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We consider the one-dimensional logistic problem (rαA(|u′|)u′)′ = rαp(r) f (u)
on (0,∞), u(0) > 0, u′(0)= 0, where α is a positive constant and A is a continu-
ous function such that the mapping tA(|t|) is increasing on (0,∞). The frame-
work includes the case where f and p are continuous and positive on (0,∞),
f (0) = 0, and f is nondecreasing. Our first purpose is to establish a general
nonexistence result for this problem. Then we consider the case of solutions that
blow up at infinity and we prove several existence and nonexistence results de-
pending on the growth of p and A. As a consequence, we deduce that the mean
curvature inequality problem on the whole space does not have nonnegative so-
lutions, excepting the trivial one.

1. Introduction and the main results

As pointed out in the recent monograph by Buttazzo et al. [3], one-dimensional
variational problems deserve special attention. In fact, problems of this kind
have their own characters. Sometimes, as we will also see in this paper, higher-
dimensional variational problems can be reduced to one-dimensional ones.

We study the following problem:

[
rαA

(|u′|)u′]′ = rαp(r) f (u), r > 0, u(0) > 0, u′(0)= 0, (1.1)

where α > 0, and A satisfies

(A1) A ∈ C[0,∞), A(t) > 0 for t > 0, the mapping tA(|t|) is of class C(R)∩
C1(0,∞) and [tA(t)]′ > 0 for t > 0.

We assume throughout the paper that f is a continuous and nondecreasing
function on [0,∞) satisfying f (0)= 0, and f > 0 on (0,∞).
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We suppose that p is a positive continuous function on [0,∞) such that the
mapping g(r)= r−α

∫ r
0 s

αp(s)ds satisfies either

(g1) g(r)→∞ as r →∞ or
(g2) g′(r)≥M > 0 for all r > 0.

Obviously, (g2) implies (g1).

Remark 1.1. (i) For α = N − 1 and A(t) = tm−2, m > 1, (1.1) becomes the m-
Laplacian equation

div
(|∇u|m−2∇u)= p(r) f (u) (1.2)

in the radial case.
(ii) For α=N − 1 and A(t)= (1 + t2)−1/2, (1.1) becomes the radial mean cur-

vature equation, that is,

div

(
∇u√

1 + |∇u|2
)
= p(r) f (u). (1.3)

(iii) Typical functions A that verify (A1):

A(t)= tm−2, m > 1, (1.4)

A(t)= (1 + t2)−α, α≤ 1
2
, (1.5)

A(t)= t2m−2(1 + t2m)−1/2
, m≥ 1. (1.6)

(iv) Examples of functions p satisfying (g1): p(r)= ra(1 + r2)b, provided a+
2b >−1; p(r)= er ; p(r)= ln(2 + r). The condition (g2) is fulfilled for p(r)= rγ,
(γ > 0); p(r)= er .

Our first result concerns the nonexistence of the solution to problem (1.1) in
the case where limt→∞ tA(t) <∞.

Theorem 1.2. Assume that A satisfies (A1), limt→∞ tA(t) <∞, and p satisfies (g1).
Then (1.1) has no positive solution.

Next we consider the case where

(A2) limt→∞A(t)/tm−2 =A0 ∈ (0,∞), for some m> 1.

We point out that the case A(t)= tm−2, m> 2, was studied in [11].

Remark 1.3. (i) Since m> 1, (A2) leads to limt→∞ tA(t)= +∞.
(ii) Functions satisfying both conditions (A1) and (A2) are given, for exam-

ple, by (1.4) and (1.6), with m> 1.
Define Ψ : [0,∞)→ [0,∞) by Ψ(t) = t2A(t)− ∫ t0 sA(s)ds, t > 0. From (A1), it

follows that Ψ is a continuous increasing function with Ψ(0)= 0.
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From (A2), and l’Hospital’s rule, we deduce that

lim
t→∞

Ψ(t)
tm

= m− 1
m

A0 ∈ (0,∞). (1.7)

Theorem 1.4. Assume (A1), (A2), and (g2) hold. If

∫∞(∫ t

f (s)ds
)−1/m

dt <∞, (1.8)

then (1.1) has no positive solutions.

In fact, the proof of Theorem 1.4 establishes that if problem (1.1) would have
a solution then, necessarily, this solution blows up at infinity, that is, u(r)→ +∞
as r →∞. Such a solution is called explosive or large. There is a great interest in
the last few decades regarding the study of solutions that blow up at the bound-
ary or at infinity. If m= 2, then condition (1.8) is known as the Keller-Osserman
condition (see [6, 13]) and it plays a basic role in the treatment of elliptic equa-
tion that admits large solutions. Basic results in the study of large solutions for
stationary problems have been recently obtained in [1, 2, 4, 5, 7, 8, 9, 10, 11].

Theorem 1.5. Assume (A1), (A2), and (g1) hold. If

∫∞(∫ t

f (s)ds
)−1/m

dt =∞, (1.9)

then (1.1) has at least one positive solution. Moreover, this solution is large.

Our next result gives an estimate of the growth of a solution of (1.1) in case if
f is bounded. More precisely, we prove the following theorem.

Theorem 1.6. Assume (A1), (A2), and (g1) hold and f is bounded. If u is a positive
solution of (1.1), then

lim
r→∞

u(r)∫ r
0 g1/(m−1)(s)ds

= lim
r→∞

(
1
A0

f (r)
)1/(m−1)

. (1.10)

2. Proofs

If u is a positive solution of (1.1), then

[
A
(|u′|)u′]′ +

α

r
A
(|u′|)u′ = p(r) f (r) ∀r > 0, (2.1)

A
(∣∣u′(r)

∣∣)u′(r)= r−α
∫ r

0
sαp(s) f

(
u(s)

)
ds ∀r > 0. (2.2)

We deduce that A(|u′(r)|)u′(r) > 0 for r > 0 which implies u′(r) > 0. Since f is
nondecreasing, it follows that

A
(
u′(r)

)
u′(r)≤ g(r) f

(
u(r)

) ∀r > 0. (2.3)
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Now (2.1) and (2.3) yield

[
A(u′)u′

]′
(r)≥

(
p(r)−α

g(r)
r

)
f
(
u(r)

) ∀r > 0, (2.4)

that is,
[
A(u′)u′

]′
(r)≥ g′(r) f

(
u(r)

) ∀r > 0. (2.5)

Proof of Theorem 1.2. Arguing by contradiction, let u be a solution of (1.1). Since
u(0) > 0 and f , u are nondecreasing functions, from (2.1) we get

A
(
u′(r)

)
u′(r)≥ g(r) f

(
u(0)

) ∀r > 0. (2.6)

On the other hand, limt→∞ tA(t) <∞, which implies thatA(u′(r))u′(r) is bound-
ed on [0,∞). This fact and the above inequality lead to a contradiction since
g(r) →∞ as r →∞ and f (u(0)) > 0. The proof of Theorem 1.2 is now com-
plete. �

Proof of Theorem 1.4. Assume by contradiction that problem (1.1) has a positive
solution u. From (2.6), we get u′(r)→∞ as r →∞ and so, by Remark 1.3, u(r)→
∞ as r →∞.

By (g2) and (2.5), we have
[
A(u′)u′

]′
(s)≥M f

(
u(s)

) ∀s > 0. (2.7)

Multiplying by u′ the above inequality and integrating on [0, r], we obtain∫ r

0

[
A(u′)u′

]′
(s)u′(s)ds≥M

∫ r

0
f
(
u(s)

)
u′(s)ds ∀r > 0. (2.8)

Now, integration by parts yields

A
(
u′(r)

)(
u′(r)

)2−
∫ r

0
A
(
u′(s)

)
u′(s)u′′(s)ds≥M

∫ r

0
f
(
u(s)

)
u′(s)ds (2.9)

for all r > 0. By a change of variables, we now find

A
(
u′(r)

)(
u′(r)

)2−
∫ u′(r)

0
tA(t)dt ≥M

∫ u(r)

u(0)
f (t)dt ∀r > 0. (2.10)

Hence,

Ψ
(
u′(r)

)≥M
∫ u(r)

u(0)
f
(
u(s)

)
ds ∀r > 0. (2.11)

By (1.7) and using the fact that u′(r)→ +∞ as r →∞, there exist r0 > 0 and a
positive constant C > 0 such that

u′(r)≥ C

(∫ u(r)

u(0)
f
(
u(s)

)
ds

)1/m

∀r > r0. (2.12)



M. Ghergu and V. Rădulescu 999

Hence,

(∫ u(r)

u(0)
f
(
u(s)

)
ds

)−1/m

u′(r)≥ C ∀r > r0. (2.13)

Integrating this inequality on [r0, r], we find

∫ u(r)

u(r0)

(∫ t

u(0)
f
(
u(s)

)
ds

)−1/m

dt ≥ C
(
r− r0

) ∀r > r0. (2.14)

Letting r →∞ in the above relation, we get

∫∞
u(r0)

(∫ t

u(0)
f
(
u(s)

)
ds

)−1/m

dt = +∞. (2.15)

This contradicts our assumption (1.8) and completes the proof. �

Proof of Theorem 1.5. The existence of a solution u of (1.1) in a certain interval
[0,R) follows by the classical arguments of ODEs. Assume, by contradiction, that
the maximal interval of existence of u is a finite interval [0,R), R <∞.

We first claim that u(R− 0)= limr↗R u(r)=∞. Indeed, since u′ ≥ 0 on [0,R),
it follows that u(R− 0) exists in (0,∞]. From (2.1), we deduce that u′(R− 0)
exists and is finite. Then, by standard arguments for initial value problems, it
follows that u can be extended as a solution on an interval [0,R+ ε), ε > 0, which
contradicts the maximality of R. Hence, u(R− 0)=∞.

Using (2.1) and the fact that A(u′)u′ ≥ 0 on [0,R), we have

[
A(u′)u′

]′
(s)≤ g(s) f

(
u(s)

)≤ C0 f
(
u(s)

) ∀0 < s < R, (2.16)

where C0 =maxr∈[0,R] g(r) > 0. Multiplying the above inequality by u′ ≥ 0 and
integrating on [0, r], we have

Ψ
(
u′(r)

)≤ C0

∫ u(r)

u(0)
f
(
u(s)

)
ds ∀0 < r < R. (2.17)

According to (1.7), there exists R0 ∈ (0,R) such that

u′(r)≤ C1

(∫ u(r)

u(0)
f (s)ds

)1/m

∀r ∈ (R0,R
)
, (2.18)

where C1 > 0 is a constant independent of f and u. Hence,

(∫ u(r)

u(0)
f (s)ds

)−1/m

u′(r)≤ C1 ∀r ∈ (R0,R
)
. (2.19)
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An integration over [R0, r], r < R, and a change of variable lead to

∫ u(r)

u(R0)

(∫ t

u(0)
f
(
u(s)

)
ds

)−1/m

dt ≤ C1
(
r−R0

) ∀r > r0. (2.20)

Now, letting r ↗ R, we find

∫∞
u(R0)

(∫ t

u(0)
f
(
u(s)

)
ds

)−1/m

dt ≤ C1
(
R−R0

)
<∞, (2.21)

which contradicts our assumption (1.9). We conclude that there exists a solution
of (1.1) and the proof is now complete. �

Proof of Theorem 1.6. Applying l’Hospital’s rule, we have

lim
r→∞

u(r)∫ r
0 g1/(m−1)(s)ds

= lim
r→∞

u′(r)
g1/(m−1)(r)

. (2.22)

From (A2), we get

lim
r→∞

u′m−1(r)
g(r)

= lim
r→∞

u′m−1(r)
A
(
u′(r)

)
u′(r)

A
(
u′(r)

)
u′(r)

g(r)
= 1

A0
lim
r→∞

A
(
u′(r)

)
u′(r)

g(r)
.

(2.23)

By (2.1), l’Hospital’s rule, and the fact that u(r)→ +∞ as r →∞, we deduce that

lim
r→∞

A
(
u′(r)

)
u′(r)

g(r)
= lim

r→∞

∫ r
0 s

αp(s) f
(
u(s)

)
ds∫ r

0 sαp(s)ds
= lim

r→∞ f
(
u(r)

)= lim
r→∞ f (r). (2.24)

Now, (2.22), (2.23), and (2.24) lead to

lim
r→∞

u(r)∫ r
0 g1/(m−1)(s)ds

= lim
r→∞

(
1
A0

f (r)
)1/(m−1)

. (2.25)

This completes our proof. �

3. Applications to the N-dimensional case

In this section, we show how the previous results can be applied to the corre-
sponding problem (1.1) in the N-dimensional case, that is,

div
[
A
(|∇u|)∇u]≥ p

(|x|) f (u), x ∈R
N . (3.1)

Many papers have been devoted to the semilinear case A≡ 1 (see, e.g., [1, 2,
4, 5, 6, 7, 8, 9, 10, 11, 13] and the references therein). In [12], Naito and Usami
studied the case p ≡ 1 and A satisfying (A1).

A very useful tool is the following comparison principle.
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Proposition 3.1. Assume that (A1) holds. Let Ω be a bounded domain in RN

with smooth boundary. Let u be a nonnegative entire solution of (3.1) and let v ∈
C(Ω)∩C1(Ω) be a positive function satisfying

A
(|∇v|)∇v ∈ C1(Ω),

div
[
A
(|∇v|)∇v]≤ p

(|x|) f (v) in Ω,

u≤ v on ∂Ω.

(3.2)

Then u≤ v in Ω.

We also have the following proposition.

Proposition 3.2. Assume that (A1) holds. If inequality (3.1) has a nonnegative
entire solution u �≡ 0, then there exists a positive solution v of (1.1) corresponding
to α=N − 1.

The proofs of Propositions 3.1 and 3.2 are similar to those for the case p ≡ 1,
which can be found in [12].

Now we state the results that can be reduced to the one-dimensional case of
the inequality problem (3.1).

Theorem 3.3. Assume that A satisfies (A1), limt→∞ tA(t) < +∞, and p satisfies
(g1). If u is a nonnegative entire solution of (3.1), then u≡ 0.

Proof. Arguing by contradiction, assume that u �= 0. Then, by Proposition 3.2,
problem (1.1) has a positive solution for α=N − 1, which contradicts Theorem
1.2. Hence, u≡ 0. �

Theorem 3.4. Assume that (A1), (A2), and (g2) hold. If

∫∞(∫ t

f (s)ds
)−1/m

dt <∞ (3.3)

and u is a nonnegative entire solution of (3.1), then u≡ 0.

Proof. By contradiction, assume that u �= 0. Then, by Proposition 3.2, (1.1) has
a positive solution for α=N − 1, which contradicts Theorem 1.4. Hence, u≡ 0.

�

Theorem 3.5. Assume (A1), (A2), and (g1) hold. If

∫∞(∫ t

f (s)ds
)−1/m

dt =∞, (3.4)

then inequality (3.1) has infinitely many positive entire large solutions.

Proof. By Theorem 1.5, for any a > 0, there exists a positive solution va of (1.1)
with va(0) = a. Furthermore, we have va(r) → +∞ as r → ∞. Thus, ua(x) :=
va(|x|), x ∈RN , is a positive entire large solution of (3.1). �
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Corollary 3.6. Assume that (A1), (A2), and (g2) hold. Then (3.1) has a positive
entire (large) solution if and only if

∫∞(∫ t

f (s)ds
)−1/m

dt = +∞. (3.5)

Examples. (i) If p satisfies (g1) and u is a nonnegative entire solution of the
mean curvature inequality problem

div

(
∇u√

1 + |∇u|2
)
≥ p

(|x|) f (u), x ∈R
N , (3.6)

then u≡ 0.
(ii) If p satisfies (g2), then the inequality

div

(
∇u(

1 + |∇u|2)α
)
≥ p

(|x|)eu, x ∈R
N , α <

1
2
, (3.7)

has no positive entire solutions, while the inequality

div

(
∇u(

1 + |∇u|2)α
)
≥ p

(|x|)uγ, x ∈R
N , α <

1
2
, γ ≥ 0, (3.8)

has positive entire (large) solutions if and only if γ ≤ 1− 2α.
(iii) If p satisfies (g2), then the inequality

div
(|∇u|m−2∇u)≥ p

(|x|)uγ, x ∈R
N , m > 1, γ ≥ 0. (3.9)

has positive entire (large) solutions if and only if γ ≤m− 1.

Remark 3.7. The assumptions (g1) and (g2) are sufficient but not necessary for
the existence of a solution to inequality (3.1). As a counterexample we can take
A≡ 1, f (r)= r, p(r)= 2N/(r2 + 1). It is obvious that (g1) and (g2) fail to hold
but the inequality problem (3.1) has the positive entire large solution u(x) =
|x|2 + 1.
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