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We give some results concerning the real-interpolation method and finite dif-
ferences. Next, we apply them to estimate the resolvents of finite-difference dis-
cretizations of Dirichlet boundary value problems for elliptic equations in space
dimensions one and two in analogs of spaces of continuous and Hölder contin-
uous functions. Such results were employed to study finite-difference discretiza-
tions of parabolic equations.

1. Introduction

Estimates depending on a parameter for elliptic boundary value problems play
a central role not only in evolution equations (see, e.g., [19]) but also in their
discretizations, for example, by finite-difference methods (see [3]). In this sec-
ond case, it is of course of interest to get estimates depending on a parameter
for finite-difference analogs of elliptic boundary value problems. In this direc-
tion, a significant contribution was given by Alibekov and Sobolevskii in [2].
These authors studied the classical five-point discretization of the second-order
problem

(
λ−

n∑
k=1

ak(x)
∂2

∂x2
k

)
u(x)= f (x), x ∈Ω,

γ0u= 0,

(1.1)

where n ∈ {1,2}, Ω equals ]0,1[ or ]0,1[×]0,1[, the functions ak are suitably
regular, the operator

∑n
k=1 ak(x)(∂2/∂x2

k) is strongly elliptic, and γ0 is the trace
operator, and they got estimates of the form

∥∥∥(λ−Ah)−1
∥∥∥

�(�h)
≤ K(1 + |λ|)−1

. (1.2)
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Here �h is a certain class of mesh functions with step h, Ah is a discretization of
the elliptic operator with Dirichlet boundary conditions in �h, and the positive
number K is independent of h and λ for Reλ≥ 0.

However, the space of continuous functions has an important shortcoming:
in a space dimension larger than one, it is not possible to estimate in C(Ω) the
second-order derivatives of the solution u. Therefore, in these spaces, it is more
difficult to study problems involving perturbations depending on second-order
derivatives, such as parabolic equations which are fully nonlinear or with coef-
ficients depending on time. It is well known that spaces of Hölder continuous
functions are much more amenable from this point of view. So we are also in-
terested in estimates depending on λ in analogs of spaces of Hölder continuous
functions. Estimates depending on a parameter for elliptic boundary value prob-
lems were given in [4, 8, 9] and, under suitable assumptions on the regularity of
the coefficients ak and of Ω, are of the form

|λ|‖u‖Cθ(Ω) +‖u‖C2+θ(Ω) ≤ K
[
‖ f ‖Cθ(Ω) + |λ|θ/2∥∥γ0 f

∥∥
C(∂Ω)

]
(1.3)

for Reλ ≥ 0. In the case of Ω =]0,1[×]0,1[, owing to the singularity of the
boundary, an estimate of the form (1.3) holds if f vanishes in each vertex (this
is a consequence of [9, Proposition 3.1]).

Now, we describe the content of this paper. In Section 2 we put some auxil-
iary results concerning real-interpolation theory and finite differences. In fact,
real-interpolation theory is one of our main tools. We examine in particular one
of the possible discretizations of the derivative, the forward difference quotient.
This is a bounded operator in all the situations we consider. We establish the
uniform equivalence (with respect to the discretization step) of interpolation
norms with norms which are discrete versions of norms in Hölder spaces. We
conclude showing that a function which has finite difference of a certain order
in a certain Banach space and is bounded in another has the intermediate fi-
nite differences which are bounded with values in suitable interpolation spaces
(Proposition 2.8). This result can be regarded as a discrete version of the theo-
rem by Grisvard (see [6]).

In Section 3, we apply the results of Section 2 to get estimates depending on a
parameter for finite-difference discretizations of second-order elliptic boundary
value problems in dimension one. First we consider the simplest discretization
of the second derivative with Dirichlet boundary condition in a half line; this
is necessary for Section 4. Next, we give in Proposition 3.9 a finite-difference
analog of estimate (1.3).

In Section 4 we find again, using the foregoing interpolation results and tech-
niques due to Da Prato and Grisvard [5], the essence of the main result in [2]
(Theorem 4.3(I)) (in fact, we require a little bit more regular coefficients). Next,
we show the uniform equivalence of certain interpolation norms between dis-
crete analogs of the space of continuous functions and the domain of the ellip-
tic operator with Dirichlet boundary conditions with analogs of Hölder norms
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(Theorem 4.3(II)). This is a discrete version of a result due to Labbas [14]. Fi-
nally, we indicate a discrete generalization of (1.3) in a square for a problem of
the form (1.1).

Some of the results of this paper were also applied to discretizations of par-
abolic problems in [10, Rothe’s scheme] and [11, Crank-Nicolson scheme]. For
this purpose, we observe that in the specific case of Hölder continuous functions
and their discretizations, estimates of the form (1.3) prevent us from working
with infinitesimal generators of operators and so from applying the results of
[3]. However, they allow us to get results which are, in some sense, discrete gen-
eralizations of certain optimal regularity results which are known for parabolic
problems (for this, compare the results of [10, 11] with the results of [8, 9]).

We think that the techniques of real interpolation and sums of operators we
employ can be useful to treat other problems: for example, discretizations of
oblique derivative problems, systems in higher-dimensional parallelepipeds and
even in general plane angles (by preliminary change of variables, see [20, Section
4.5]).

We are able to estimate even second-order finite differences of solutions. Con-
cerning the results of this type, we mention again the book [3, Chapter 4] where
analogs of estimate depending on a parameter in Rn are given. Estimates in a half
space for boundary value problems (not depending on a parameter) were given
also by Johnson [13], while Thomée had proved the analogs of interior estimates
in [21].

The case of Sobolev-type estimates with p = 2 in quite general domains (while
the estimates not depending on a parameter) was considered in [12, Section
9.2.4]. Results of convergence, being related in some way, were given in [16].

Sobolevskiı̆ considered in [18] the heat equation in a rectangular region with
discrete analogs of Hölder continuous functions with weights at the boundary
in a square and considered in this framework a discretized version of (1.1).

For an introduction to the one-dimensional case in analogs of continuous
functions, see also [22].

We conclude this introduction specifying some standard notations we use in
the paper.

We indicate with N, N0, Z, R, R+, and C, respectively, the set of positive and
nonnegative integers, the set of integers, the set of real, real positive, and complex
numbers. If ω ∈R, we set

[ω] :=max
{
j ∈ Z : j ≤ ω}, {ω} := ω− [ω]. (1.4)

If z is a nonvanishing complex number, we indicate with Arg(z) the element of
its argument in the interval ]−π,π].

An n-dimensional multi-index α is, by definition, an element of N
n
0; if α =

(α1,·,αn), we pose |α| := α1 + ···+αn.
A linear operator in the Banach space X is an operator of domain D(A)⊆ X

with values in X . In this case we indicate with ρ(A) its resolvent set. If X and Y
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are Banach spaces, �(X,Y) is the Banach space of linear continuous operators
from X to Y . We omit Y if Y = X .

If A and B are elements of �(X), we set

[A;B] := AB−BA. (1.5)

Let X0 and X1 be Banach spaces with norms, respectively, ‖ · ‖0 and ‖ · ‖1.
We will say that assumption (h) is satisfied if X1 ⊆ X0 and ‖x‖0 ≤ ‖x‖1 for every
x ∈ X1. Under these conditions, we set, for every t > 0, x ∈ X0,

k
(
t,x;X0,X1

)
:= inf

{‖x− y‖0 + t‖y‖1 | y ∈ X1
}
. (1.6)

We write k(t,x) if the spaces X0 and X1 are clear from the context. If θ ∈ ]0,1[,
we define, for x ∈ X0,

‖x‖(X0,X1)θ,∞ := sup
t>0

t−θk(t,x) (1.7)

and (X0,X1)θ,∞ := {x ∈ X0 | ‖x‖(X0,X1)θ,∞ < +∞}. In some cases, we will mention
even the interpolation space (X0,X1)θ,1. For the basic theory concerning these
spaces, we refer to [17]. We will write (X0,X1)θ instead of (X0,X1)θ,∞.

Whenever we consider a space of the form Cm(I,E), where m ∈ N0, I is an
interval in R, and E is a Banach space, we mean that its elements are bounded
and uniformly continuous, together with their derivatives of order less than or
equal tom and we equip it with its natural norm. We often consider the case that
m ∈ R+ −N, where we assume that the derivative of order [m] is {m}-Hölder
continuous. The same conventions will be used for spaces of the form Cs(Ω),
with s≥ 0 and Ω an open subset in Rn.

Indicate by c,c′, c1, c2, . . . constants we are not interested to precise, which can
be different from time to time. Whenever it is necessary, we will indicate by
c(θ, . . .), c′(θ, . . .), . . . that c (resp. , c′) depends on θ, . . . .

Let X0 be a Banach space and A a linear operator in X0. We say that A satisfies
the following condition:

(κ) if ]0,+∞[⊆ ρ(A) and there exists M > 0 such that for every ξ > 0,∥∥(ξ −A)−1
∥∥

�(X0) ≤Mξ−1.
(1.8)

If A is a closed operator in X , we will equip its domain D(A) with the natural
norm

‖x‖D(A) :=max
{‖x‖,‖Ax‖} ∀x ∈D(A). (1.9)

In this case we will also use the notation Dθ(A) to indicate (X,D(A))θ .
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If X0, X1, and X are Banach spaces such that X0 and X1 are continuously
embedded into X , if x ∈ X0∩X1, we set

‖x‖X0∩X1 :=max
{‖x‖X0 ,‖x‖X1

}
. (1.10)

2. The interpolation functor (·,·)θ,∞ and finite differences

We start with the following result which is easily proved using the interpolation
theory.

Lemma 2.1. Let X0 be a Banach space and A a linear operator in X0 satisfying
condition (κ). If k ∈N, set Xk :=D(Ak) and, if x ∈ Xk, ‖x‖k :=max{‖Ajx‖ | j ∈
{0, . . . ,k}}. Then with this norm, Xk is a Banach space. Moreover, for all k ∈ N0

and θ ∈ ]0,1[,

(
Xk,Xk+1

)
θ =

{
x ∈ Xk |Akx ∈

(
X0,X1

)
θ

}
(2.1)

and there exist c1, c2 positive, depending only on k, θ, and M such that for every
x ∈ (Xk,Xk+1)θ ,

c1 max
{
‖x‖k,

∥∥Akx∥∥(X0,X1)θ

}
≤ ‖x‖(Xk,Xk+1)θ ≤ c2 max

{
‖x‖k,

∥∥Akx∥∥(X0,X1)θ

}
.

(2.2)

Now, for ω ∈R, ω > 0, we set

Xω :=
{
x ∈ X[ω] |A[ω]x ∈ (X0,X1

)
{ω}
}

(2.3)

with norm ‖x‖ω :=max{‖x‖[ω],‖A[ω]x‖(X0,X1){ω}}.
The following fact will be crucial.

Theorem 2.2. Let X0 be a Banach space, A a linear operator in X0 satisfying con-
dition (κ), and θ ∈ ]0,1[. Then

(I) (X0,X1)θ = {x ∈ X0 | sup{ξθ‖A(ξ −A)−1x‖0 | ξ ≥ 1} < +∞}; moreover,
there exist positive constants c1, c2 depending only on M such that for every
x ∈ (X0,X1)θ ,

c1‖x‖θ ≤max
{
‖x‖0,sup

{
ξθ
∥∥A(ξ −A)−1x

∥∥
0 | ξ ≥ 1

}}
≤ c2‖x‖θ. (2.4)

Let ω0, ω1 be real numbers with 0≤ ω0 < ω1, let θ ∈]0,1[, ω = (1− θ)ω0 +
θω1. Then

(II) if ω is not an integer,

Xω =
(
Xω0 ,Xω1

)
θ, (2.5)

and there exist positive constants c1, c2 depending only onM, ω0, ω1, ω, and
M such that for every x ∈ Xω,

c1‖x‖ω ≤ ‖x‖(Xω0 ,Xω1 )θ ≤ c2‖x‖ω; (2.6)
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(III) in any case there exists c positive, depending only on ω0, ω1, and ω, such
that for every x ∈ Xω1 ,

‖x‖ω ≤ c‖x‖(ω1−ω)/(ω1−ω0)
ω0

‖x‖(ω−ω0)/(ω1−ω0)
ω1

. (2.7)

Proof. See [7, Theorem 3.1, Corollaries 3.1, 3.2]. �

We now introduce some notations and give some applications of Theorem 2.2
to difference operators. Let � be a set and E a Banach space with norm ‖ · ‖.
Giving U : �→ E and writing Uj instead of U( j) for every j ∈�, we set

‖U‖B(�,E) := sup
j∈�

∥∥Uj

∥∥,

B(�,E) :=
{
U : �−→ E | sup

j∈�

∥∥Uj

∥∥ < +∞
}

;
(2.8)

it is easily seen that B(�,E) is a Banach space with the norm ‖ · ‖B(�,E).
Now assume that �⊆ Z; if U : �→ E, j ∈�, j + 1∈�, and h > 0, we set

∂hUj := h−1(Uj+1−Uj
)
. (2.9)

If m∈N, and j ∈�, j + i∈� for every i= 1, . . . ,m, we set

∂mh Uj := h−m
m∑
i=0

(
m

i

)
(−1)m−iUj+i. (2.10)

For m∈N, we put

�m := { j ∈� | { j + 1, . . . , j +m} ⊆�
}
. (2.11)

If U ∈ B(�,E), we set

‖U‖Cmh (�,E) :=max
{∥∥∂rhU∥∥B(�r ,E) | 0≤ r ≤m

}
, (2.12)

where, of course, �0 =� and ∂0
h is the identity. Finally, let θ ∈ ]0,1[. We set

[U]Cθh(�,E) := sup
{(

(k− j)h
)−θ∥∥Uk −Uj

∥∥ : j,k ∈�, j < k
}

(2.13)

and, if m∈N0,

‖U‖Cm+θ
h (�,E) :=max

{
‖U‖Cmh (�,E),

[
∂mh U

]
Cθh(�m,E)

}
. (2.14)

In the same context, we will indicate B(�,E) by C0
h(�,E). In each case, if E is

omitted, we will assume E =C.
Now consider the space B(Z,E) and for any h > 0, the operatorDh in B(Z,E) is

defined as DhU := ∂hU . It is clear that Dh ∈ �(B(Z,E)) and ‖ · ‖D(Dh) =
‖·‖C1

h(Z,E) for every h > 0. We have the following lemma.
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Lemma 2.3. (I) For every h > 0, Dh satisfies condition (κ), with M = 1;
(II) there exist positive constants c1, c2 such that for every θ ∈ ]0,1[, h > 0, and

U ∈ B(Z,E),

c1‖U‖Cθh(Z,E) ≤ ‖U‖(C(Z,E),D(Dh))θ ≤ c2‖U‖Cθh(Z,E). (2.15)

Proof. (I) By elementary calculations, one has that for every ξ > 0 and for every
f ∈ B(Z;E), the equation

ξU −DhU = f (2.16)

has in B(Z;E) the unique solution

Uj =
+∞∑
k= j

Gh, j−k fk, (2.17)

where

Gh, j =

h(1 +hξ) j−1, if j ≤ 0,

0, if j > 0.
(2.18)

As
∑0

j=−∞ Gh, j = ξ−1, (I) is proved.
We show (II): let U ∈ B(Z;E), N := ‖U‖(B(Z,E),D(Dh))θ ; then, by definition, for

every ε > 0 and for every t > 0, there exist Vt ∈ B(Z;E) such that

∥∥U −Vt
∥∥
B(Z;E) + t

∥∥Vt
∥∥
D(Dh) ≤ (N + ε)tθ. (2.19)

Let j,k ∈ Z with j < k; then,

∥∥Uk −Uj

∥∥≤ ∥∥(Uk −Uj
)− (Vt

k −Vt
j

)∥∥+
∥∥Vt

k −Vt
j

∥∥
≤ 2

∥∥U −Vt
∥∥
B(Z;E) + (k− j)h

∥∥Vt
∥∥
D(Dh)

≤ (N + ε)
[
2tθ + (k− j)htθ−1] (2.20)

so that

[
(k− j)h

]−θ∥∥Uk −Uj

∥∥≤ (N + ε)
{

2tθ
[
(k− j)h

]−θ
+
[
(k− j)h

]1−θ
tθ−1

}
(2.21)

for every t > 0. Choosing t = (k− j)h, one gets

[U]Cθh(Z,E) ≤ 3(N + ε). (2.22)
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To prove the inverse inequality, we use Theorem 2.2(I) and (II). Let U ∈ B(Z;E)
and ξ > 0. Then, after easy computations, for every k ∈ Z and ξ ≥ 1,

ξθ
∥∥∥Dh

(
ξ −Dh

)−1
U
∥∥∥
B(Z,E)

= sup
k∈Z

ξ1+θh

∥∥∥∥∥
∞∑
r=k

(1 +hξ)k−r−1(Ur −Uk
)∥∥∥∥∥

≤N ′(ξh)1+θ(1 +hξ)−1
+∞∑
r=1

rθ(1 +hξ)−r ≤N ′

(2.23)

if N ′ = [U]Cθh(Z,E).
�

As a consequence, we have the following corollary.

Corollary 2.4. Let ω0,ω,ω1 ∈R, 0≤ ω0 < ω < ω1. Then

(I) if ω �∈ Z, there exist positive constants c1, c2 depending on ω0, ω, and ω1

but not on h such that for every U ∈ B(Z;E),

c1‖U‖Cωh (Z,E) ≤ ‖U‖(C
ω0
h (Z,E),C

ω1
h (Z,E))(ω−ω0)/(ω1−ω0)

≤ c2‖U‖Cωh (Z,E); (2.24)

(II) in every case, there exists c > 0 depending on ω0, ω, and ω1 but not on h
such that for every U ∈ B(Z;E),

‖U‖Cωh (Z,E) ≤ c‖U‖(ω1−ω)/(ω1−ω0)
C
ω0
h (Z,E)

‖U‖(ω−ω0)/(ω1−ω0)
C
ω1
h (Z,E)

. (2.25)

Now consider the space B(N0,E) and for any h > 0 the operator Eh in B(N0,E)
defined as EhU := ∂hU . It is clear that for every h > 0, Eh ∈ �(B(N0,E)) and
‖ · ‖D(Eh) = ‖ · ‖C1

h(N0,E). With the same methods applied in the case of Dh, one
can show that for every h > 0, Eh satisfies (κ) with M = 1. Moreover, there exist
positive constants c1, c2 such that for every θ ∈ ]0,1[, h > 0 and U ∈ B(N0,E),

c1‖U‖Cθh(N0,E) ≤ ‖U‖(B(N0,E),D(Eh))θ ≤ c2‖U‖Cθh(N0,E). (2.26)

As a consequence, we have the following proposition.

Proposition 2.5. Let ω0,ω,ω1 ∈R, 0≤ ω0 < ω < ω1. Then

(I) if ω �∈ Z, there exist positive constants c1, c2 depending on ω0, ω, and ω1

but not on h such that for every U ∈ B(N0;E),

c1‖U‖Cωh (N0,E) ≤ ‖U‖(C
ω0
h (N0,E),C

ω1
h (N0,E))(ω−ω0)/(ω1−ω0)

≤ c2‖U‖Cωh (N0,E); (2.27)

(II) in every case, there exists c > 0 depending on ω0, ω, and ω1 but not on h
such that for every U ∈ B(N0;E),

‖U‖Cωh (N0,E) ≤ c‖U‖(ω1−ω)/(ω1−ω0)
C
ω0
h (N0,E)

‖U‖(ω−ω0)/(ω1−ω0)
C
ω1
h (N0,E)

. (2.28)
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Proposition 2.6. Let L > 0, n ∈ N, h = L/n, θ0,θ,θ1 ∈ R with 0 ≤ θ0 < θ < θ1

and θ = (1−ω)θ0 +ωθ1 for a certain ω ∈ ]0,1[. Then

(I) if θ �∈ Z, there exist positive constants c1, c2 depending only on L, θ0, θ,
and θ1 and not on h such that, if � = {0, . . . ,n} and n > θ1, for every f ∈
B(�,E),

c1‖ f ‖Cθh(�,E) ≤ ‖ f ‖(C
θ0
h (�,E),C

θ1
h (�,E))ω

≤ c2‖ f ‖Cθh(�,E); (2.29)

(II) in any case, there exists c > 0 depending only on L, θ0, θ, and θ1 but not on
h such that for every f ∈ B(�,E),

‖ f ‖Cθh(�,E) ≤ c‖ f ‖1−ω
C
θ0
h (�,E)

‖ f ‖ω
C
θ1
h (�,E)

. (2.30)

Proof. The proof can be obtained by “localizing the estimates” through a par-
tition of unity in [0,L] and applying Corollary 2.4 and Proposition 2.5 (for a
similar argument, see the proof of Proposition 3.6). �

We conclude the section with a generalization (Proposition 2.8) to finite dif-
ferences of one of the main results in [6]. It will be used in the fourth section
to estimate mixed finite differences of second order. In the proof we will use the
following discrete version of Taylor’s formula, which can be shown by induction
using the fact that for every l and m nonnegative integers,

m∑
r=0

(
r + l
l

)
=
(
m+ l+ 1

m

)
. (2.31)

Lemma 2.7. Let �⊆ Z, k ∈�, j, p ∈N, and p < j. Let U : �→ E and h > 0; then,
if k ∈� j ,

Uk+ j =
p∑
l=0

(
j

l

)
hl∂lhUk +hp

j−p∑
r=0

(
j− r− 1
p− 1

)(
∂
p
hUk+r − ∂phUk

)
. (2.32)

For a similar formula, see [15, Theorem 1.3.4].

Proposition 2.8. Let I be an infinite interval in R of length L ∈ ]0,+∞], h > 0,
� := { j ∈ Z | jh∈ I},ω > 1, and #(�) > [ω] + 1. Next, letX0 andX1 be a couple of
Banach spaces satisfying assumption (h) and U ∈ B(�,X1). Let l ∈N, l < ω. Then,

∥∥∂lhU∥∥B(�l ,(X0,X1)(ω−l)/ω) ≤ cmax
{
‖U‖Cωh (�,X0),‖U‖B(�,X1)

}
, (2.33)

where c is a positive constant depending only on L, ω, and l.

Proof. We want to estimate ‖∂lhUk‖(X0,X1)(ω−l)/ω for a certain k ∈ �l. Through a
translation and a change of orientation, we may assume that k = 0 and I ∩
[0,+∞[ has length at least equal to L/2. Consider first the case h(ω+ 1)2 ≥ L/2;
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then

∥∥∂lhUk

∥∥
(X0,X1)(ω−l)/ω ≤

∥∥∂lhUk

∥∥
1 ≤ C(l)h−l‖U‖B(�,X1)

≤ C(l)

(
2(ω+ 1)2

L

)l
‖U‖B(�,X1).

(2.34)

Now we assume that

h(ω+ 1)2 <
L

2
(2.35)

so that {1, . . . ,([ω] + 1)2} ⊆ �. Let x ∈ N and x > [ω] such that [ω]x ∈ �. By
(2.32), for j = 1, . . . ,[ω],

[ω]∑
l=1

(
jx

l

)
hl∂lhU0 =Ujx −U0−h[ω]

jx−[ω]∑
r=0

(
jx− r− 1
[ω]− 1

)(
∂[ω]
h Ur − ∂[ω]

h U0

)
.

(2.36)

We have

det




(
x

1

)
h

(
x

2

)
h2 ···

(
x

[ω]

)
h[ω]

(
2x
1

)
h

(
2x
2

)
h2 ···

(
2x
[ω]

)
h[ω]

...
...

...
...(

[ω]x
1

)
h

(
[ω]x

2

)
h2 ···

(
[ω]x
[ω]

)
h[ω]




= h1+···+[ω]

1!2!···[ω]!
det




x x2 ··· x[ω]

2x (2x)2 ··· (2x)[ω]

...
...

...
...

[ω]x
(
[ω]x

)2 ··· (
[ω]x

)[ω]




= c(ω)(hx)1+···+[ω],

(2.37)

where c(ω) is a nonvanishing real number depending only on ω. So from (2.36),
we have for l = 1, . . . ,[ω],

∂lhU0 =
[ω]∑
j=1

al j(h,x)
(
Ujx −U0

)

−h[ω]
[ω]∑
j=1

al j(h,x)


 jx−[ω]∑

r=0

(
jx− r− 1
[ω]− 1

)(
∂[ω]
h Ur − ∂[ω]

h U0

) ,
(2.38)
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with |al j(h,x)| ≤ c(ω)(hx)−l for 1≤ l and j ≤ [ω]. This implies that
∥∥∥∥∥∥∂lhU0−

[ω]∑
j=1

al j(h,x)
(
Ujx −U0

)∥∥∥∥∥∥
0

≤ c(ω)h[ω](hx)−l‖U‖Cωh (�,X0)

[ω]∑
j=1

jx−[ω]∑
r=0

(
jx− r− 1
[ω]− 1

)
(rh){ω}.

(2.39)

From (2.31), we have

[ω]∑
j=1

jx−[ω]∑
r=0

(
jx− r− 1
[ω]− 1

)
(rh){ω}

≤ h{ω}
[ω]∑
j=1

(
jx

jx− [ω]

)(
jx− [ω]

){ω}

≤ c(ω)h{ω}xω

≤ c1(ω)h{ω}
(
x− [ω]

)ω

(2.40)

as x− [ω]≥ 1. We conclude that∥∥∥∥∥∥∂lhU0−
[ω]∑
j=1

al j(h,x)
(
Ujx −U0

)∥∥∥∥∥∥
0

≤ c(ω)
(
h
(
x− [ω]

))ω
(hx)−l‖U‖Cωh (�,X0).

(2.41)

On the other hand,∥∥∥∥∥∥
[ω]∑
j=1

al j(h,x)
(
Ujx −U0

)∥∥∥∥∥∥
1

≤ c(ω)(hx)−l‖U‖B(�,X1). (2.42)

Inequalities (2.41) and (2.42) imply that

k
(
t,∂lhU0

)≤ c(ω)
{(
h
(
x− [ω]

))ω
(hx)−l‖U‖Cωh (�,X0) + t(hx)−l‖U‖B(�,X1)

}
(2.43)

for every t > 0 and for every x with the declared properties.
We now complete the proof under condition (2.35). We want to estimate

t−(ω−l)/ωk(t,∂lhU0) for t > 0. We distinguish three cases. We start by assuming
that

t1/ωh−1 < 1; (2.44)

it follows that

t−(ω−l)/ωk
(
t,∂lhU0

)≤ tl/ω∥∥∂lhU0
∥∥

1 ≤ (l+ 1)tl/ωh−l‖U‖B(�,X1) ≤ (l+ 1)‖U‖B(�,X1).
(2.45)
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We now assume that

t1/ωh−1 ≥ 1, [ω]
(
[ω] +

[
t1/ωh−1])∈�. (2.46)

We apply (2.43) with x = [ω] + [t1/ωh−1]; we obtain that

t−(ω−l)/ωk
(
t,∂lhU0

)≤ c(ω)max
{‖U‖Cωh (�,X0),‖U‖B(�,X1)

}
, (2.47)

observing that x ≥ t1/ωh−1 ≥ [t1/ωh−1]. Finally, we consider the case

[ω]
(
[ω] +

[
t1/ωh−1]) �∈� (2.48)

which implies that ω(ωh+ t1/ω) > L/2. It follows, using (2.35), that

t1/ω >
L

2ω
−ωh > L

2
2ω+ 1

ω(ω+ 1)2
. (2.49)

So

t−(ω−l)/ωk
(
t,∂lhU0

)≤
(
L(2ω+ 1)

2ω(ω+ 1)2

)l−ω∥∥∂lhU0
∥∥

0≤
(
L(2ω+ 1)

2ω(ω+ 1)2

)l−ω
‖U‖Cωh (�,X0).

(2.50)
�

3. Estimates depending on a parameter for discretizations of elliptic Dirichlet
problems in dimension one

In this section, we want to give estimates depending on a parameter for dis-
cretizations of Dirichlet’s elliptic boundary value problems in dimension one.

We start by introducing in the space B(Z;E), where E is a fixed Banach space
with norm ‖ · ‖, the operator Fh is defined as follows: for U ∈ B(Z;E), j ∈ Z,

FhUj := ∂2
hUj−1 = h−2(Uj+1− 2Uj +Uj−1

)
. (3.1)

The following result is an easy consequence of [2, Chapter 4, Section 1, The-
orem 4].

Lemma 3.1. {λ∈C−{0} : |Argλ| < π} ⊆ ρ(Fh). Moreover, for every φ0 ∈ [0,π[,
for every ω ≥ 0, there exists C(φ0,ω) > 0 such that for every h > 0, for every λ∈C,
with |Arg(λ)| ≤ φ0 and |λ| ≥ 1, and for every f ∈ B(Z;E),

|λ|
∥∥∥(λ−Fh)−1

f
∥∥∥
Cωh (Z,E)

+
∥∥∥(λ−Fh)−1

f
∥∥∥
Cω+2
h (Z,E)

≤ C(φ0,ω
)‖ f ‖Cωh (Z,E).

(3.2)

Now we consider problems in a half line; the first result is the following lemma.
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Lemma 3.2. Consider the problem

λUj − ∂2
hUj−1 = 0, for j ≥ 1,

U0 ∈ E. (3.3)

Then, for every λ ∈ C− {0}, with |Arg(λ)| < π, and for every h > 0, for every
U0 ∈ E, (3.3) has a unique solution U ∈ B(N0,E). Moreover, for every ω ∈ [0,2],
there exists C(ω) > 0 independent of λ, h, and U0 such that

‖U‖Cωh (N0) ≤ C(ω)
(
1 + |λ|)ω/2∥∥U0

∥∥. (3.4)

Proof. The problem has the unique solution Uj = αjU0 ( j ∈N0), where α is the
only solution with absolute value less than 1 of the algebraic equation

z2− (2 + λh2)z+ 1= 0. (3.5)

Then,

‖U‖B(N0;E) =
∥∥U0

∥∥,∥∥∂2
hU
∥∥
B(N0;E) ≤ |λ|

∥∥U0
∥∥. (3.6)

So the result follows from (3.6) and Proposition 2.5(II) (which is useful to esti-
mate ‖∂hU‖B(N0;E)). �

We now introduce the following notation. Let f ∈ B(N;E); we indicate by f̃
the extension of f to N0 such that f̃0 = 0.

Consider, for h > 0, the following operator Bh in the space B(N;E). For U ∈
B(N;E) and j ∈N, we set

BhUj := ∂2
hŨ j−1. (3.7)

We have the following lemma.

Lemma 3.3. For every h > 0, {λ ∈ C−{0} | |Argλ| < π} ⊆ ρ(Bh). Moreover, for
every φ0 ∈ [0,π[, there exists C(φ0) > 0 such that if |λ| ≥ 1, |Arg(λ)| ≤ φ0, for
every h > 0, ∥∥∥(λ−Bh)−1

∥∥∥
�(B(N;E))

≤ C(φ0
)|λ|−1. (3.8)

Proof. Let f ∈ B(N;E), λ∈C−{0}, and |Arg(λ)| < π. Define g ∈ B(Z;E) as fol-
lows: for j ∈ Z, gj = f j if j ≥ 1 and gj = f1 if j ≤ 0. Then, ‖g‖B(Z;E)

= ‖ f ‖B(N;E). Now let V := (λ− Fh)−1g and let Z be the solution of (3.3) with
U0 =−V0. Then, owing to Lemmas 3.1 and 3.3, equation

(
λ−Bh

)
U = f (3.9)

has a unique solution U and Uj = Vj + Zj for every j ∈ N. The final estimate
follows from (3.2) and Lemma 3.2. �
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Given a nonnegative real number ω and F ∈ B(N;E), we set

‖ f ‖Cωh,0(N,E) := ∥∥ f̃ ∥∥Cωh (N0,E). (3.10)

Our interest in these norms comes from the following lemma.

Lemma 3.4. Let θ ∈]0,1[ and θ �= 1/2. Then there exist positive constants c1, c2

depending only on θ such that for every h > 0 and for every f ∈ B(N;E),

c1‖ f ‖C2θ
h,0(N,E) ≤ ‖ f ‖(B(N;E),D(Bh))θ ≤ c2‖ f ‖C2θ

h,0(N,E). (3.11)

Proof. The result follows from Proposition 2.5(I) if we are able to show that there
exist positive constants c1, c2 depending only on θ such that for every t > 0, U ∈
B(N,E),

c1k
(
t, Ũ,B

(
N0,E

)
,C2

h

(
N0,E

))≤ k(t,U,B(N,E),D(Bh))
≤ c2k

(
t, Ũ,B

(
N0,E

)
,C2

h

(
N0,E

))
.

(3.12)

In fact, let U,g ∈ B(N,E). Then, for every t > 0, owing to Proposition 2.5(II),

‖U − g‖B(N,E) + t‖g‖D(Bh)

= ∥∥Ũ − g̃∥∥B(N0,E) + tmax
{
‖g̃‖B(N0,E),

∥∥∂2
hg̃
∥∥
B(N0,E)

}
≥ c

(∥∥Ũ − g̃∥∥B(N0,E) + t
∥∥g̃∥∥C2

h(N0,E)

)
,

(3.13)

where c is a positive constant. It follows that

ck
(
t, Ũ,B

(
N0,E

)
,C2

h

(
N0,E

))≤ k(t,U,B(N,E),D
(
Bh
))
. (3.14)

On the other hand, let Φ∈ B(N0,E). DefineΨ∈ B(N,E), Ψ j =Φ j −Φ0 for every
j ∈N. Then,

‖U −Ψ‖B(N,E) + t‖Ψ‖D(Bh) ≤ 2
(∥∥Ũ −Φ

∥∥
B(N0,E) + t‖Φ‖C2

h(N0,E)

)
. (3.15)

It follows that

k
(
t,U,B(N,E),D

(
Bh
))≤ 2k

(
t, Ũ,B

(
N0,E

)
,C2

h

(
N0,E

))
(3.16)

and the result is proved. �

The following result is our first discrete version of estimate (1.3).

Proposition 3.5. Let 0 < φ0 < π, θ ∈ ]0,2[, θ �= 1, and r ∈ [0,2]. Then there
exists c > 0, depending only on φ0,θ, and r such that for every λ ∈ C with |λ| ≥
1 and |Arg(λ)| ≤ φ0, for every h > 0, for every f ∈ B(N;E), and for every F ∈
B(N0,E) such that f = F|N,

∥∥∥(λ−Bh)−1
f
∥∥∥
Cθ+r
h,0 (N,E)

≤ c|λ|r/2−1
[
‖F‖Cθh(N0,E) + |λ|θ/2∥∥F0

∥∥]. (3.17)
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Proof. Owing to Lemmas 3.3 and 3.4, as it is easily seen that

∥∥∥(λ−Bh)−1
∥∥∥

�(D(Bh))
≤ c(φ0

)|λ|−1, (3.18)

we have that
∥∥∥(λ−Bh)−1

∥∥∥
�(Cθh,0(N,E))

≤ c(φ0,θ
)|λ|−1. (3.19)

We set V := (λ−Fh)−1E f , where E is the operator defined as follows:

E fj =

 f j , if j ≥ 1,

3 f2− j − 2 f3−2 j , if j ≤ 0.
(3.20)

It is not difficult to show that for every θ ∈ [0,2], there exists c(θ) > 0 such that
for every h > 0 and f ∈ B(N,E),

‖E f ‖Cθh(Z;E) ≤ C(θ)‖ f ‖Cθh(N;E). (3.21)

Let Z be the solution of (3.3) with U0 =−V0. We put U := (λ−Bh)−1 f ; then
Ũ j =Vj +Zj for every j ∈N0 so that, owing to Lemmas 3.1 and 3.2,

‖U‖Cθh,0(N,E) ≤ ‖V‖Cθh(Z,E) +‖Z‖Cθh(N0,E)

≤ c(φ0,θ
)[|λ|−1‖ f ‖Cθh(N,E) + |λ|θ/2∥∥V0

∥∥]
≤ c(φ0,θ

)|λ|−1
[
‖ f ‖Cθh(N,E) + |λ|θ/2‖ f ‖B(N,E)

]
.

(3.22)

Now observe that if we set Gj = Fj −F0 for j ∈N,

‖G‖Cθh,0(N,E) ≤ 2‖F‖Cθh(N0,E). (3.23)

This implies that if we set Hj := F0 for every j ∈N, from (3.19) and (3.22),

‖U‖Cθh,0(N,E) ≤
∥∥∥(λ−Bh)−1

G
∥∥∥
Cθh,0(N,E)

+
∥∥∥(λ−Bh)−1

H
∥∥∥
Cθh,0(N,E)

≤ c|λ|−1
[
‖F‖Cθh(N0,E) + |λ|θ/2∥∥F0

∥∥]. (3.24)

So the result is proved if r = 0. The case r = 2 follows from the case r = 0 using
the equation ∂2

hŨ j = λŨj+1 +Fj+1 for every j ∈N0; the general case follows from
Proposition 2.5(II). �

Now let L > 0, n∈N, n≥ 3, and h= L/n. For j ∈ � := {1, . . . ,n− 1}, we have
complex numbers aj , bj , b′j , and cj satisfying the following conditions:

(C1) there exists ν > 0 such that Re(aj)≥ ν for every j ∈�;
(C2) for every j ∈�, max{|aj|,|bj|,|b′j|,|cj|} ≤ A with A > ν;



1020 Real interpolation, finite differences, and estimates

(C3) there exists Ω : [0,L]→ [0,+∞[ such that Ω(0)= 0 and Ω is continuous
in 0 such that, for j,k ∈� with j ≤ k,

∣∣ak − aj∣∣≤Ω
(
(k− j)h

)
. (3.25)

For λ∈C, we want to study the following problem:

λUj − aj∂2
hUj−1− bj∂hUj − b′j∂hUj−1− cjUj = f j for j = 1, . . . ,n− 1,

U0 =Un = 0.
(3.26)

To this aim, we set � := {0,1, . . . ,n− 1,n} and for U ∈ B(�,E) and j ∈�,

Ũ j =

Uj, if j ∈�,

0, if j ∈ {0,n}, (3.27)

and we introduce the operator Ah in B(�,E), defined as follows: for j ∈�,

AhUj := aj∂2
hŨ j−1 + bj∂hŨ j + b′j∂hŨ j−1 + cjŨ j . (3.28)

We have the following proposition.

Proposition 3.6. Assume that assumptions (C1), (C2), and (C3) are satisfied
and let φ0 ∈ [0,π − arccos(ν/A)[. Then, there exist R > 0 and M > 0 such that
{λ∈C | |λ| ≥ R,|Arg(λ)| ≤ φ0} ⊆ ρ(Ah), and

∥∥∥(λ−Ah)−1
∥∥∥

�(B(�,E))
≤M|λ|−1. (3.29)

Moreover, for a certain f ∈ B(�,E), put U = (λ−Ah)−1 f . Then for every θ ∈
[0,2], there exists c > 0 such that

∥∥Ũ∥∥Cθh(�,E) ≤ c|λ|θ/2−1‖ f ‖B(�,E). (3.30)

R and M depend only on L, A, ν, Ω, and φ0 while c depends only on L, A, ν, Ω, φ0,
and θ.

Proof. Fix φ0 ∈ ]π/2,π − arccos(ν/A)[. Then, using Lemma 3.3, Proposition 2.5
(II), Lemma 3.1, and a simple perturbation argument, it is easily seen that there
exist δ ∈ ]0,L[, R1 > 0, andM1 > 0 independent of h such that ifU ∈ B(�,E) and
for some j0 ∈� Uj = 0 for |( j− j0)h| > δ, λ∈C, |λ| ≥ R1, and |Arg(λ)| ≤ φ0,

∥∥Ũ∥∥Cθh(�,E) ≤M1|λ|θ/2−1
∥∥(λ−Ah)U∥∥B(�,E). (3.31)

Now fix a C∞-partition of unity (ψl)1≤l≤P in [0,L] such that for every l, the di-
ameter of the support of ψl is less than or equal to δ. Next, set Ψl

j := ψl( jh) for
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every l and for j ∈�. Then, using (3.31), we get for every U ∈ B(�,E),

∥∥Ũ∥∥Cθh(�,E) ≤
P∑
l=1

∥∥ΨlŨ
∥∥
Cθh(�,E)

≤ c1|λ|θ/2−1
P∑
l=1

∥∥(λ−Ah)(ΨlU
)∥∥

B(�,E)

≤ c2|λ|θ/2−1
(∥∥Ũ∥∥C1

h(�,E) +
∥∥(λ−Ah)U∥∥B(�,E)

)
.

(3.32)

Here c1 and c2 are constants independent of h and U . Considering the case
θ = 1, one can eliminate ‖Ũ‖C1

h(�,E) in the second term, increasing (if necessary)
R1. �

Equation (3.10) and Lemma 3.4 admit the following natural extensions.

Definition 3.7. Let θ ∈ [0,+∞[, θ < n. If f ∈ B(�,E), set

‖ f ‖Cθh,0(�,E) := ∥∥ f̃ ∥∥Cθh(�,E). (3.33)

Proposition 3.8. Assume that assumptions (C1), (C2), and (C3) are satisfied for
certain L, n, ν, A, and Ω. Assume that n≥ 3 and let θ ∈ ]0,1[, θ �= 1/2. Then, there
exist positive constants c1, c2 depending only on L, ν, A, and θ such that for every
f ∈ B(�,E),

c1‖ f ‖(B(�,E),D(Ah))θ ≤ ‖ f ‖C2θ
h,0(�,E) ≤ c2‖ f ‖(B(�,E),D(Ah))θ . (3.34)

Proof. We introduce the operator Bh ∈�(B(�,E)) : BhUj = ∂2
hŨ j−1 for every j ∈

�. It is not difficult, using Proposition 2.6, to show the existence of two positive
constants c1, c2 depending only on ν and A such that for every U ∈ B(�,E),

c1‖U‖D(Bh) ≤ ‖U‖D(Ah) ≤ c2‖U‖D(Bh). (3.35)

This means that it suffices to consider the case Ah = Bh and in this case we can
follow the lines of the proof of Proposition 3.5. �

Now let θ ∈ ]0,2[. We introduce the following assumptions: let L > 0, n∈N,
n ≥ 3, and h = L/n; we set � := {1, . . . ,n− 1} and � = {0,1, . . . ,n− 1,n}. More-
over, a, b, b′, and c belong to B(�). Further, we assume that

(A1) there exists ν > 0 such that Re(aj)≥ ν for every j ∈�;
(A2) max{‖a‖Cθh(�),‖b‖Cθh(�),‖b′‖Cθh(�),‖b‖Cθh(�)} ≤A with A > ν.
The following result is our most general discrete version of estimate (1.3) in

the one-dimensional case.

Proposition 3.9. Assume that assumptions (A1) and (A2) are satisfied for some
θ ∈ ]0,2[, θ �= 1. Fix φ0 ∈ [0,π − arccos(ν/A)[. Then, there exists R positive such
that {λ∈C | |λ| ≥ R, |Arg(λ)| ≤ φ0} ⊆ ρ(Ah), where Ah is the operator defined in
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(3.28). Moreover, for every r ∈ [0,2], there exists c > 0 depending only on L, ν, A, r
such that for every f ∈ B(�,E) and for every F ∈ B(�,E) with F|� = f ,

∥∥∥(λ−Ah)−1
f
∥∥∥
Cθ+r
h,0 (�,E)

≤ c|λ|r/2−1
[
‖F‖Cθh(�,E) + |λ|θ/2 max

{∥∥F0
∥∥,∥∥Fn∥∥}].

(3.36)

Proof. We start by showing that there exist α1 ∈ ]0,1[, R1 > 0, φ0 ∈ ]π/2,π[ such
that for every λ∈C with |λ| ≥ R1 and |Arg(λ)| ≤ φ0, if U ∈ B(�,E) with Uj = 0
for jh≥ α1L, for every r ∈ [0,2],

‖U‖Cθ+r
h,0 (�,E) ≤ c1|λ|r/2−1

[
‖F‖Cθh(�,E) + |λ|θ/2∥∥F0

∥∥] (3.37)

holds for every F ∈ B(�,E) such that F|� = (λ−Ah)U , with c1 depending only
on A, ν, φ0, θ, r. In fact, let Uj = 0 for jh≥ αL for some α∈ ]0,1/2[. We put, for
j ∈N0,

U∗
j =


Ũ j , if j ≤ n,

0, if j > n.
(3.38)

Assume that h≤ L/6; then, for every j ∈N and λ∈C,

λU∗
j − a0∂

2
hU

∗
j−1

=


(
aj − a0

)
∂2
hU

∗
j−1 + bj∂hU∗

j + b′j∂hU
∗
j−1 + cjU∗

j + f j , if ( j− 1)h≤ αL,
0, if ( j− 1)h > αL.

(3.39)

For j ∈N, we now set

Gj =



Fj+

(
aj − a0

)
∂2
hU

∗
j−1 +bj∂hU∗

j +b′j∂hU
∗
j−1 +cjU∗

j , if j≥1, ( j− 1)h≤αL,
0, if ( j− 1)h>αL,

F0 +b0∂hU
∗
0 + b′0

(
3∂hU∗

1 − 2∂hU∗
2

)
+c0U

∗
0 , if j=0.

(3.40)

So we have, for |λ| ≥ 1, |Arg(λ)| ≤ φ0, and for every r ∈ [0,2] (owing to
Proposition 3.5),

‖U‖Cθ+r
h,0 (�,E) = ‖U∗‖Cθ+r

h (N0,E) ≤ c|λ|r/2−1
[
‖G‖Cθh(N0,E) + |λ|θ/2∥∥G0

∥∥]. (3.41)

We have

‖G‖Cθh(N0,E) ≤ ‖F‖Cθh(�,E) +A(αL)θ
′∥∥Ũ∥∥C2+θ

h (�,E) + c(A)
∥∥Ũ∥∥C2+[θ]

h (�,E), (3.42)
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where θ′ := min{θ,1}. To get estimate (3.42), consider, for example, the case
θ ∈ ]1,2[ and set, for j ∈N0,

Xj =


(
aj − a0

)
∂2
hU

∗
j−1, if j ≥ 1, ( j− 1)h≤ αL,

0, otherwise.
(3.43)

Then, for j ∈N0,

∂hXj =



∂haj∂

2
hU

∗
j +

(
aj − a0

)
∂3
hU

∗
j−1, if 1≤ j ≤ n,

∂ha0∂
2
hU

∗
0 , if j = 0,

0, if ( j− 1)h≥ αL,
(3.44)

so that

‖X‖Cθh(�,E) ≤ AαL
∥∥Ũ∥∥C2+θ

h (�,E) +C(A)
∥∥Ũ∥∥C3

h(�,E). (3.45)

Next, for example, we put, for j ∈N0,

Yj =



b′j∂hU

∗
j−1, if 1≤ j ≤ n,

b′0
(
3∂hU∗

1 − 2∂hU∗
2

)
, if j = 0,

0, if j > n,

(3.46)

and we have

∂hYj =



∂hb

′
j∂hŨ j + b′j∂

2
hŨ j−1, if 1≤ j ≤ n− 1,

∂hb
′
0∂hŨ0 + b′0

(
2∂2

hŨ1− ∂2
hŨ0

)
, if j = 0,

0, if ( j− 1)h≥ αL,
(3.47)

so that

‖Y‖Cθh(�,E) ≤ c(A)
∥∥Ũ∥∥C1+θ

h (�,E). (3.48)

Next,

∥∥G0
∥∥≤ ∥∥F0

∥∥+ c(A)
∥∥Ũ∥∥C1

h(�,E). (3.49)

So, from (3.42) and (3.49), we get

‖U‖Cθ+r
h,0 (�,E) ≤ c(r)|λ|r/2−1

×
[
‖F‖Cθh(�,E) + |λ|θ/2∥∥F0

∥∥+A(αL)θ
′∥∥Ũ∥∥C2+θ

h (�,E)

+ c(A)
∥∥Ũ∥∥C2+[θ]

h (�,E) + |λ|θ/2c(A)
∥∥Ũ∥∥C1

h(�,E)

]
,

(3.50)

and from this estimate, we get (3.37) if α ≤ α1 and |λ| ≥ R1. Analogously, we
can show that there exist α2 ∈ ]0,1[ and R2 > 0 such that for every λ ∈ C with
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|λ| ≥ R2 and |Arg(λ)| ≤ φ0, if U ∈ B(�,E) with Uj = 0 for jh≤ (1−α2)L,

‖U‖Cθ+r
h,0 (�,E) ≤ c2(r)|λ|r/2−1

[
‖F‖Cθh(�,E) + |λ|θ/2∥∥Fn∥∥] (3.51)

holds for every F ∈ B(�,E) such that F|� = (λ−Ah)U . Finally, there exist α3 ∈
]0,1[ and R3 > 0 such that for every λ ∈ C with |λ| ≥ R3 and |Arg(λ)| ≤ φ0, if
U ∈ B(�,E) with Uj = 0 for | j − j0|h ≥ α3L for some j0 such that αL ≤ j0h ≤
(1−α2)L,

‖U‖Cθ+r
h,0 (�,E) ≤ c3(r)|λ|r/2−1‖F‖Cθh(�,E) (3.52)

holds for every F ∈ B(�,E) such that F|� = (λ−Ah)U . Then one can conclude
through a partition of unity. �

4. Estimates depending on a parameter for discretizations of the Dirichlet
problem for an elliptic equation in a right angle and in a square

Let Ω be equal to ]O,L[2 for some L ∈ ]0,+∞[; consider problem (1.1) with
n= 2. We will often write (x, y) instead of (x1,x2). To study a discretized version
of problem (1.1), we start by introducing some notations. Let � ⊆ Z2 and V :
�→C. For (i, j)∈� and h > 0, we set

∂x,hVi, j := h−1(Vi+1, j −Vi, j
)
, ∂y,hVi, j := h−1(Vi, j+1−Vi, j

)
(4.1)

if, respectively, (i+ 1, j)∈� and (i, j + 1)∈�. We can define

�(1,0) := {(i, j)∈� | (i+ 1, j)∈�
}
, �(0,1) := {(i, j)∈� | (i, j + 1)∈�

}
(4.2)

and consider the two functions ∂x,hV and ∂y,hV of domains, respectively, �(1,0)

and �(0,1). If also (i+ 1, j + 1) ∈ �, even ∂y,h(∂x,hV)i, j and ∂x,h(∂y,hV)i, j are de-
fined and it is easy to verify that they coincide. More generally, if α ∈ N

2
0, we

put

�α := {(i, j)∈� | (i, j) +β∈� if β ∈N
2
0, β ≤ α

}
, (4.3)

and, for (i, j)∈�α and α= (α1,α2),

∂αhVi, j := ∂α2
y,h

(
∂α1
x,hV

)
i, j . (4.4)

We stress the fact that we can change the order of application of ∂y,h and ∂x,h
without changing the result. It is also clear that ∂αhV is a function of domain �α.

We now introduce certain norms in B(�), with �⊆ Z2: if h > 0 and m∈N0,
we set, for V ∈ B(�),

‖V‖Cmh (�) :=max
{∥∥∂αhV∥∥B(�α) | α∈N

2
0,|α| ≤m

}
. (4.5)
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Now let θ ∈ ]0,1[ and h > 0. If V ∈ B(�), we set

[V]Cθh(�) := sup
{{[(

i1− i2
)2

+
(
j1− j2

)2
]
h2
}−θ/2∣∣Vi1, j1 −Vi2, j2

∣∣ | (i1, j1)∈�,
(
i2, j2

)∈�,
(
i1, j1

) �= (i2, j2)}.
(4.6)

Finally, let θ > 0 and V ∈ B(�). We put

‖V‖Cθh(�) :=max
{
‖V‖C[θ]

h (�), max
|α|=[θ]

[
∂αhV

]
C{θ}h (�α)

}
. (4.7)

Now let U ∈ B(N2); we indicate by Ũ the element of B(N2
0) such that

Ũi, j =

Ui, j , if min{i, j} > 0,

0, if min{i, j} = 0.
(4.8)

We extend (4.8) in the following way: for n∈N, n≥ 3, we setNn := {1, . . . ,n},
N0,n := Nn ∪{0} and take h = L/n. Now let U ∈ B(N2

n−1); we indicate by Ũ the
element of B(N2

0,n) such that

Ũi, j =

Ui, j , if (i, j)∈N2

n−1,

0, otherwise.
(4.9)

We introduce the operators Bh and Ch in B(N2
n−1): for U ∈ B(N2

n−1), (i, j) ∈
N2
n−1,

BhUi, j := bi, j∂2
x,hŨi−1, j , ChUi, j := ci, j∂2

y,hŨi, j−1, (4.10)

with b and c real-valued elements of B(N2
0,n). We assume that the following con-

ditions are satisfied:

(a) there exists ν > 0 such that for all (i, j)∈N2
0,n, min{bi, j , ci, j} ≥ ν;

(b) there exists A > 0 such that for all i, j ∈N0,n,

∥∥bi,·∥∥C2
h(N0,n) ≤A,

∥∥c·, j∥∥C2
h(N0,n) ≤A. (4.11)

Of course, Bh and Ch belong to �(B(N2
n−1)). We introduce the norms

‖ · ‖Cθh,0(N2
n−1) in B(N2

n−1): let θ ≥ 0 and U ∈ B(N2
n−1). We set

‖U‖Cθh,0(N2
n−1) := ∥∥Ũ∥∥Cθh(N2

0,n). (4.12)

We also introduce in B(N2
n−1), for h > 0, the operator Ah := Bh + Ch. An easy

consequence of Lemma 3.4 and Proposition 3.5 is the following lemma.
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Lemma 4.1. (I) For every φ ∈ [0,π[, there exist R > 0 and c(φ) > 0 such that, for
arbitrary h, {λ∈C : |λ| ≥ R, |Argλ| ≤ φ} ⊆ ρ(Bh) and for these values of λ,

∥∥∥(λ−Bh)−1
∥∥∥

�(B(N2
n−1))

≤ c(φ)|λ|−1. (4.13)

(II) For every θ ∈ ]0,1[−{1/2}, there exist c1, c2 > 0 depending only on θ such
that for every U ∈ B(N2

n−1),

c1‖U‖(B(N2
n−1),D(Bh))θ ≤ max

1≤ j≤n−1

∥∥Ũ·, j∥∥C2θ
h (Nn−1) ≤ c2‖U‖(B(N2

n−1),D(Bh))θ . (4.14)

A completely analogous result holds for Ch, inverting the roles of the vari-
ables.

The following theorem will be useful; the first two points follow from [5,
Lemma 3.5 and Theorem 3.11], (III) is a particular case of [14, Proposition 2.1],
while (IV) is a particular case of [7, Theorem 7.1].

Theorem 4.2. Let X be a Banach space with norm ‖ · ‖ and B and C elements of
�(X), satisfying the following assumptions:

(a) there exists φ0 ∈ ]π/2,π[ such that

{
λ∈C−{0} | ∣∣Arg(λ)

∣∣≤ φ0
}⊆ ρ(B)∩ ρ(C); (4.15)

(b) for λ∈C−{0} with |Arg(λ)| ≤ φ0,

∥∥(λ−B)−1
∥∥

�(X) ≤
M

|λ| ,
∥∥(λ−C)−1

∥∥
�(X) ≤

M

|λ| , (4.16)

where M is a positive constant;
(c) if λ∈ ρ(B) and µ∈ ρ(C),

(λ−B)−1(µ−C)−1 = (µ−C)−1(λ−B)−1. (4.17)

Then,

(I) {λ∈C−{0} : |Arg(λ)| < φ0} ⊆ ρ(B+C) and, if |Argλ| ≤ φ1 < φ0,

∥∥(λ−B−C)−1
∥∥

�(X) ≤ C|λ|−1 (4.18)

with C > 0 depending only on M, φ0, and φ1 such that

∥∥(λ−B−C)−1
∥∥

�(X) ≤ C|λ|−1; (4.19)
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(II) if λ∈C, |λ| ≥ 1, and |Argλ| ≤ φ1 < φ0, for every θ ∈ ]0,1[,

∥∥B(λ−B−C)−1
∥∥

�(Dθ(B)) +
∥∥C(λ−B−C)−1

∥∥
�(Dθ(B)) ≤ c

(
φ0,φ1,M,θ

)
;
(4.20)

(III) for every θ ∈ ]0,1[, there exist positive constants c1, c2 depending only on
M and θ such that for every x ∈ X ,

c1‖x‖Dθ(B)∩Dθ(C) ≤ ‖x‖Dθ(B+C) ≤ c2‖x‖Dθ(B)∩Dθ(C); (4.21)

(IV) for every θ ∈ ]0,1[, there exist positive constants c1, c2 depending only on
M and θ such that for every x ∈ X ,

c1‖x‖Dθ(B)∩Dθ(C) ≤ ‖x‖(X,D(B)∩D(C))θ ≤ c2‖x‖Dθ(B)∩Dθ(C). (4.22)

The following theorem extends [2, Theorem 3] (under slightly more restric-
tive conditions).

Theorem 4.3. Assume that assumptions (a) and (b) are satisfied. Then

(I) for every φ ∈ [0,π[, there exist R > 0 and c(φ) > 0 such that, for arbitrary
h, {λ∈C : |λ| ≥ R, |Argλ| ≤ φ} ⊆ ρ(Ah) and, for these values of λ,

∥∥∥(λ−Ah)−1
∥∥∥

�(B(N2
n−1))

≤ c(φ)|λ|−1; (4.23)

(II) for every θ ∈ ]0,1[−{1/2}, there exist positive constants c1, c2 depending
only on θ and independent of h, such that for every F ∈ B(N2

n−1),

c1‖F‖(B(N2
n−1),D(Ah))θ ≤ ‖F‖C2θ

h,0(N2
n−1) ≤ c2‖F‖(B(N2

n−1),D(Ah))θ . (4.24)

Proof. To prove the theorem, we adopt a version of the parametrix method due
to Da Prato and Grisvard (see [5, 6]).

Let φ ∈ [0,π[ and R > 0 as in Lemma 4.1(I). We choose R such that the con-
clusion of Lemma 4.1(I) holds also for Ch. Then there exist θ0 ∈ ]0,π[ and δ >
0 such that Σλ := {µ ∈ C \ {0} : |Argµ| = θ0} ∪ {µ ∈ C : |µ| ≤ δ|λ|, |Argµ| ≤
θ0} ⊆ ρ(λ + R− Bh)∩ ρ(Ch − R), for every λ such that |Argλ| ≤ φ. We indi-
cate by γλ the counterclockwise oriented boundary of {µ ∈ C \ {0} : |Argµ| ≤
φ0}∪{µ∈C : |µ| ≤ δ|λ|} and we set

Sλ := 1
2πi

∫
γλ

(
λ+R−µ−Bh

)−1(
µ+R−Ch

)−1
dµ. (4.25)

Applying Cauchy’s theorem, we get

(
λ+ 2R−Ah

)
Sλ = I −Rλ, (4.26)
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where

Rλ = 1
2πi

∫
γλ

[
Ch;

(
λ+R−µ−Bh

)−1
](
µ+R−Ch

)−1
dµ. (4.27)

Now let µ and ν be complex numbers such that max{|Argµ|,|Argν|} ≤ φ′ <
π and with a suitably large modulus. Then

[
Ch;

(
µ−Bh

)−1
](

ν−Ch
)−1 = (µ−Bh)−1[

Ch;Bh
](
µ−Bh

)−1(
ν−Ch

)−1
.

(4.28)

One can verify that for all U ∈ B(N2
n−1) and for all (i, j)∈N

2
n−1,

[
Ch;Bh

]
Ui, j =

[
ci−1, j∂y,hbi, j−1− bi, j−1∂x,hci−1, j

][
∂2
x,h∂y,hŨi−1, j−1− ∂2

x,h∂y,hŨi−1, j
]

+ 2ci, j∂y,hbi, j−1∂
2
x,h∂y,hŨi−1, j + ci, j∂2

y,hbi, j−1∂
2
x,hŨi−1, j−1

− 2bi, j∂x,hci−1, j∂x,h∂
2
y,hŨi, j−1− bi, j∂2

x,hci−1, j∂
2
y,hŨi−1, j−1.

(4.29)

Moreover, if U = (µ−Bh)−1V , for 1≤ i≤ n− 1 and 0≤ j ≤ n− 1,

µ∂y,hŨi, j − bi, j∂2
x,h∂y,hŨi−1, j = ∂y,hṼi, j + ∂y,hbi, j∂2

x,hŨi−1, j+1 (4.30)

and for 1≤ i≤ n− 1 and 0≤ j ≤ n− 2,

µ∂2
y,hŨi, j − bi, j∂2

x,h∂
2
y,hŨi−1, j = ∂2

y,hṼi, j + ∂y,hbi, j∂2
x,h∂y,hŨi−1, j+1

+ ∂2
y,hbi, j∂

2
x,hŨi−1, j+2 + ∂y,hbi, j∂2

x,h∂y,hŨi−1, j+1.
(4.31)

So, for |µ| and |ν| sufficiently large, we obtain, employing also Proposition 3.6,

∥∥∥[Ch;
(
µ−Bh

)−1
](

ν−Ch
)−1

∥∥∥
�(B(N2

n−1))
≤ C(φ)|µ|−1[|µ|−1/2 + |ν|−1/2].

(4.32)

So we have

∥∥Rλ∥∥�(B(N2
n−1)) ≤ C(φ)

∫
γλ
|λ+R−µ|−1(|λ+R−µ|−1/2 + |µ+R|−1/2)|dµ|

(4.33)

which tends to 0 as |λ| tends to +∞, with |Argλ| ≤ φ1 < φ0. We conclude that, for
|λ| sufficiently large, λ ∈ ρ(Ah) and (λ−Ah)−1 = Sλ(1−Rλ)−1. We have, more-
over, for |λ| suitably large and |Argλ| ≤ φ,

∥∥∥(λ−Ah)−1
∥∥∥

�(B(N2
n−1))

≤ 2
∥∥Sλ∥∥�(B(N2

n−1)) ≤ C(φ)|λ|−1 (4.34)

with the same method of [5, Lemma 3.5]. With this, (I) is completely proved.
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We show (II). First of all, we observe that, owing to Propositions 2.6, 2.8,
and Lemma 4.1, there exist c1 and c2 positive and independent of h such that for
every F ∈ B(N2

n−1), if θ ∈ ]0,1[\{1/2},

c1‖F‖Dθ(Bh)∩Dθ(Ch) ≤ ‖F‖C2θ
h,0(N2

n−1) ≤ c2‖F‖Dθ(Bh)∩Dθ(Ch). (4.35)

Now let λ > 0 be sufficiently large so that it belongs to ρ(Ah). Then

∥∥∥(λ−Ah)−1
∥∥∥

�(B(N2
n−1),Dθ(Bh))

≤ 2
∥∥Sλ∥∥�(B(N2

n−1),Dθ(Bh))

≤ C
∫
γλ

(|λ+R−µ|)θ−1|µ|−1|dµ|

≤ Cλθ−1.

(4.36)

Reversing the roles of Bh and Ch, one can even show that

∥∥∥(λ−Ah)−1
∥∥∥

�(B(N2
n−1),Dθ(Ch))

=O(λθ−1) (4.37)

for λ→ +∞. It follows from [1, Theorem 5.2] that there exists c > 0 independent
of h such that for every F ∈ B(N2

n−1),

‖F‖Dθ(Bh)∩Dθ(Ch) ≤ C‖F‖(B(N2
n−1),D(Ah))θ,1 . (4.38)

Now indicate by B0
h and C0

h the operators Bh and Ch with bi, j = ci, j = 1 for
all (i, j) ∈ N

2
0,n. Observe that the norms ‖ · ‖Dθ(Bh)∩Dθ(Ch) and ‖ · ‖Dθ(B0

h)∩Dθ(C0
h)

are uniformly equivalent. Now as operators B0
h and C0

h commute, by Theorem
4.2(IV), there exist c1 and c2 independent of h such that for every F ∈ B(N2

n−1),

c1‖F‖Dθ(B0
h)∩Dθ(C0

h) ≤ ‖F‖(B(N2
n−1),D(B0

h)∩D(C0
h))θ ≤ c2‖F‖Dθ(B0

h)∩Dθ(C0
h). (4.39)

But as there, obviously, exists c > 0 independent of h such that ‖F‖D(Ah) ≤
c‖F‖D(B0

h)∩D(C0
h), we obtain that there exist positive constants c1, c2 independent

of h such that

‖F‖Dθ(Ah) ≤ c1‖F‖(B(N2
n−1),D(B0

h)∩D(C0
h))θ ≤ c2‖F‖Dθ(Bh)∩Dθ(Ch) (4.40)

for every F.
So, by the reiteration property (see [17, 1.2.3]), there exist c1 and c2 positive

and independent of h such that

‖F‖Dθ(Bh)∩Dθ(Ch) ≤ c1‖F‖(B(N2
n−1),D(Ah))θ ≤ c2‖F‖Dθ(Bh)∩Dθ(Ch). (4.41)

Then the conclusion follows from (4.41) and Proposition 2.8. �
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Remark 4.4. Indicate by Ũ the extension of U ∈ B(N2) to N
2
0, putting Ũi, j := 0

if i, j = 0, and set ‖U‖Cθh,0(N2) := ‖Ũ‖Cθh(N2). Next, for U ∈ B(N2), put BhUi, j :=
∂2
x,hŨi−1, j , ChUi, j := ∂2

y,hŨi, j−1, and Ah := Bh +Ch. Then Theorem 4.3 holds if we

replace B(N2
n−1) by B(N2) and ‖ · ‖C2θ

h,0(N2
n−1) by ‖ · ‖Cθh,0(N2). The proof is the same

with some simplifications.

We prove estimates depending on a parameter of Schauder type. In the fol-
lowing, we will use the notations

∂N2
0 := {(i, j)∈N

2
0 : i · j = 0

}
, (4.42)

and, if n∈N,

∂N2
0,n := {(i, j)∈N

2
0,n : min{i, j} = 0 or max{i, j} = n}. (4.43)

We start with the following lemma.

Lemma 4.5. Let Ah be defined as in Remark 4.4. Let θ ∈ ]0,1[. Then there exists
c > 0 such that for every G∈ B(N2

0), with G0,0 = 0 and for every h > 0, it is possible
to construct Z ∈ B(N2) satisfying the following conditions:

(a) ‖Z‖C2+θ
h,0 (N2) ≤ c‖G‖Cθh(N2

0);
(b) ‖AhZ +F‖Cθh,0(N2) ≤ c‖G‖Cθh(N2

0), where F :=G|N2 .

Proof. Let Ω := ]0,∞[2 and h > 0. We construct v ∈ Cθ(∂Ω) such that v(ih, jh)=
Gi, j if (i, j)∈ ∂N2

0. It suffices to put

v(x, y)=



Gi,0 +

(
x

h
− i
)(
Gi+1,0−Gi,0

)
, if ih≤ x < (i+ 1)h for i∈N0, y=0,

G0, j+
(
y

h
− j

)(
G0, j+1−G0, j

)
, if jh≤ y < ( j + 1)h for j∈N0, x=0.

(4.44)

It is not difficult to verify that there exist c1, c2 positive and independent of h
such that

‖v‖Cθ(∂Ω) ≤ c
∥∥G|∂N2

0

∥∥
Cθh(∂N2

0) (4.45)

for some c > 0 independent of h. Now fix φ∈�(R) such that φ is even,
∫
R
φ(ξ)dξ

= 1, and φ(x)= 1 for |x| ≤ δ, for some δ > 0, and set, for (x, y)∈R2,

−Qv(x, y) := φ(x)
x2

2

∫
R

φ(ξ)ṽ(0, y + ξx)dξ +φ(y)
y2

2

∫
R

φ(ξ)ṽ(x+ ξ y,0)dξ,

(4.46)
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where ṽ is the extension of v to {(x, y) ∈ R2 : xy = 0} which is odd in x and
y. Owing to [17, Subsection 0.3], Qv ∈ C2+θ(R2), Qv(x,0) = Qv(0, y) = 0, and
(∂2Qv/∂y2)(x,0) = −g̃(x,0), (∂2Qv/∂x2)(0, y) = −g̃(0, y), for every x, y ∈ R.
Observe also that

∂2Qv

∂x2
(x,0)= ∂2Qv

∂y2
(0, y)= 0 (4.47)

for every choice of x and y in R.
Now we set, for (i, j)∈N2,

Zi, j :=Qv(ih, jh). (4.48)

It is not difficult to verify that there exist c1 > 0, c2 independent of h and v such
that

‖Z‖C2+θ
h,0 (N2) ≤ c1‖Qv‖C2+θ(Ω) ≤ c2

∥∥G|∂N2
0

∥∥
Cθh(∂N2

0). (4.49)

It remains to verify (b). We estimate only, for example, (ih)−θ|AhZi, j + Fi, j| for
(i, j)∈N2. We have

(ih)−θ
∣∣AhZi, j +Fi, j

∣∣≤ (ih)−θ
∣∣∣∣∣ Z̃i+1, j − 2Z̃i, j + Z̃i−1, j

h2
+Fi, j

∣∣∣∣∣
+ (ih)−θ

∣∣∣∣∣ Z̃i, j+1− 2Z̃i, j + Z̃i, j−1

h2

∣∣∣∣∣.
(4.50)

As (∂2Qv/∂y2)(0, z)= 0 for every z ∈ [0,+∞[, the second summand equals

(ih)−θ
∣∣∣∣∣Qv

(
ih,( j + 1)h

)− 2Qv(ih, jh) +Qv
(
ih,( j− 1)h

)
h2

∣∣∣∣∣
= (ih)−θh−2

∣∣∣∣∣
∫ ( j+1)h

jh

(∫ y

y−h

[
∂2Qv

∂y2
(ih,z)− ∂2Qv

∂y2
(0, z)

]
dz
)
dy

∣∣∣∣∣
≤ ‖Qv‖C2+θ(Ω) ≤ c‖G‖Cθh(N2

0).

(4.51)

As (∂2Qv/∂x2)(0, z)=−v(0, z) for every z ∈ [0,+∞[, the first summand equals

(ih)−θ
∣∣∣∣∣h−2

∫ (i+1)h

ih

(∫ x
x−h

[
∂2Qv

∂x2
(z, jh)− ∂2Qv

∂x2
(0, jh)

]
dz
)
dx+

(
Gi, j −G0, j

)∣∣∣∣∣
≤ (ih)−θh−2

∫ (i+1)h

ih

(∫ x
x−h

zθdz
)
dx‖Qv‖C2+θ(Ω) +‖G‖Cθh(N2

0)

≤ c(θ)‖Qv‖C2+θ(Ω) +‖G‖Cθh(N2
0) ≤ c‖G‖Cθh(N2

0).
(4.52)

�
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Lemma 4.6. Let Ah have the meaning of Remark 4.4. Let λ ∈ C−]−∞,0], θ ∈
]0,1[ and F ∈ B(N2). Moreover, G ∈ B(N2

0) such that G|N2 = F and G0,0 = 0.
Then, for every φ0 ∈ [0,π[ and r ∈ [0,2], there exists c(φ0, r) > 0 such that if
|λ| ≥ 1, |Arg(λ)| ≤ φ0, and h > 0,

∥∥∥(λ−Ah)−1
F
∥∥∥
Cθ+r
h,0 (N2)

≤ c(φ0, r
)|λ|r/2−1

[
‖G‖Cθh(N2

0) + |λ|θ/2‖γG‖B(∂N2
0)

]
,

(4.53)

with γG :=G|∂N2
0
.

Proof. We start by showing that

∥∥∥(λ−Ah)−1
F
∥∥∥
Cθ+2
h,0 (N2)

≤ c‖F‖Cθh,0(N2) (4.54)

with c > 0 independent of λ, with |λ| ≥ 1, and |Argλ| ≤ φ0. In fact, from
Proposition 2.8, Lemma 4.1(II), and Theorem 4.2(II), (III), by interpolation, we
have

∥∥∥(λ−Ah)−1
F
∥∥∥
Cθ+2
h,0 (N2)

≤ C
(∥∥∥(λ−Ah)−1

F
∥∥∥
Cθh,0(N2)

+
∥∥∥Bh(λ−Ah)−1

F
∥∥∥
Cθh,0(N2)

+
∥∥∥Ch(λ−Ah)−1

F
∥∥∥
Cθh,0(N2)

)

≤ c‖F‖Cθh,0(N2).

(4.55)

From Remark 4.4, we also have

∥∥∥(λ−Ah)−1
F
∥∥∥
Cθh,0(N2)

≤ c|λ|−1‖F‖Cθh,0(N2). (4.56)

So, interpolating between (4.54) and (4.56), we obtain

∥∥∥(λ−Ah)−1
F
∥∥∥
Cr+θh,0 (N2)

≤ c(r)|λ|r/2−1‖F‖Cθh,0(N2) (4.57)

for every r ∈ [0,2]. Now we prove that if |λ| = 1, |Arg(λ)| ≤ φ0 < π, and U :=
(λ−Ah)−1F, then

‖U‖Cθ+2
h,0 (N2) ≤ c‖G‖Cθh(N2

0) (4.58)

with c > 0 depending only on φ0. In fact, let Z be the element of B(N2) con-
structed in Lemma 4.5. As

λ(U −Z)−Ah(U −Z)= F +AhZ− λZ, (4.59)
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it follows from Lemma 4.5 and (4.54) that

‖U‖Cθ+2
h,0 (N2) ≤ ‖U −Z‖Cθ+2

h,0 (N2) +‖Z‖Cθ+2
h,0 (N2)

≤ c1
∥∥F +AhZ− λZ

∥∥
Cθh,0(N2) +‖Z‖Cθ+2

h,0 (N2)

≤ c2

[
‖G‖Cθh(N2

0) +‖Z‖Cθ+2
h,0 (N2)

]
≤ c3‖G‖Cθh(N2

0).

(4.60)

Now let λ= ρ2eiφ with ρ ≥ 1 and |φ| ≤ φ0; then, if we continue to indicate by U
the element (λ−Ah)−1F, we have

eiφU −AhρU = ρ−2F (4.61)

so that

‖U‖Cθ+r
hρ,0(N2) ≤ c(r)ρ−2‖G‖Cθhρ(N2

0) (4.62)

for every r ∈ [0,2]. A simple consequence of (4.30) is

∥∥∥(λ−Ah)−1
F
∥∥∥
Cθ+r
h,0 (N2)

≤ c(φ0, r
)|λ|r/2−1

[
‖G‖Cθh(N2

0) + |λ|θ/2‖G‖B(N2
0 )

]
. (4.63)

Now we set, for (i, j)∈N
2
0,

Hi, j :=Gi,0 +G0, j . (4.64)

It is not difficult to verify that

∥∥F −H|N2

∥∥∣∣
Cθh,0(N2) +‖H‖Cθh(N2

0) ≤ c‖G‖Cθh(N2
0). (4.65)

It follows from (4.57) and (4.63) that, for r ∈ [0,2],

∥∥∥(λ−Ah)−1
F
∥∥∥
Cθ+r
h,0 (N2)

≤
∥∥∥(λ−Ah)−1(

F −H|N2

)∥∥∥
Cθ+r
h,0 (N2)

+
∥∥∥(λ−Ah)−1

H|N2

∥∥∥
Cθ+r
h,0 (N2)

≤ c(φ0, r
)|λ|r/2−1

[∥∥F −H|N2

∥∥∣∣
Cθh,0(N2) +‖H‖Cθh(N2

0) + |λ|θ/2‖H‖B(N2
0)

]
≤ c(φ0, r

)|λ|r/2−1
[
‖G‖Cθh(N2

0) + |λ|θ/2‖γG‖B(∂N2
0 )

]
.

(4.66)
�

Theorem 4.7. Assume that conditions (a) and (b) are satisfied and let θ ∈ ]0,1[.
Assume, moreover, that for all i, j ∈N0,n,

∥∥b· j∥∥Cθh(N0,n) ≤A,
∥∥ci·∥∥C2

h(N0,n) ≤A. (4.67)
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Let λ∈ C−]−∞,0] and F ∈ B(N2
n−1). Let G∈ B(N2

0,n) such that G|N2
n−1
= F and

G0,0 = Gn,0 = Gn,n = G0,n = 0. Then, for every φ0 ∈ [0,π[ and r ∈ [0,2], there ex-
ists c(φ0, r) > 0 independent of F and G such that if |Arg(λ)| ≤ φ0, |λ| ≥ 1, and
h > 0,

∥∥∥(λ−Ah)−1
F
∥∥∥
Cθ+r
h,0 (N2

n−1)
≤ c(φ0, r,A

)(
1 + |λ|)r/2−1

×
[
‖G‖Cθh(N2

0,n) +
(
1 + |λ|)θ/2‖γG‖B(∂N2

0,n)

]
.

(4.68)

Proof. The proof can be obtained by the same method of the proof of Propo-
sition 3.9, using Lemma 4.6. �
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