =e"; p(r) = In(2 +r). The condition (g2) is fulfilled for p(r) =17,
(y>0); p(r)=e".

Our first result concerns the nonexistence of the solution to problem (1.1) in
the case where lim;_ o, tA(t) < oo.

THEOREM 1.2. Assume that A satisfies (A1), lim;_.« tA(t) < oo, and p satisfies (g1).
Then (1.1) has no positive solution.

Next we consider the case where

(A2) lim;— o A(t)/t" 2 = Ay € (0, ), for some m > 1.
We point out that the case A(t) = ™2, m > 2, was studied in [11].
Remark 1.3. (i) Since m > 1, (A2) leads to lim;_. tA(t) = +oo.

(ii) Functions satisfying both conditions (A1) and (A2) are given, for exam-
ple, by (1.4) and (1.6), with m > 1.

Define ¥ : [0, 00) — [0, 00) by ¥(¢) = ?A(t) — fotsA(s)ds, t > 0. From (Al), it
follows that W is a continuous increasing function with ¥(0) = 0.
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From (A2), and 'Hospital’s rule, we deduce that

fim 2 _m=L 0,000, (1.7)
m

t—oco M

THEOREM 1.4. Assume (Al), (A2), and (g2) hold. If

r (Itf(s)ds>l/mdt< o, (1.8)

then (1.1) has no positive solutions.

In fact, the proof of Theorem 1.4 establishes that if problem (1.1) would have
a solution then, necessarily, this solution blows up at infinity, that is, u(r) — +co
as r — co. Such a solution is called explosive or large. There is a great interest in
the last few decades regarding the study of solutions that blow up at the bound-
ary or at infinity. If m = 2, then condition (1.8) is known as the Keller-Osserman
condition (see [6, 13]) and it plays a basic role in the treatment of elliptic equa-
tion that admits large solutions. Basic results in the study of large solutions for
stationary problems have been recently obtained in [1, 2, 4, 5,7, 8, 9, 10, 11].

THEOREM 1.5. Assume (Al), (A2), and (g1) hold. If

Jm (f f(s)ds)il/mdt ~ o, (1.9)

then (1.1) has at least one positive solution. Moreover, this solution is large.

Our next result gives an estimate of the growth of a solution of (1.1) in case if
f is bounded. More precisely, we prove the following theorem.

THEOREM 1.6. Assume (A1), (A2), and (g1) hold and f is bounded. If u is a positive
solution of (1.1), then

. u(r) . 1 1(m=1)
o (s)ds (a/0) (1.10)

2. Proofs

If u is a positive solution of (1.1), then
[A(|u’|)u']’+%A(|u'|)u':p(r)f(r) Vr >0, (2.1)
A(lu (D' (r)=r* L s“p(s) f(u(s))ds  Vr>0. (2.2)

We deduce that A(|u'(r)|)u’(r) > 0 for r > 0 which implies #'(r) > 0. Since f is
nondecreasing, it follows that

AW (n)u'(r) <g(r)f(u(r)) Vr>o0. (2.3)
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Now (2.1) and (2.3) yield

[AW)u'] (r) = (p(r) - a@)f(u(r)) Yr>0, (2.4)
that is,

[AW)u'] (r) = ¢ (r) f (u(r))  Vr>0. (2.5)

Proof of Theorem 1.2. Arguing by contradiction, let u be a solution of (1.1). Since
u(0) >0 and f, u are nondecreasing functions, from (2.1) we get

A (n)u'(r) = g(r) f(u(0)) Vr>o0. (2.6)

On the other hand, lim; . tA(#) < oo, which implies that A(#' (r))u’(r) is bound-
ed on [0, o). This fact and the above inequality lead to a contradiction since
g(r) — 00 asr — o and f(u(0)) >0. The proof of Theorem 1.2 is now com-
plete. O

Proof of Theorem 1.4. Assume by contradiction that problem (1.1) has a positive
solution u. From (2.6), we get u’(r) — o0 asr — oo and so, by Remark 1.3, u(r) —
00 asr — 0.

By (g2) and (2.5), we have
[A@W)u'] (s) = Mf (u(s))  Vs>0. (2.7)
Multiplying by u’ the above inequality and integrating on [0, 7], we obtain
Lr (A ] (5)u' (s)ds > Mﬂf(u(s))u'(s)ds Vr >0, (2.8)
Now, integration by parts yields
A () (' (1) - LVAW(s))u' (u” (s)ds = Mjorf(ms))u'(s)ds (2.9)

for all r > 0. By a change of variables, we now find

) u'(r) u(r)
A (1) (1 (1) —L tA(t)dtzML(O) f(tydt Vr>o. (2.10)

Hence,
u(r)
¥ (i (1)) zMJ( Flu()ds 0. 2.11)
u(0

By (1.7) and using the fact that u'(r) — 400 as r — oo, there exist ry >0 and a
positive constant C > 0 such that

u(r) 1/m
u'(r) = C(J f(u(s))ds) Yr > 1. (2.12)

u(0)
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Hence,
u(r) —1/m
(J f(u(s))ds) u(r)=C Vr>r,. (2.13)
u(0)
Integrating this inequality on [ro, 7], we find
u(r) ¢ —1/m
J ( f(u(s))ds) dt>C(r—ry) Vr>r. (2.14)
u(ro) \ Ju(0)

Letting r — co in the above relation, we get

) ¢ —1/m
Ju(m) (Ju(o) f(”(S))dS> dt = +oo. (215)

This contradicts our assumption (1.8) and completes the proof. O

Proof of Theorem 1.5. The existence of a solution u of (1.1) in a certain interval
[0, R) follows by the classical arguments of ODEs. Assume, by contradiction, that
the maximal interval of existence of u is a finite interval [0, R), R < co.

We first claim that u(R — 0) = lim, g u(r) = 0. Indeed, since ' > 0 on [0, R),
it follows that u(R — 0) exists in (0, co]. From (2.1), we deduce that u'(R — 0)
exists and is finite. Then, by standard arguments for initial value problems, it
follows that u can be extended as a solution on an interval [0, R + ¢), € > 0, which
contradicts the maximality of R. Hence, u(R — 0) = co.

Using (2.1) and the fact that A(u")u’ = 0 on [0, R), we have

[A)u'] (s) < g(s) f (u(s)) < Cof (u(s)) VO<s<R, (2.16)

where Cy = max,cjor; g(r) > 0. Multiplying the above inequality by »’ > 0 and
integrating on [0, r], we have

u(r)
W (i (r) < coj Fu(s))ds VO<r<R (2.17)
u(0)
According to (1.7), there exists Ry € (0, R) such that
u(r) 1/m
W) <G (I f(s)ds) Vr e (Ro,R), (2.18)
u(0)

where C; >0 is a constant independent of f and u. Hence,

u(r) —1/m
( f(s)ds) u'(r)<C; Vre (RyR). (2.19)

u(0)
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An integration over [Ry, 7], r < R, and a change of variable lead to

u(r) t -1/m
J ) («[4(0) f(u(S))d$> dt < C; (T — Ro) Yr>r. (2.20)

L{(Ro

Now, letting » ~ R, we find

—1/m

o t
L(R ) (L(o)f(u(S))ds) dt < Ci(R=Ry) < o, (2.21)

which contradicts our assumption (1.9). We conclude that there exists a solution
of (1.1) and the proof is now complete. O

Proof of Theorem 1.6. Applying ’'Hospital’s rule, we have

. u(r) I u'(r)
}1}2 forgl/(mfl)(s)ds - llfg gl/(m—l)(r)' (2.22)

From (A2), we get

) L T 0) AW ) 1 AW )W)
r—c  g(r) r—o A(u' (r))u'(r) g(r) Ay r—e g(r)
(2.23)

By (2.1), Hospital’s rule, and the fact that u(r) — +o0 as r — oo, we deduce that

AW () fu(s)d
T e R Tepods

> = lim f(u(r)) = lim f(r). (2.24)

Now, (2.22), (2.23), and (2.24) lead to

. u(r) . 1 1/m=1)
E&ggm:mg;—k%(;ﬁ“ﬂ : (225)

This completes our proof. O

3. Applications to the N-dimensional case

In this section, we show how the previous results can be applied to the corre-
sponding problem (1.1) in the N-dimensional case, that is,

div[A(IVul)Vul = p(Ix]) f(u), xeRN. (3.1)

Many papers have been devoted to the semilinear case A = 1 (see, e.g., [1, 2,
4,5,6,7,8,9, 10, 11, 13] and the references therein). In [12], Naito and Usami
studied the case p = 1 and A satisfying (A1).

A very useful tool is the following comparison principle.
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ProposITION 3.1. Assume that (A1) holds. Let Q be a bounded domain in RN
with smooth boundary. Let u be a nonnegative entire solution of (3.1) and let v €
C(Q) N CY(Q) be a positive function satisfying
A(|Vv|) Vv e CH(Q),
div[A(IVv)Vv] < p(Ix]) f(v) inQ, (3.2)
u<v onoQ.
Then u < v in Q.

We also have the following proposition.

ProPOSITION 3.2. Assume that (A1) holds. If inequality (3.1) has a nonnegative
entire solution u # 0, then there exists a positive solution v of (1.1) corresponding
toa=N—1.

The proofs of Propositions 3.1 and 3.2 are similar to those for the case p = 1,
which can be found in [12].

Now we state the results that can be reduced to the one-dimensional case of
the inequality problem (3.1).

THEOREM 3.3. Assume that A satisfies (Al), lim;_ tA(t) < +oo, and p satisfies
(g1). If u is a nonnegative entire solution of (3.1), then u = 0.

Proof. Arguing by contradiction, assume that u # 0. Then, by Proposition 3.2,
problem (1.1) has a positive solution for « = N — 1, which contradicts Theorem
1.2. Hence, u = 0. O

THEOREM 3.4. Assume that (A1), (A2), and (g2) hold. If

Jw (f f(s)ds)_l/mdt < oo (33)

and u is a nonnegative entire solution of (3.1), then u = 0.

Proof. By contradiction, assume that u # 0. Then, by Proposition 3.2, (1.1) has
a positive solution for « = N — 1, which contradicts Theorem 1.4. Hence, u = 0.
O

THEOREM 3.5. Assume (Al), (A2), and (gl1) hold. If

Jm (Jt f(s)ds>_1/mdt ~ o, (3.4)

then inequality (3.1) has infinitely many positive entire large solutions.

Proof. By Theorem 1.5, for any a > 0, there exists a positive solution v, of (1.1)
with v,(0) = a. Furthermore, we have v,(r) — +o0 as r — co. Thus, u,(x) :=
va(lx), x € RN, is a positive entire large solution of (3.1). O
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COROLLARY 3.6. Assume that (Al), (A2), and (g2) hold. Then (3.1) has a positive
entire (large) solution if and only if

Jm (Jt f(s)ds)il/mdt S~ (3.5)

Examples. (i) If p satisfies (g1) and u is a nonnegative entire solution of the
mean curvature inequality problem

. Vu N
le(W) zp(lx\)f(u), x e RY, (36)
then u = 0.

(ii) If p satisfies (g2), then the inequality

. v 1
d(m) > p(lxe’, xeRY, a<3, G37)

has no positive entire solutions, while the inequality

Vu 1
v ——— y N -
d1v<(1+|vu|2)a)2p(|x|)u, xeR ,oc<2,y20, (3.8)
has positive entire (large) solutions if and only if y < 1 — 2a.

(iii) If p satisfies (g2), then the inequality

div (IVul"2Vu) = p(Ix)e?, xR, m>1,y=0. (3.9)

has positive entire (large) solutions if and only if y < m — 1.

Remark 3.7. The assumptions (g1) and (g2) are sufficient but not necessary for
the existence of a solution to inequality (3.1). As a counterexample we can take
A=1, f(r)=r, p(r) = 2N/(r?+1). It is obvious that (gl) and (g2) fail to hold
but the inequality problem (3.1) has the positive entire large solution u(x) =
|x|2+1.
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