FIXED POINTS AND PERIODIC POINTS
OF SEMIFLOWS OF HOLOMORPHIC MAPS
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Let ¢ be a semiflow of holomorphic maps of a bounded domain D in a complex
Banach space. The general question arises under which conditions the existence
of a periodic orbit of ¢ implies that ¢ itself is periodic. An answer is provided,
in the first part of this paper, in the case in which D is the open unit ball of a
J*-algebra and ¢ acts isometrically. More precise results are provided when the
J*-algebra is a Cartan factor of type one or a spin factor. The second part of this
paper deals essentially with the discrete semiflow ¢ generated by the iterates of
a holomorphic map. It investigates how the existence of fixed points determines
the asymptotic behaviour of the semiflow. Some of these results are extended to
continuous semiflows.

1. Introduction

Let D be a bounded domain in a complex Banach space € andlet¢ : R, x D — D
be a continuous semiflow of holomorphic maps acting on D.

Under which conditions does the existence of a periodic point of ¢ (with a
positive period) imply that the semiflow ¢ itself is periodic?

An answer to this question was provided in [22] in the case in which € is a
complex Hilbert space and D is the open unit ball of €, showing that, if the orbit
of the periodic point spans a dense linear subspace of €, then ¢ is the restriction
to R, of a continuous periodic flow of holomorphic automorphisms of D.

In the first part of this paper, a somewhat similar result will be established
in the more general case in which € is a J*-algebra and D is the open unit ball
B of €. The main result in this direction can be stated more easily in the case
in which the periodic point is the center 0 of B. It will be shown that, if the
points of the orbit of 0 which are collinear to extreme points of the closure B
of B span a dense linear subspace of €, then the same conclusion of [22] holds,
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218  Periodicity of holomorphic maps

that is, ¢ is the restriction to R, of a continuous periodic flow of holomorphic
automorphisms of B.

If the J*-algebra € is a Cartan factor of type one—that is, it is the Banach
space L(#, K) of all bounded linear operators acting on a complex Hilbert space
J€ with values in a complex Hilbert space J{—it was shown by Franzoni in [4]
that any holomorphic automorphism of B is essentially associated to a linear
continuous operator preserving a Krein space structure defined on the Hilbert
space direct sum J & ¥(; a situation that has been further explored in [19, 20] in
the case in which K @ ¥ carries the structure of a Pontryagin space.

Starting from a strongly continuous group T : R — £(X & 9(), inducing a
continuous flow ¢ of holomorphic automorphisms of B, it will be shown that, if
¢ has a periodic point xy, and if the orbit of x is “sufficiently ample,” a rescaled
version of T is periodic. A theorem of Bart [1] yields a complete description of
the spectral structure of the infinitesimal generator X of T.

The particular case in which # =~ C and B is the open unit ball of J{, which
was initially explored in [22], will be revisited, showing that the periodic flow ¢
fixes some point of B and that, if ¢ is eventually differentiable, the dimension of
J{ is finite.

As was shown in [17, 19], in the case in which 3 ® # carries the structure of
Pontryagin space, a Riccati equation defined on B is canonically associated to X.
The periodicity of ¢ implies then the periodicity of the integrals of this Riccati
equation.

A similar investigation to the one carried out in Sections 3 and 4 for a Cartan
factor of type one is developed in Section 5 in the case in which € is a spin factor.
In this case, the norm in € is equivalent to a Hilbert space norm. Assuming
again, for the sake of simplicity, that the periodic point is the center 0 of D, a
hypothesis leading to the periodicity of ¢, consists in supposing that the points
of the orbit of 0 which are collinear to scalar multiples of selfadjoint unitary
operators acting on € span a dense linear submanifold of this latter space.

The case of fixed points of the semiflow ¢ acting on the bounded domain D
is considered in the second part of this paper, where, among other things, some
results which were announced in [16] for discrete semiflows generated iterating
a holomorphic map f : D — D are established in the general case. (One of the
basic tools in this investigation was the Earle-Hamilton theorem (see [2] or, e.g.,
(5, 6, 9]). This theorem, coupled with the theory of complex geodesics for the
Carathéodory distance, was also used by several authors (see, e.g., [10, 11, 15,
16, 23, 24, 25, 26, 27]) to investigate the geometry of the set of fixed points of f.
Further references to fixed points of holomorphic maps can be found in [13].)
Our main purpose is to obtain some information on the asymptotic behaviour
of ¢ in terms of “local” properties.

In this direction, extending to the continuous case a result announced in [16]
for the iteration of a holomorphic map, it is shown that, if there is a sequence {t,}
in R, diverging to infinity and such that {¢,, } converges, for the topology of local
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uniform convergence, to a function mapping D into a set completely interior to
D, then there exists a unique point xy € D which is fixed by the semiflow ¢;
moreover, ¢s(x) tends to xy as s — +oo, for all x € D.

If some point xy € D is fixed by the continuous semiflow ¢, the map ¢ —
d¢:(xo), where d¢;(xo) € L(€) is the Fréchet differential of ¢;(x) at x = xo, de-
fines a strongly continuous semigroup of bounded linear operators acting on €.

Some situations are explored in which the behaviour of this semigroup deter-
mines the asymptotic behaviour of the semiflow ¢.

It is shown in Sections 7 and 8 that, if the spectral radius p(d¢.(xo)) of d¢(xo)
is p(d¢:(xo)) < 1 for some ¢ >0, then, as s — +00, ¢ converges to the constant
map x — xg for the topology of local uniform convergence.

The case in which p(d¢(xo)) = 1 at some ¢ > 0 is considered in Sections 9 and
10, under the additional hypothesis that d¢;(xo) is an idempotent of £(€). As is
well known, the spectrum o (d¢:(xo)) of d¢:(xp) consists of two eigenvalues in 0
and in 1 at most.

If

o(d¢i(x0)) = {03, (1.1)

then d¢(xo) = {0} for all s > . As a consequence of Sections 7 and 8, if s —
+00, ¢s converges to the constant map x — xo for the topology of local uniform

convergence.
If

o(di(xo)) = {13, (1.2)

then ¢ is the restriction to R, of a periodic flow of holomorphic automorphisms
of D.
Finally, if

1€ o(dg(x0)), (1.3)

and if there is some ¢’ > 0, with ¢'/t ¢ Q, such that also d¢y (xp) is an idempotent
of £(%€), then the semiflow ¢ is constant, that is, ¢, = id (the identity map) for
all t = 0.

2. The general case of a J*-algebra

Let € be a complex Banach space, let D be a domain in €, and let

¢:RyxD—D (2.1)
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be a semiflow of holomorphic maps of D into D, that is, a map such that

¢o = id, (2.2)
¢f1+t2 = ¢t1 (/’tz) (23)
¢: € Hol(D), (2.4)

for all t,£;,t, € Ry, where Hol(D) is the semigroup of all holomorphic maps
D - D.

A point x € D is said to be a periodic point of ¢ with period 7 > 0 if ¢, (x) = x
and ¢;(x) # x for all £ € (0, 7). The semiflow ¢ will be said to be periodic with
period 7 if ¢, = id and, whenever 0 < t < 7, ¢; is not the identity map.

We begin by establishing the following elementary lemma, which is a con-
sequence of Cartan’s uniqueness theorem (see, e.g., [5]) and which might have
some interest in itself.

Let D be a hyperbolic domain in the Banach space € (or, more in general, a
domain in € on which either the Carathéodory or the Kobayashi distances define
equivalent topologies to the relative topology) and let x; € D be a fixed point of
the semiflow ¢, that is, ¢:(xo) = xo for all t € R,

LemMa 2.1. If there is a vector & € €\ {0}, for which the map t — d¢(x¢)& of R+
into £(€) is periodic with period T >0, and there is a set K C (0,7) such that
{d¢:(x0)& : t € K} spans a dense affine subspace K of €, then ¢, = id.

Proof. Let xy = 0. Since

d¢:(0)(d¢:(0)§) = d¢-+.(0)§ = d¢:(0)§ Vt=0, (255)
then d¢.(0) = id on K and therefore on €. Cartan’s identity theorem yields the
conclusion. O

Let € and I be complex Hilbert spaces and let £(7€, I) be the complex Ba-
nach space of all continuous linear operators # — ¥, endowed with the op-
erator norm. For A € (3, ), A* € L(H,¥) will denote the adjoint of A. A
J*-algebra [7] is a closed linear subspace & of £(#, ¥) such that

Acd = AA*Ac A. (2.6)

The roles of € and D will now be played by a J*-algebra &{ and by the open
unit ball B of .

Let S be the set of all extreme points of the closure B of B. As was noted by
Harris in [7], if s is weakly closed in L(F, (), then S # &.

LEmMA 2.2. Let S # @. If 0 is a periodic point of the semiflow ¢ : R, X B — B,
with period T >0, and if there is a set K C (0,T) such that, for every t € K, ¢¢(0)
is collinear to some point of S, and the set {¢:(0) : t € K} spans a dense linear
subspace of A, then the semiflow ¢ is periodic with period 7.



Edoardo Vesentini 221

Proof. Let A be the open unit disc of C. For t € K,

¢
A2 E= o #© @7)

is, up to parametrization, the unique complex geodesic whose support contains
both 0 and ¢:(0). (For the Kobayashi or Carathéodory metrics on B, for the basic
notions concernlng complex geodesics, see, e.g., [14, 15].)

Since ¢,(0) = 0 and

¢ (¢:(0)) = ¢: (¢:(0)) = ¢:(0), (2.8)

then ¢, is the identity on the support of the complex geodesic (2.7). Hence
d¢:(0)(¢:(0)) = ¢:(0) VteK, (2.9)
and therefore d¢,(0) = Iy. Thus d¢,(0) maps the set S onto itself. By Harris’

Schwarz lemma [7, Theorem 10], ¢, = d¢.(0) = id. O

Let now xy € B be a periodic point of ¢ with period 7 > 0.
As was shown in [7], the Moebius transformation My, is a holomorphic au-
tomorphism of B which maps any x € B to the point

M, (x) = (I—3c0x0*)_1/2(x+xo)(I+x0>"x)_l(1—xo*xo)l/2
12 -1 12 (2.10)
=xo+ (I —xox0™) “x(I+x0%x) (I —x0%x0)"".
Furthermore,
My, (0) =x0, My '=M_y, (2.11)

and M, is the restriction to B of a holomorphic function on an open neighbour-
hood of B in &, mapping 9B onto itself.

Applying Lemma 2.2 to the semiflow t — y, = M_, ¢:M,,, we obtain the fol-
lowing theorem.

TaEOREM 2.3. If x¢ € B is a periodic point of ¢ with period T >0 and if there is a
set K C (0, 7) such that

(1) for any t € K, M_y,(¢+(x0)) is collinear to some point in S;
(ii) the set {¢:(x0) : t € K} spans a dense affine subspace of A (as was shown
by Harris in [7, Corollary 8], B is the closed convex hull of S),

then the semiflow ¢ is periodic with period T.
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Remark 2.4. Under the hypotheses of Theorem 2.3, setting y; = ¢; when ¢ >
0, and y; = ¢_; when t < 0, one defines a flow y : R X B — B of holomorphic
automorphisms of B, whose restriction to R, is ¢.

The flow y is continuous if and only if the semiflow ¢ is continuous, that is,
the map ¢ : R, X B — B is continuous.

In the case in which n = dimc & < o, a similar statement to Theorem 2.3
holds for a discrete semiflow, that is to say, for the semiflow generated by the
iterates f™ = fo fo---o f (m=12,...) ofa holomorphic map f:B — B.

THEOREM 2.5. If f has a periodic point xy € B, with period p > n (i.e., fP(xy) =
X0, f1(x0) #x0ifg=1,...,p— 1), if M_y,(f9(x0)) is collinear to some point in the
Shilov boundary of B forq = 1,..., p — 1, and if the orbit { f1(x0) : g = 1,..., p— 1}
of xo spans s, then f is periodic with period p.

For example, let fi : z — ™3z and let f be another holomorphic function
A — Asuch that /2,(0) =0but f, #0. Let f : AX A — A X A be the holomorphic
map defined by

fz,2) = (fi(21), fa(22)), (21,22 €A). (2.12)

If f, has a periodic point in A\{0}, and therefore is periodic, f is periodic
with period > 3. If f, is not periodic, f is not periodic. However, every point
(z1,0) with z; € A\ {0} is a periodic point of f with period 3.

3. Cartan domains of type one

Let the J*-algebra o4 be a Cartan factor of type one, o1 = L(¥, K). Let

Iy 0
j= (0 _I%), (3.1)

and let T'(J) be the group of all linear continuous operators A on K & # which
are invertible in £ (¥ ® 7€) and such that

A*JA = (3.2)

It was shown by Franzoni in [4] that the group of all holomorphic automor-
phisms of the unit ball B of 54, which is called a Cartan domain of type one, is
isomorphic to a quotient of I'(J), up to conjugation when dim¢ # = dim¢ .

To avoid conjugation, we will consider now the case in which oo > dim¢ 7€ #
dim@ H < .

Let T: R — £(K & K) be a strongly continuous group such that

T()*JT(t) =], (3.3)
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or equivalently

T(JT()* =], (3.4)
forall t € R.
If
Tu(t) Ti(t)
T = (Tzl(l‘) Tzz(f)> (3:5)

is the representation of T(¢) in I & ¥, with T11(t) € L(K), T12(t) € L(H,K),
T (t) € L(H, %), and T»y(t) € L(F), then (3.3) and (3.4) are equivalent to
Ty () Tiy(8) = Tor (6)* T (1) = I,
Ty (8)* Top(t) = Tia(8)* T1o(t) = Iye, (3.6)
Ty ()" Tyi(8) = Toa(£) " Ty (£) = 0,

Tu(O) T ()" = T Ti(t)* = Iy,
Ton()Ton(8)* = Tor () Ton () = Iy, (3.7)
T ()T ()" = T () T (H)* = 0.

Here T11 ()" € LK), Tio(1)* € LI, H), Tor(1)* € L(H,I), and T (1)* €
(7€) are the adjoint operators of Ty (¢), T12(t), To1(t), and Taa(t).

From now on, in this section, latin letters x and y indicate elements of
L(H,H) and greek letters & and # indicate vectors in ¥ and .

It was shown in [4], that, if x € B, Ty (t)x + T (t) € L(H) is invertible in

—_—

$L(7), and the function T'(¢), defined on B by

—

T() :x — (T (£)x + Tia(6)) (Tor (Ox+ Toa(£)) (3.8)

is, for all t € R, a holomorphic automorphism of B.
Setting

¢ = T(D) (3.9)

for t € R, we define a continuous flow ¢ of holomorphic automorphisms of B.
If xo € B is a periodic point of ¢ with period 7 > 0, and if the hypotheses of
Theorem 2.3 are satisfied, ¢ is periodic with period 7.

—~

Since T(7) = id, then
Ti(t)x+ Tia(1) =xTo ()x+xTn(t) Vxe i(%, H), (3.10)
whence

Tia(7) =0, Ty (1) =0, (3.11)
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and therefore, by (3.6),

T () T (r) = Ti (1) T (1)* = Iy,

* * (3.12)
T2 (1) Toa(1) = Toa (1) Toa(7)" = Iy,

that is, T1;(7) and T5,(7) are unitary operators in the Hilbert spaces J{ and ¥.
Furthermore, (3.10) becomes

Ti(1)x =xTyn(t) VxeL(HK). (3.13)

Since T, (7) is unitary, every point e ( € R) in the spectrum (T2 (7)) of

T>,(7) is contained either in the point spectrum or in the continuous spectrum.

In both cases, there exists a sequence {&,} in # (which may be assumed to be
constant if €7 is an eigenvalue), with ||€, || = 1, such that

Jim (T (1), — 7)) = 0. (3.14)

Since, by the Schwarz inequality,

| (Tr(1)E1E,) — 97| = | (Tn(1)E, — e¥7E,|E,) |

A 3.15
< ||Ton(0)E, - €97, G139

then
lim (Tn(n§1E) = " (3.16)
Hence, letting, for any € X, x, = y ® &, € L(3€, ), then x,(&,) =  and
lim x,(Tn(1)§) = lim (Tn(0)§18)n = €. (3.17)
Thus, by (3.13),
Ti(o)n = lim Tiy(7)(x(8)) = lim x, (T (1)) = ey (3.18)
for all 7 € . Therefore,
Tyi(1) = €97 Iy, (3.19)
and (3.13) yields

T (1) = €97 Iy (3.20)
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In conclusion,
T(1) = ¥ Iy (3.21)

Thus, the rescaled group L: R — L(J{ & (), defined by

L(t) = e T (), (3.22)
is periodic with period 7.
Note that
L)*JL(t) =] VteR. (3.23)
If
1o (1 1) 520

is the representation of L(¢) in I & ¥, with Ly1(t) € L(K), L12(t) € L(H,H),
Ly (t) € L(H, 7), and Ly, (t) € L(F€), then

Lop(t) = e ¥ Typ(t) (3.25)
for a, 8 = 1, 2. Therefore, setting, for x € B,
L) (x) : x — (Liy()x + Lo (2)) (Loy (£)x + Lo (£) (3.26)

then

~

L(t)=¢; VteR (3.27)

IfX:D(X) cH e — I &H is the infinitesimal generator of the group T, the
operator X — i0lyq35, with domain 9(X), generates the group L.
The structure of the spectrum (X — ifIxe3) is described in [1] by a theorem
of Bart, whereby
(1) (X — i0Iyey) C i(2n/T)7Z;
(ii) 0(X — i6Iyey) consists of simple poles of the resolvent function { —
({Tste9c — (X — i0Le5)) ™'
(iii) the eigenvectors of X — i0Iy 3 span a dense linear subspace of J{ @ 7.
According to [1], if X is the infinitesimal generator of a strongly continuous
group T, and if conditions (i), (ii), and (iii) hold, the group L defined by (3.22)
is periodic with period 7.
Summing up, in view of Theorem 2.3, the following result has been estab-
lished.
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THEOREM 3.1. If there is a periodic point xy € B for ¢, with period T >0, and if
there is a set K C (0, ) such that, for any t € K, M_,(¢:+(xo)) is collinear to some
point of S, and the set {$:(x0) : t € K} spans a dense affine subspace of £(¥,K),
then there exist a strongly continuous group T : R — L(H,H) and a real number 0
such that the rescaled group R > t — L(t) is a periodic group with period T.
IFX:9X) cHeH—He K is the infinitesimal generator of the group T,
conditions (i), (ii), and (iii) characterize the periodicity of L with period t.

Thus, if X generates a strongly continuous group T, and if conditions (i), (ii),
and (iii) hold, the group L defined by (3.22) is periodic with period 7. As was
proved in [19, Proposition 4.1], the group T satisfies (3.3) for all r € R if and
only if the operator iJX is selfadjoint. If that is the case, setting

He0=(He0)nDX), 0¥ =0 H)NPB(X), (3.28)

[19, Lemma 5.3] implies that the linear spaces J{' and #’ are dense in K and 7.
We consider now the case in which the semigroup T|r, is eventually differ-
entiable (i.e., there is t° > 0 such that the function t — T(t)x is differentiable in
(1% +00) for all x € K & H). By (3.22), also Lig, is eventually differentiable.
According to a theorem by Pazy (see, e.g., [12]), there exista € R and b >0
such that the set

{{eC:R{=a-Dblog|3|} (3.29)

is contained in the resolvent set of X — i0lys%. Thus, the intersection of o(X —
i0I3s3) with the imaginary axis is bounded. Condition (i) implies then that
0(X —i6ygy) is finite. But then, by [1, Proposition 3.2], X —iflye3% € L(K oK),
and therefore X € L (I @ ), proving thereby the following proposition.

ProrosITION 3.2. Under the hypotheses of Theorem 3.1, if moreover the semigroup
T\r, is eventually differentiable, the group T is uniformly continuous.

Remark 3.3. The above argument holds for any strongly continuous semigroup
T of linear operators, which is periodic, showing that, if T is eventually differen-
tiable, then T is uniformly continuous.

If T is eventually norm continuous, then (see, e.g., [3]) its infinitesimal gen-
erator X is such that, for every r € R, the set

{{eaX):R{=r} (3.30)

is bounded.

At this point, [1, Proposition 3.2] implies that, if T' is also periodic, then the
operator X is bounded, and therefore T is uniformly continuous.

This conclusion holds, for example, if the periodic semigroup T is eventually
compact.
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4. The unit ball of a Hilbert space

Theorem 3.1 has been established in [22] in the case in which B is the open unit
ball of the Hilbert space J{ (i.e., when %€ = C).

In this case, T1;(t) € L(I) is invertible in L(K), T12(t)EH, To1(t)=(o|T12(1)),
and Ty, (t) € C are characterized by the equations

| T (1) |2 - ||le(l‘)||2 =1,

1 (4.1)
T () T (t) = I+———— (o |T1(8) " T2 (1)) T11 (1) * Ti2(2).
[ T (1) |
As was shown in [22], there is a neighbourhood U of B such that
(x|T11(t)*T12(t))+T22(t) +#0 VxeUtelR (4.2)

The orbit of xy € B is described by

— 1

#i) = O = I O T () + T

(T ()xo + Ti2(2)).  (4.3)

The infinitesimal generator X of T is represented in J{ @ C by the matrix

[ Xu X2
x= <( . [X12) inz) ’ (44)

where X1, € K, X5, € R, iX; is a selfadjoint operator, and the domains % (X)
and 9(X,1) of X and of X, are related by

Since ¢, is the identity, by [17, Proposition 7.3] and by (3.27), the set
Fix¢ = {x € B: ¢(x) =x Vt € R} (4.6)
is nonempty.
The ball B being homogeneous, there is no restriction in assuming 0 € Fix ¢.
Thus, by (3.8), T12(t) = 0 for all t € R, and therefore X, = 0. Furthermore, as a
consequence of (4.1),

Ty(t) = e™2, (4.7)

and the skew-selfadjoint operator X;; generates the strongly continuous group
Ti1 : t — T11(t) of unitary operators in J.
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Equation (3.9), which now reads
Ge(x) = e X2y (1), (4.8)

yields the following lemma.
LemMa 4.1. The set Fix ¢ is the intersection of B with a closed affine subspace of K.

Because of (3.21),

2
X»n =0+ g (4.9)
for some n € Z, and therefore
de(x) = e CDILy (1)x (4.10)

for all x € B and some n € Z.
The strongly continuous periodic group Ly; : £ — Ly1(t), with period 7, of
unitary operators in J is generated by

Yi:= Xll—iGIf]{Z@(Xll) cIH — . (411)

By [1], 0(Y11) Ci(271/7)Z consists entirely of eigenvalues, and the correspond-
ing eigenspaces, which are mutually orthogonal, span a dense linear subspace of
K.

For m € Z, let P,, be the orthogonal spectral projector associated with (27/
T)mi. By [1, (3)], L1; is expressed by

Li(t)x = > e@mm/itp, x (4.12)

m

for all x € { and all t € R. Thus L, (¢) leaves invariant every space P,,(K), and
acts on it by the rotation

x — e@mmmity (4.13)

Hence, the following lemma follows.

LemMma 4.2. If the orbit of xo € B spans a dense affine subspace of ¥, then
dimc P, (H) < 1 for allm € Z.

Since, by (3.25),
o(Yn) = o(Xy —i6ly) (4.14)

if 0(X11) is finite, also o(Y71) is finite.
A similar argument to that leading to Proposition 3.2 yields now the following
theorem.



Edoardo Vesentini 229

THEOREM 4.3. If the continuous flow ¢ of holomorphic automorphisms of the open
unit ball B of X defined by a strongly continuous group T: R — L(H & C) has a
periodic point whose orbit spans a dense affine subspace of X, and if moreover T is
eventually differentiable, then dimc K < co.

According to [17, Theorem VII], for any y >0 and every choice of x) € BN
9%(X11), the function

¢. (x0) l0y] : [0, Y] — D(X11), (4.15)

defined by (4.3) for 0 < t <y, is the unique continuously differentiable map
[0, y] = I with x([0,y]) C D(X;1), which is continuous for the graph norm

x— [lxll + || X1 x|] (4.16)

on % (X11), and satisfies the Riccati equation

B 90(00) = X116 () = (91 0) X02) + X)) X2 (417

with the initial condition ¢ (xo) = xo € BN D(X1y).
Hence, Theorem 3.1 can be rephrased.

ProrosiTioN 4.4. Ifthe Riccati equation (4.17) has a periodic integral which spans
a dense affine subspace of X, (4.17) is periodic (i.e., all integrals of (4.17) satisfying
the above regularity conditions are periodic).

We consider now the case in which one of the two spaces J{ and % has a finite
dimension, and therefore J defines in J @ # the structure of a Pontryagin space.
Assuming

o0 > dimc # < dimc H < oo, (4.18)

the extreme points of B are all the linear isometries % — J{; by [19, Theorem
II1], X is represented by the matrix

(X X
X—<X12* inz)’ (4.19)

where Xi; : D(Xq1) C K — K and Xp, € L(KH) are skew-selfadjoint, X;; €
L(H,H), and D(X) = D(Xq7) & F.
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The Riccati equation (4.17) is replaced in [19] by the operator-valued Riccati
equation

410 = XuxO)-x(0X — x(OXe ~ xOX0 MO+ X0 (420)

acting on C! maps of [0, y] into
D={xeP(HHK):xE € D(X),) VE€ K} (4.21)

which are continuous for the norm (4.16).

For any y > 0, any choice of u invertible in (%) and of v € D such that
Xo = vu~! € B, the function t — x(t) expressed by (3.8), with x = xo, for ¢ € [0, y]
is the unique solution of (4.20) satisfying the conditions stated above, with the
initial condition x(0) = xg.

Theorem 3.1 yields then the following proposition.

PROPOSITION 4.5. Let the integral t — x(t) be periodic with period T > 0, and let
there be a set K C (0, 1) such that x(K) spans a dense affine subspace of (¥, X).
If, for any t € K, M_y,(x(t)) is collinear to some linear isometry of ¥ into I, the
Riccati equation (4.20) is periodic.

5. Spin factors

Similar results to some of those of Section 3 will now be established in the case
in which the J*-algebra s is a spin factor. In this section, ¥ is, as before, a
complex Hilbert space, and C* is the adjoint of C € £(X). A Cartan factor of
type four, also called a spin factor, is a closed linear subspace  of £(X) which
is *-invariant and such that C € & implies that C? is a scalar multiple of I3.

Since, for C;, C; € A, C1C,™ + C,*Cy is a scalar multiple, 2(C;|C,)I5, of the
identity, then C, C; — (C;|C,) is a positive-definite scalar product, with respect
to which o is a complex Hilbert space. (For more details concerning spin factors,
see, e.g., [7, 18, 21].) Denoting by ||| - [l and by || - || the operator norm and the
Hilbert space norm on s, then

Ici? = ||C||2+\/||C||4 — | (ClC*) |2 VC e . (5.1)
The open unit ball B for the norm ||| - [l], also expressed by
) 12
B={C€&Q:|IC|I2<1+|(CZ|C)|<1}, (5.2)

is called a Cartan domain of type four. The set S of all extreme points of B is the
set of all multiples, by a constant factor of modulus one, of all selfadjoint unitary
operators acting on the Hilbert space J{, which are contained in s [7, 21].
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Changing again notations, we denote by x, y elements of the spin factor o,
and x — X stands for the conjugation defined by the adjunction in the Hilbert
space . For any M € £(s), M" will indicate the transposed of M. The same
notation will be used to indicate the canonical transposition in C? and the trans-
position in & & C2.

According to [7, 21], any holomorphic automorphism f of B can be de-
scribed as follows.

Let

A Ix 0
J= ( 0 —I(Cz> ’ (5.3)

and let A be the semigroup consisting of all A € £( & C?) such that
A'JA=]. (5.4)
Every A € A is represented by a matrix

M Q1
A=|(elrn) en en], (5.5)
( ° |T2) €1 €

where M € £(s) is a real operator, q1, ¢z, 11, and r, are real vectors in &, and

E:= (e“ e”) (5.6)

€1 €2

is a real 2 X 2 matrix such that detE >0, and

M'M —R'R = I, (5.7)
M!'Q-R'E =0, (5.8)
E'E-Q'Q = I (5.9)

Here R: 4 — C? and Q : C? — o are defined by

Rx = ((xlrl)) eC® Vxed,
(xIr2)
(5.10)

Qz=z1q1+2q, Vz= (j) e 2.
)
It was shown in [18] that the set Ag = {A € A:detE >0} is a subsemigroup
of A.
For x € A, let

8(A,x) = 2(x|r1 — 1’2) + (611 —exn +i(€12 +e21))(x|I) +e11t+exn +i(€21 — 612).
(5.11)
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One shows (see [18, 21]) that, if A € Ay, 8(A,x) # 0 for all x in an open
neighbourhood U of B. Hence, the map

A

A:Udx— 2Mx+ (1+ (x1%))q1 —i(1 — (x|x))q2) (5.12)

1
0(A,x)
is holomorphic in U. Its restriction to B, which will be denoted by the same
symbol A, is the most general holomorphic isometry for the Carathéodory-
Kobayashi metric of B [21]. This isometry is a holomorphic automorphism of B
if, and only if, A is invertible in £ (s & C?).

If A(0) = 0, then q1 —ig2 = 0, and therefore q; = g2 = 0 because g; and g, are
real vectors; (5.9) reads now E € SO(2), and (5.8), which now becomes R‘E = 0,
yields r; = r, = 0. Thus, by (5.7), M is a real linear isometry of s{. Setting

E=- (COSOC - sm(x) (513)

sine  cosa

for some a € R, then

A(x) =e*Mx VxeB. (5.14)
As a consequence,
e[y 0 0
Alx)=xVxeB < A= 0 cosa —sina |. (5.15)
0 sinad  cosa

Now, let T: Ry — £(sd ® C?) be a strongly continuous semigroup such that
T(t) € Ag for all t = 0. Setting

¢ =T(t) (5.16)

for t = 0, one defines a continuous semiflow ¢ : Ry X B — B of holomorphic
isometrics B — B.

If xy € B is a periodic point of ¢ with period 7 > 0, and if the hypotheses of
Theorem 2.3 are satisfied, then

(1) ¢ is the restriction to R, of a continuous flow R X B — B, which will be
denoted by the same symbol ¢;
(ii) T is the restriction to R, of a strongly continuous group R - £(A &
C?), which will be denoted by the same symbol T;
(iii) (5.16) holds for all t € R.

Since, f(?)(x) = x for all x € B, by (5.15), there is some « € R such that

T(r) = F(7), (5.17)
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where
e Ty 0 0
F(r) = 0 cos(ar) —sin(ar) |. (5.18)
0 sin(ar)  cos(ar)
Thus,

o(T(1)) = o(F(1)). (5.19)

Setting
L-={({i():{eC}, Ly ={((,-i(): (e C}, (5.20)

if ar ¢ nZ, o(T(7)) consists of the eigenvalue e 7, with the eigenspace A ®
L_ C sl & C?, and of the eigenvalue e*7, with the eigenspace 0 ® L, C o & C2.
If ar € nZ, T(7) = Iyec2 when at/m is even , and T(7) = —Iyec2 when a1/ is
odd.

In conclusion, the following theorem has been established.

THEOREM 5.1. If there is a periodic point xo € B for ¢, with period T >0, and
if there is a set K C (0,7) such that, for any t € K, M_,(¢¢(x0)) is collinear to
a multiple, by a constant factor of modulus one, of a selfadjoint unitary operator
which acts on the Hilbert space H and is contained in i, and the set {¢¢(x) : t €
K} spans a dense affine subspace of 9, then there exist a strongly continuous group
T:R — L(A @ C?) and a real number « for which (5.17) and (5.18) hold.

The infinitesimal generator

X:9X)cdeoC? — sdoC? (5.21)

of the group T has a pure point spectrum, consisting of at least one and at most two
distinct eigenvalues.

If at & n7Z, o(T(1)) consists of the eigenvalue e~**, with the eigenspace o &
L_, and of the eigenvalue "™ with the one-dimensional eigenspace 0 & L.

If at € n7Z, the group T is periodic with period T when az/7 is even, and
period 27 when az/7 is odd.

According to [18, Theorem 4.1], @(X) = @ & C?, where & is a dense linear
subspace of o, and X is expressed by the matrix

X1 X2 X3
X=|(elX) 0 X, (5.22)
(elX3) X5 0

where X3 € R, X;»> and X3 are real vectors in o4, and X;; is a real, skew-selfad-
joint operator on s with domain 9.
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Similar results to those established in Propositions 4.4 and 4.5 for (4.17) and
(4.20) hold for the Riccati equation

%(Pt(xo) = (X11 +iXo3I) ¢ (x0) + % (X12 +iX13) (¢ (x0) |62 (x0))
(5.23)

— (¢ (x0) 1 X12 — iX13) ¢ (x0) + %(Xu —iX13)

with initial conditions ¢y (xp) = xo € BN D(X11).

6. Fixed points of semiflows

The next sections will be devoted to investigating the fixed points of a continuous
semiflow ¢ : Ry X D — D of holomorphic maps of a bounded domain D in a
complex Banach space €, that is to say, the points x € D such that ¢;(x) = x for
all x e R,

Actually, some of the results we are going to establish hold under slightly
weaker conditions. Namely, ¢ will be a map of R* X D into D satisfying (2.3)
and (2.4) for all £, ¢, , € R¥ and such that the map t — ¢;(y) is continuous on
R¥ forall y € €.

Aset S C D is said to be completely interior to D, in symbols S € D if inf {||x —
yll:xeD, ye€\D} >0.

Since
birs = ¢1(ps(D)) C $:(D)  Vi,5>0, (6.1)
if
¢:(D) €D, (6.2)
then
¢.(D)eD Vr=t. (6.3)

Let ¢, (D) € D for some ty >0, and let t > f. By the Earle-Hamilton theorem
(see [2] or, e.g., [5, Theorem V.5.2]), there is a unique point x; € D such that
¢¢(x¢) = x:. Hence x; is the unique point in D such that

(/)nt(xt) =Xt Vn= 1,2 (64)
Moreover, by the Earle-Hamilton theorem,

lim ¢p(x) =x VxeD. (6.5)

n—-+co



Edoardo Vesentini 235

Let p, q be positive integers, with p > g. There is a unique point x(,/y); € D
such that

Pipryt (Xiprre) = X(prgpt- (6.6)
Since

Puiprt (X(prat) = X(prgpt (6.7)

forn=1,2,..., choosing n = mq, m = 1,2,... yields

Pmpt (X(prqre) = X(prapt- (6.8)
Since, by (6.5),
Gt (x(prgpe) = X (6.9)
then
X(p/q)t = Xt (6.10)

for all positive integers p > g =1,2,....
The continuity of t — ¢,(y) implies that

Gre(x1) = x¢ (6.11)

for all real numbers r > 1. Hence there is a point x, € D which is the unique
fixed point of ¢; for every ¢ > t.
Let ty > 0 and choose s € (0,) and ¢t > fg. Then

¢s(x0) = s (1 (x0)) = Pres(x0) = X0 (6.12)
because t+s > tg.
In conclusion, the first part of the following theorem has been established.

THEOREM 6.1. Let ¢ : R¥ X D — D satisfy (2.3) and (2.4), and be such that t —
¢¢(x) is continuous on R for allx € D. If D is bounded, and if ¢;(D) € D for some
t >0, there exists xo € D which is the unique fixed point of ¢ for every s >0, and

Sllgrrgo ¢s(x) =x VxeD. (6.13)

Proof. Let kp be the Kobayashi distance in D. To complete the proof of the
theorem note that, given x € D and s > 0, for every € > 0 there exists a positive
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integer 1y such that, whenever n > ny,

kp (x0, Pns(x)) < €. (6.14)
If n>ng and t > ns,

kp (xO) ¢t(x)) =kp (XO) ¢ns+t—ns(x))
= kD((,bt—ns(xO)» ¢t—ns(¢ns(x))) (6.15)

< kD (xO) ¢ns(x)) <E€.
O
CoOROLLARY 6.2. Under the hypotheses of Theorem 6.1, x, is the only w-stable point
of ¢. (That means that, for every € >0 and every T > 0, there is some t > T for which

kp (x0, p:(x0)) < €.)

THEOREM 6.3. Let D be bounded and let ¢ : R¥ x D — D satisfy the hypotheses
of Theorem 6.1. If there exist a sequence {t,} C R¥ diverging to +co and a map
g:D — D such that lim,_. . ¢;, = g for the topology of local uniform convergence
and if g(D) € D, then there exists a unique point xo € D such that ¢(xo) = xo for
all t >0 and lim;_ 1o ¢(x) = x0 for all x € D.

Proof. Since g is holomorphic and g(D) € D, the Earle-Hamilton theorem im-
plies that there is a unique point xo € D which is fixed by g.
If ¢:(y) = y for some y € D and some ¢ >0, then, if s > ¢,

$s(y) = $o-r+4(y) = ¢t ($:(¥) = ¢oe(¥), (6.16)
and therefore
$:(6:(1) = ¢: (b5t () = ¢s(y). (6.17)
But then
g(y) = lim ¢, (y) =y, (6.18)

and therefore y = xy. Hence, either Fix¢; = & forall t > 0, or Fix¢; = {x0} when
t> 0.
Let R > 0 be such that
B(xo,R) €D. (6.19)

Since the Kobayashi distance kp and || - || are equivalent on B(xp, R), there
exist real constants ¢ > b > 0 such that

bllx—yll <kp(x,y) <cllx—yl VxyeB(x,R). (6.20)
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Let r > 0 be such that
By (x0,7) C B(x0,R). (6.21)
For every € > 0, there is vy such that
=1y = ||¢, (x) —g(x)|| <€ Vx€&B(xo,R) (6.22)
(because the sequence {¢,} converges to g for the topology of local uniform

convergence).
Since g(D) € D, there exists a € (0, 1) such that

kp (¢, (x), x0) < kp (¢, (x),g(x)) +kp(g(x),x0)
< d[|¢y, (x) — g(x)|| + akp (x, x0) (6.23)
< CE+ar.

Let £ € (a,1) and € be such that

0<e< 2 (6.24)
Then
ceE+ar < (€—a)r+ar="~r, (6.25)
and therefore
¢r, (Biy (x0,7)) C By (x0,87) Vv = . (6.26)
It turns out that
By, (%0, €1) € By, (x0, 7). (6.27)

Indeed, if x € By, (xo, £r) and y € B(xo, R)\ By, (x0,7),

~

1 1 1-
e =yl = “kp(xy) = E(kD()/,XO) — kp(x0,x)) > r. (6.28)

As a consequence of (6.27),

(ptv (BkD (Xo, T) ) S Bkn (xO’ T’) Vy = V0. (629)
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Ift > ty,,
¢ (Bry (x0,7)) = Pr—t,,+4,, (Brp (%0, 7)) = ¢, (@11, (Biy, (%0,7)))
€ du, (Bey (30,7)) € By (7). (630
Hence,
Fixg = {xo} Vt= 1, (6.31)
Thus,
tlﬂrio ¢ (x) = x0 (6.32)
for all x € By, (x, 7). In particular,
lim ¢, (x) = x0 (6.33)

V—+0o

for all x € By, (xo, ). Hence, g(x) = xy on By, (xo, r) and therefore also on D (be-
cause the open set D is connected and g is holomorphic on D), and (6.32) holds
for all x € D. |
7. Convergence of iterates and its consequences

The following theorem was announced in [16] without proof.

TaEOREM 7.1. Let D be a bounded domain in the complex Banach space €, and
let f : D — D be a holomorphic map fixing a point xy € D. If the sequence { "} of
the iterates of f converges for the topology of local uniform convergence on D, then
either

o (df (x0)) € A (7.1)

or
o(df (x0)) = {1} U (AN o (df (x0))). (7.2)
and 1 is an isolated point of o (df (xo)) at which the resolvent function (eI —df (xo))™

has a pole of order one.

Since df"(xy) = (df (x9))" forn =0, 1,..., and {df"(x)} converges in the op-
erator topology, Theorem 7.1 is a consequence of the following proposition, also
announced in [16] without proof.

ProrosiTiON 7.2. Let A and P be elements of L(€). If

lim [|A" - P[[ =0, (7.3)
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there exists k € R¥, for which,
|A"| <k Vn=12,..., (7.4)
and therefore the spectral radius of A is
p(A) <1. (7.5)
Ifp(A) <1, then P=0.Ifp(A) = 1, then
g(A)NoA = {1}, (7.6)
and 1 is an isolated point of a(A) which is a pole of order one of the resolvent

function (eI — A)~'. Furthermore, P is the projector associated to the spectral set
{1} in the spectral resolution of A.

Proof. For any integer m = 0,

A™P = PA™ = P, (7.7)
and therefore
P2 = lim A"P=P, (7.8)
m—+oo

that is, P is an idempotent of £(€).
Form =1, (A —I)P = 0, and this fact, together with (7.3), yields

ker(A —1I) =RanP. (7.9)

Thus, P # 0 if, and only if, 1 is an eigenvalue of A.
Since

[|A"|[ - IIPII] <||A" - P||, (7.10)

(7.3) implies (7.4), for a finite constant k > 0, and therefore implies (7.5) as well.

Recall that ¢(P) C {0, 1} and that o(P) = {0} if, and onlyif, P = 0, 0(P) = {1}
if, and only if, P = I. By the upper semicontinuity of the spectrum, for any open
neighbourhood U of (P), there is an integer ny > 0 such that, whenever n > n,
0(A") C U, and therefore the image of 0(A) by the map { — (" is contained in
U. Hence,

P=0=p(A) <], (7.11)

and if 1 € g(P), then (7.3) and the upper semicontinuity imply (7.6).
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Choosing a neighbourhood U of the pair {0, 1} consisting of two mutually
disjoint open discs A(0,7;) and A(1,7,) centered at the points 0 and 1, with radii
r1 >0and r, >0, and using again the upper semicontinuity of the spectrum, we
see that 1 is an isolated point of 6(A) and

a(A) = {1} U (a(A) N A). (7.12)

What is left to prove is the final part of the proposition.

(a) It will be shown first that, for any open, relatively compact neighbourhood
U in C of {0, 1} and for any compact set K C C such that K n U = @, there exist
a constant k; >0 and an integer #n; > 1 such that

sup {[|(CT=A"7Y|:¢( €K, n=m} <ki. (7.13)

Let now r; and r, be such that 0 < r; < r; + 7, < 1, so that

A(O,Tl) UA(l,T’z) cU. (714)
There is n, > n; such that
d(A"YNACA(0,r)) Vn=n;. (7.15)

Given n > ny, choose r; € (0,7;) so small that the image by the map { — (" of
A(1,73) be contained in A(1,7,). Then, for any { € K,

((I—Aﬂ)’1 - ZLm'{Jm:r (_lTn(TI—A)_ldT

1 -1
+J‘T_“:r3(_rn(ﬂ A) dr}.

Let d be the Euclidean distance in C. If { € K, then |{| >} and, forany |7| =1y,

(7.16)

[(=7"] = [I¢I=171"| = [¢] = ||
—_— (7.17)
= ¢l =7l = d({A(0,11)) = d(K, U).

If € A(1,13), then

[(—1"| 2d({,A(1,7,)) = d(K,U). (7.18)
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Thus, (7.16) yields

1(¢1—am "] < KU)sup 1A e U} (7.19)
for all { € K and all n > n, proving thereby (7.13).
(b) Let
K, = sup {I{1 - P|| : { € K}. (7.20)
For{ € K,

(¢ —Aa" " ~(I-P) 1||—||(€I AT -P— ({T-A")T-P)7|

=[|(¢1-Aa" (A" - P)CT-P)7!|
<||(<”I A" lllan =PIl =Py
Sk1k2||An—P||.

(7.21)
In the following, K = dA(1,7), and r € (0, 1) will be chosen in such a way that
AL r)no(A) = @. (7.22)

Let

-1

(C1—A") Z(C 1)’A",, (7.23)

Y=—00

with A", € £(€), be the Laurent expansion of ({I — A")~! at 1.

Let P, € £(€) be the coefficient of ({ — 1) in the Laurent expansion of ({I —
P)~latl.

Then, by (7.21), forv > 1,

IIA"_V—P_V||<—HL( G- @ -py e

3 —1 @I -Aam " -1 -P) (7.24)
_zﬂj‘(ﬂ‘:rm YT = A" = (1 = P) Y| de

< Tv_1k1k2||An -

and therefore

lim [[A"-, = P,[[ =0 (7.25)
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forv=1,2,.... But, since

CI-P)! = rllm%(z—za), (7.26)

P_; =PandP_, =0 for v = 2. Hence,

lim [|A"_ - P[[ =0, (7.27)
lim [|A"_,||=0 (7.28)

forv=2,3,....

(c) Choose r; and r; in such a way that 0 <7 <r+r<1,and 6(A)NA C
A(0,11). For any n = 1, choose r3 such that 0 < r3 < r, and that the image of
A(1,73) by the map { — (" be contained in A(1,1;).

For any v > 1, Dunford’s integral and Fubini’s theorem yield

n _ 1 _ y—1
A" = iy J\H:rz(c b

1 —
X{Jr_rl (—Tn(TI—A) iz

+4[\T—1|:r3( T"(TI A)” dT}d( (7.29)

- 1 ((_1 r—1
B (277:1')2{,[1—=r] (J(um (-1 d() wI- Ay dr

@t o }
+J|T—1f3<I(—1|rz (—1" d(>(TI Ay

For |7| = r;, the function

(e

o (7.30)

is holomorphic in a neighbourhood of A(1,r,). Hence, by the Cauchy integral
theorem,

J Md(=o. (7.31)
(-1l=r, C—1"

On the other hand, the Cauchy integral formula yields

1 (¢ =1y

n_ v—1
gyl IO ¢ =("-1)"". (7.32)
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Hence, forv > 1,

A", = ﬁ . (t"=1)"'(zI-A)dr = (A"-1)""A_y, (7.33)
and (7.27) yields
A" =P forn=12,.... (7.34)
Since
A,=A-I"'P VYy=12,.., (7.35)
(7.9) yields A_, =0 forv=2,3,.... O

A part of Proposition 7.2 follows also from the following lemma.

LEMMA 7.3. If (7.4) holds, if 9A N o(A) 2 e for some 6 € R, and if € is an
isolated point of 0(A) which is a pole of the resolvent function (eI — A)~!, then ™
is a pole of order one.

Proof. There is no restriction in assuming e = 1. If n > 0 is the order of the pole,
the resolvent function is represented in a neighbourhood of 1 by the Laurent
series

+00

(I-A)"= > ((-1)4,, (7.36)

and the range Ran(A_;) of A_; is related to ker(I — A)™ by
Ran(A_;) =ker(I-A)" form=nn+1,.... (7.37)
Being
ker(I —A) cker(I—A)?> cC -+, (7.38)
(7.37) holds for m = 1 if, and only if,
Ax=x Vxe€Ran(A_ ). (7.39)
To see that this latter condition actually holds, assume that there is some y €
Ran(A_;) such that (A —1I)y # 0, and let A be a continuous linear form on ¢

such that

((A=Dy,A) #0. (7.40)
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By (7.35), (A—1I)"y = 0, and therefore

N n—1
ANy=(A-T1+DNy=> <N>(A—I)Py= > (N>(A—I)Py
p P=0 p

p=0

for all N > n. Thus
n—1 N
(AVy,d)y = > ( ><(A—I)"y»l>,
p=0 \P

and therefore
. N _
Jim [{AYy,A) | = e,
contradicting the fact that, in view of (7.4),
[ (AN y, A) | < [IMJAN Iyl < Kl p I

forall N > 0.
Thus (7.39) holds, and (7.35) yields A_, = 0 forv = 2,3,....

(7.41)

(7.42)

(7.43)

(7.44)

O

If the hypotheses of Lemma 7.3 are satisfied with e = 1, 0(A) splits as the
union of the two disjoint spectral sets {1} and g(A) N A. The corresponding

spectral projectors are P = A_; and I — P; moreover, (A —I)P = 0.
Setting

C=A(I-P)=A-P,

then o(C) = (6(A) nA) U {0}.
Since CP = PC, then

A"=P+C" forn=12,....
Being p(C) < 1, there exist € € (0, 1) and ny = 1 such that

||1/n S 1 —E’

llc”
that is,
[[C'|<(1-€)" Vn=n,

and therefore, by (7.46), (7.3) holds.

(7.45)

(7.46)

(7.47)

(7.48)
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In conclusion, the following proposition has been established.

ProrositioN 7.4. If (7.4) and (7.6) hold and if 1 is an isolated point of 0 (A) which
is also a pole of the resolvent function (eI — A)~!, then (7.3) holds, where P is the
spectral projector associated to the spectral set {1} in the spectral resolution of A.

It will be shown in Section 8 that, if (7.1) holds, Theorem 7.1 can be inverted.

8. Sufficient conditions for the convergence of iterates

Let D be a bounded domain in the complex Banach space €, and let f : D — D
be a holomorphic map fixing a point xy € D. As was noticed already, since D is
bounded, o(df (xo)) C A (see [5]).

TareoreM 8.1. If o(df (xy)) C A, the sequence { f"} of the iterates of f converges
to the constant map x — X for the topology of local uniform convergence on D.

Obviously, there is no restriction in assuming D to be a bounded, connected,
open neighbourhood of x; = 0.
Let R > 0 be such that

D c B(0,R). (8.1)
Let
flx) =Ax+A06x)+- - +AN(x, ..., x) + - - - (8.2)

be the power series expansion of f in 0, where A € £(€) and Ay is a continuous,
homogeneous, polynomial of degree N = 2, 3,... on €, with values in ¢, that is,
the restriction to the diagonal of € X - - - X € (n times) of a continuous N-linear
symmetric map, which will be denoted by the same symbol Ay, of € X - - - X €
into €. If

r=inf{llyl:y & D}, (8.3)

the power series (8.2) converges uniformly on B(0,s) whenever 0 < s <.
The nth iterate f" (n=2,3,...) of f has a power series expansion in 0 which
converges uniformly on B(0,s) and is expressed by

F(x) = A"+ CS (26 x) + - -+ CP (% X) o e (8.4)

where CI(\'; ) is a continuous homogeneous polynomial of degree N = 2,3,... on €
with values in €.
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An induction argument on n will show now that, for all x € €, N = 2,3,...
andn=23,...,

n—1
CI(\?) (x"”’x) = ZAq (AN (An*qflx)”')Ai’l*Q*lx))
q=0

(8.5)

n—1 N-1
+> > Cé’“)(Ap1 (Am=m=ly, L ATTTIX) L,
m=1 4=2 (gN)
Ap (A" 1x, L, AT X)),

where x € €, Cél) = Ay, and the sum Z(q,N) is extended to all positive integers
P1s..., pgsuch that py+-- -+ p, =
First of all, a simple induction on # yields
n—1
Y (6, x) = DL A1(A, (A1 1x, AP0 1)), (8.6)
q=0
which coincides with (8.5) when N = 2.
Assuming (8.5) to hold, then

N
C](\',m)(x,...,x) =A"(An(x,...,x)) + Z Cz(;n)(Apu (X3 X)see s Ap (%, X))

9=2 (q,N)
= A"(An(%,...,%)) + C\(Ax,..., Ax)
N-1
+ Z Z Cé”)(Ap](x,...,x),...,qu(x,...,x))
9=2 (q,N)
n—1
=A"(AN(x,....x)) + > AT(An (A" 17 Ax,...,A" T ' Ax))
q=0
n—1 N-1
+ C((im)(A (An+1 m— l An+l m— I.X'),...,
m=1 g=2 (g,N)
A (An+1 m— 1 An+1 m— lx))
N-1
+ Z z Cé”)(Apl(x,...,x),...,qu(x,...,x))
9=2 (q.N)
n+l-1
= > AYAN(A™TAx,., AT Ax))
q=0
n+1-1N-1
+ Z C((lm)(A (An+1 m=1,. An+1 m— 1X),...,

A (An+l m— 1 An+1 m— IX)).
(8.7)
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This inductive argument shows that (8.5) holds for N=2,3,...and n=2,3,....

Lemma 8.2. If||All < 1, for N = 2,3,..., there is a positive constant cy such that
ICP] < enllAII"N* V= N-1. (8.8)
Here, || CI(\?) || is the norm of the continuous polynomial x — C;\?)(x, e X)
IEWl] = sup {l[CY (x..o )] < el < 1, (89)
and is related to the norm
NCR I = sup{lICY Gl sl < LNyl <1} (8.10)

of the continuous, symmetric N-linear map (x,...,y) — CI(\? '(x,..., y) by the in-
equalities (see, e.g., [5])

PJN
Il = el < WIIC&’”II- (8.11)

Proof of Lemma 8.2. By (8.5),

n—1
Cé")(x,x) = ZAq (A (A" 971, A" 97 1x)), (8.12)
q=0

and therefore

n—1
G (e, )| < ||Aa]] D AN 2024 x| |2
q=0
n—1
= || IAN ST AN X2
q=0 (8.13)
L 1— Al
= [JAa|[IA]I" T =2 2
| Al

< laally = i

12,
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Assuming the lemma to hold for g = 2,3,...,N — 1, and choosing n > N — 1,
then

ICY (x,..., %)

= fanl S papagoes

q=0

ZZ}?HWMWM|WMMW%ﬂMW

=1 4=2 (gN)
L [AND
n—1_-__ 40 -
< {IIANHHAH AT
Zzz%mww%nmmwwm@w
= =2 N

L L= JAMN-D - A - DD
_ A A n 1 +
{” NI[IAl 1— [|A|N-1 1-[A[N-!

+Z%!MWqZW%H g

(g.N)
_ q X N
< Alaviiar e S (Be, S apl- ) ar-s} B
=2\ gN 1—lA]l
(8.14)
Since ||A|| < 1, then
A" 1 < ||A|I" Nt for q=12,..,N-1 (8.15)
Hence,
1Y (x,...., )| < en IAIP N x|Y, (8.16)
with
N 1
ov=lanlle 3 (e S Wapll-Ian ) pipes: 007
=2 q (g.N)
O

In view of (8.1), the Cauchy inequalities yield

el wN=1n=1, (8.18)
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Hence, if s € (0, 1) is sufficiently small, in such a way that B(0,s) C D, and if
x € B(0,s/2),n>1,and Ny > 2,

oo N
LGl < 1A +C8 ol + -+ o0l RS (1)
N=No+1

< [JA"|[+[|C ()| + - - - +||C) (., )|

No+1
er(B) L
s 1—llxl|/s

- _ R
< ANl + e ANl 4 - - -+ en ANt x| Mo+ o

2No *
(8.19)
Let ¢ = max{1,¢,...,cn, }. Then
n n—No+1 No—1 No—2 R
[l < AN+ (AN + AN 2 4 -+ 1) s+ ——
2No
JAjnNr R (8:20)
<¢———Ss+ .
oAl T 2
For € >0, choosing Ny > 0 and 7y > 0 in such a way that
RrNO-H € ”A”n—Ng-H €
- <, —1r< = Vnz=n, 8.21
1—r "2 oAy "t YnET (8.21)
then
I1F" )| < € VxEB(O,%), V= np. (8.22)

That proves the following lemma.

LemmMma 8.3. If||All < 1, forany € >0 and any s € (0, 1) such that B(0,s) C D, there
is g > 1 such that (8.22) holds.

ProrositioN 8.4. If0(A) C A, forany € >0 and any s € (0, 1) such that B(0,s) C
D, there is ng > 1 such that (8.22) holds.

Proof. There is n; = 1 such that ||A™ || < 1. By Lemma 8.3, there is n, > 1 such
that

N
, —

Il < € VxeB@z

)» n=n. (8.23)
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Let w be the Poincaré distance in A. Since holomorphic maps contract the
Kobayashi distance, for m > 1, n > n,, and x € B(0,s/2), then

w<o, M) — kator (0, FmM(x)) < kp (0, Fm(x))

R
=< kD(O’ fﬂm(x)) = kB(O,s) (O’fﬂlfl(x)) (824)

= w(O,M> <w<0,£).

N

Thus, the sequence { f"} converges to 0 uniformly on B(0,s/2), and therefore
converges to zero everywhere on D by Vitali’s theorem [8, Theorem 3.18.1]. The
convergence being uniform on B(0,s/2), the sequence { f"} tends to zero for the
topology of local uniform convergence on D [5, page 104].

The proof of Theorem 8.1 is complete. O

As in Section 6, let ¢ be a map of R* X D into D satisfying (2.3) and (2.4)
forall t, 1), 1, € R¥, and such that the map t — ¢;(x) is continuous on R for all
x € €.

Let ¢¢(x0) = xo for all £ >0 and for some point x; in the bounded domain
Dce.

If o(dey, (x0)) C A for some t) >0, Theorem 8.1 applied to the function f =
¢1,, implies that, as n — 400, the sequence {¢y, : n = 1,2,...} converges to the
constant map x — xo for the topology of local uniform convergence.

Let r > 0 be such that

By, (x0,7) € D. (8.25)

Since the distances || || and kp are equivalent on By, (xo, ), for any € > 0, there
is ng > 1 such that

Bnoto (Brp (%0, 7)) C Biy (%0, €), (8.26)
whenever n = ng. For all t > noto,

ol (Bkr) (X(), 7’)) = Pt—noto+nty (Bku (X(), 7’)) = Pr-noty (¢Vloto (Bkr) (xO: f') ))

8.27
c ¢t*ﬂ0t0 (Bkn (X(), 6)) c Bkn (xO’ 6) ( )

because holomorphic maps contract the Kobayashi distance.
Thus the following theorem holds.
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THEOREM 8.5. If ¢ : R* X D — D fixes a point xo € D of the bounded domain
D, and if 0((d¢y,)(x0)) C A for some ty >0, then, as t — +oo, ¢ converges to the
constant map x — x for the topology of local uniform convergence.

9. Fixed points and idempotents

As at the beginning of Section 8, let D be a bounded domain in ‘€ and let f : D —
D be a holomorphic map fixing a point xy € D.

If f is an idempotent of the semigroup Hol(D), a direct inspection of the
power series expansion of f at xy shows that df (xo) is an idempotent of £(€).

In this section, we show that, if the geometry of D satisfies suitable condi-
tions, the fact that df (x¢) is an idempotent of £(€) implies that the iterates of
f converge for the topology of local uniform convergence to an idempotent of
Hol(D).

As before, let D be a bounded, open, connected neighbourhood of 0, and let
f(0) = 0. Let f be expressed in B(0,r) by the power series (8.2) (and r is given
by (8.3)).

Let A = df (0) be an idempotent of £(€).

Since A% = A, (8.12) reads, for n = 2,

C (x,x) = AAs(x,x) + Ar(Ax, Ax) + (n — 2) AA,(Ax, Ax) (9.1)

for all x € €. If AA2(Ax, Ax) # 0, there are y € € and A € €’ (the topological
dual of €) such that

(AAx(Ay,Ay),A) #0. (9.2)

The Cauchy inequalities (8.18) yield, for N=2andn=1,2,...,
R
| (AAs(y,y) +As(Ay,Ay) + (n—2)AAr(Ay, Ay),\) | < 72||y||2|/\| (9.3)

foralln =2,3,..., contradicting (9.2). Hence, AA,(Ax,Ax) = 0 forall x € €, and
therefore

C(x,x) = AA»(x,x) + A2 (Ax, Ax) (9.4)
forallm=2,3,...,and all x € €.
Thus, C5(x,x) does not depend on # > 2. Proceeding by induction on N, we
show that C;f; )(x,...,x) is independent of n = N for all N.

Assuming this fact to hold for C,..., Cy, then

fN(x) =Ax+C(x,x)+---+Cn(x...,x) + Fyr1(%,...,x) + - - - (9.5)
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for all x € B(0,r), where Fy.; is a homogeneous, continuous polynomial of de-
gree N + 1 from € to €.
Then, setting A; = A,

FN 1 (x) Ax+ZC (%,..,x) +AAN+1 (%, ..., %)
q=2

+Z Z Cy(Ap, (x,..., ),...,qu(x,...,x))

q=2 (q,N)
+FN+1(AX,...,Ax)+ ce

N
N2 (x) = Ax+ > Cylx,.., x) + AN (%, %)
q=2

+Z D CalAp (x o X)ses Ap (%,...,X))

q=2 (¢.N)
+ Fy+1(AX, ..., Ax) + AAN+1 (Ax, ..., Ax)

N
+> > ColAp (Ax,..., Ax),..., Ap (Ax,..., Ax)) +
9=2 (¢:N)

N
N(x) = Ax+ D Cylx,..., x) + AAnsi (%, %)
q=2

+Z z Ca(Ap (.., %),. s Ay (%,..., X)) + Fnyi(AX, ..., AX)
9=2 (¢,N)

+(€—-1) [AANH(Ax, e Ax)

+Z > Cy(Ap (Ax,.. ,Ax),...,qu(Ax,...,Ax))}

9=2 (¢.N)
+ -
(9.6)
forall x € B(0,r) and all £ = 2,3,....
A similar argument to that devised for C, implies that
N
AAni(Ax,..., A Z Z Cq(Ap (Ax,..., AX), ..., Ap (AX,...,Ax)) = 0
9=2 (q,N)
(9.7)

forall x € €.
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The inductive argument is now complete, showing that
f(x) = Ax+ Cy(x,x) + - - - + Cn(%,...,x) + O([lx|N*) (9.8)
forallx € B(0,r)andalln >N =1,2,..., with

Cn1(%,..,x) = AAni(x,..., x)

N
+ > > ColAp (% X), s Ap, (%, %)) + Fnpa (Ax, ..., Ax).

9=2 (¢,N)
(9.9)
Since, by the Cauchy inequalities,
N rn R
1@ O} < SN (9.10)
forall N > 0, n >0, and therefore
1 N
limsupH—(de”)(O) <-, (9.11)
N n! r
the Cauchy-Hadamard formula implies that the power series
+00
Ax+ Z By(x,...,x) (9.12)

N=2

converges uniformly on B(0,s) whenever 0 < s < r. Let g be the holomorphic
function on B(0, r) represented by this power series.
By the Cauchy inequalities, if || x|| <s <7,

+0o0

lg) = ol < > [Cn(x....x) = CY(x,...,x)]|

N=n+1

+00

< > eyl +ICV (x....0)1)

N=n+1

+00

< > (llewl+IeR I iy
N=n+1 (9.13)

+oo

N

<2R > (M)
N=n+1 r

+oo S N
<2R > <7)
N=n+1 r

N+1
=2R(5> L
r 1—s/r
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Hence, the sequence { f"} converges to ¢ uniformly on B(0, s). By Vitali’s the-
orem [8, Theorem 3.18.1], the sequence { f"(x)} converges for all x € D, and the
limit is a holomorphic map h: D — €. Clearly, hlp,,) = g

The convergence being uniform on B(0, s), the sequence { f"} tends to h for
the topology of local uniform convergence.

In conclusion, the following theorem has been established.

THEOREM 9.1. Let f be a holomorphic map of a bounded domain D into itself.
If f fixes a point xo € D, and if df (xo) is an idempotent of £(€), the sequence
{f"} converges for the topology of local uniform convergence to a holomorphic map

h:D - €.
Obviously, h(D) C D, h(x,) = xo,

dh(xo) = df (xo), (9.14)
and ho f = h. Furthermore,
foh=h, (9.15)

and therefore Fix f = h(D), provided that #(D) C D. This latter condition is ful-
filled if D satisfies the following principle.

Maximum principle. Whenever a holomorphic function h : D — € is such that
h(D) c D and h(D) n dD # @, then h(D) C dD.

Example 9.2. 1f the bounded domain D is convex, its support function is pluri-
subharmonic [14]. Thus, D satisfies the maximum principle.

Summing up, the following proposition holds.

ProrositioN 9.3. Under the hypotheses of Theorem 9.1, and if moreover D satis-
fies the maximum principle, h is an idempotent of the semigroup of all holomorphic
maps of D into D which commute with f and is such that h(D) = Fix f.

If df (xp) is an idempotent of £(€), then

o(df (x0)) = po(df(x0)) C {0,13, (9.16)
o(df (x9)) = {0} = df (x0) =0, (9.17)
o(df (x0)) = {1} = df (xo) = L. (9.18)

Since D is bounded, by Cartan’s identity theorem, (9.18) holds if, and only if,
f=id

Theorem 8.1 and (9.17) yield the following proposition.
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ProrosITioN 9.4. If D is bounded, if f(xo) = xo, and if df (xo) is an idempotent of
L(€) with a(df (x0)) = {0}, then the sequence { f"} converges to the constant map
X — X for the topology of local uniform convergence on D.

THEOREM 9.5 [16]. Let D be a bounded, open, convex neighbourhood of 0, and let
f € Hol(D) be such that f(0) = 0 and df (0) is an idempotent of £(€). If 0D N
Randjf (0) consists of complex extreme points of D, then h(D) = D N Randf (0).

Proof. Let A =df(0) and F = ker(I—A) = RanA. As a consequence of the strong
maximum principle [15, Corollary 5.4], if x € # N D, f(x) = Ax = x, and with
the same notations of (8.2),

Ar(x,x)=As(x,x,x)=---=0 Vxe%P (9.19)
Therefore,
Ay(Ax, Ax) = A5(Ax, Ax,Ax)=---=0 Vxe€. (9.20)
Thus, by (9.4),
Cy(x,x) = AAy(x,x) Vxe€. (9.21)

Similarly, for any N = 2,3,...,if x € # n D, then fN(x) = Ax = x, and
Cy(Ax,Ax) = --- = Cy(Ax,...,Ax) = Fy;1(Ax,...,Ax) =0 Vxeé (9.22)

Assuming that there are continuous polynomials x — Cy(x,x),...,x —
Cn(%,...,x) such that C; = AC,,...,Cy = ACy;, (9.9) yields

Cny1 = ACNH (9-23)

with

N
Cni1(%..0,%) = A1 (.., %) + Z Ca(Ap (%,..0,%),.., Ap, (x,...)).
(9.24)

This inductive argument shows that h(B(0,r)) C &, and therefore h(D) C
% N D. Since, on the other hand, % N D C Fix f = h(D), the conclusion fol-
lows. O

10. Extensions to semiflows

In this section, we apply the results of Section 8 to the case in which f is an ele-
ment of a semiflow. Thus, let xy € D be a fixed point of a semiflow ¢ : R, X D —
D acting by holomorphic maps ¢; on a domain D of €. Denoting by d¢;(x) €
£(€) the Fréchet differential of ¢, at x, then

d¢t1+tz (X()) = d¢[1 (xo)d(ptz (X()) Vi, € R4, d¢0 (Xo) =1 (101)
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LemMa 10.1. If the semiflow ¢ is continuous, the semigroup d¢.(xo) : Ry — L(€)
is strongly continuous.
If the domain D is bounded, the semigroup is uniformly bounded.

Proof. Choose r >0 so small that B(xy,r) C D.

If £ € €, choose s > 0 in such a way that ¢ (xo + (&) € B(xo, r) whenever |{] <
s and for any ¢t in a neighbourhood of 0 in R,.

If A € €’, the Cauchy integral formula yields

[ (GilrgE)N
(dgr(x0)&,2) = - LA(O’S) B dc. (10.2)
Since, for { € 0A(0, s),
t )A/
‘ (¢ (xogrsz) ) ’ - rl?\l) (103)
the dominated convergence theorem implies that
lg(l;l <d¢)t (XO)f - E’A> =0, (104)

that is, the semigroup d¢. (xo) is weakly, hence strongly, continuous.
The uniform boundedness of the semigroup follows from the Cauchy in-
equalities. O

Let Z:9(Z) C € — € be the infinitesimal generator of the strongly continu-
ous semigroup dd.(xp) : Ry — L(€).

Let D be a bounded domain in €, and let ¢ : R, X D — D be a continuous
semiflow of holomorphic maps of D into D fixing a point xy € D.

If ¢as, = @y, for some ty > 0, then dey, is an idempotent of £(€).

If o(d¢s,(x0)) = {0}, (9.17) applied to f = ¢, shows that the semigroup
d.(xp) is nilpotent. Theorem 8.5 implies that, as t — +o0, ¢; converges to the
constant map x — x for the topology of local uniform convergence.

If o(d¢s, (x0)) = {1}, (9.18) applied to f = ¢, coupled with Cartan’s iden-
tity theorem, implies that ¢, = id, and therefore ¢ is the restriction to R, of a
continuous periodic flow with period #)/p for some positive integer p.

How many values of the semigroup d¢.(xo) can be idempotent in £(€)?

Clearly, if d¢, (x0) is an idempotent of £(€), then d¢, (xo) is an idempotent
of (€) forn=1,2,....

If d¢py, (xo) is an idempotent of L(€) for some t; >0, and if 1 € a(d¢, (x0)),
then 2nmi/ty € po(Z) for some n € Z. Letting

Vs {n ez @ e po‘(Z)}, (10.5)
0
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then V £ &,
i
o(Z)\ (0} = polZ)\ [0} = 2V,
. (10.6)
ker (I — dgy, (x0)) = \/ ker (@I —Z).
nez 0
Foranyt>0andneV

e € po(di(xo)). (10.7)

Hence, if d¢y, (xo) is an idempotent of £(€) for some t; >0, foranyn € V,

e2nmiti/ty — 1 (10.8)
that is, there is m € Z such that
2nt77(r)it1 = 2mim, (10.9)
that is,
nt, = mty. (10.10)

As a consequence, if t1/ty & Q, then n = m = 0. Hence, V = {0}, therefore

po(dei(x0)) = {13, (10.11)
Randg;(xo) = ker (I —d¢;(x0)) =kerZ ViteR,. (10.12)

Thus, since d¢y, (xo) is an idempotent,
€ = ker (d¢y, (xo)) @ ker Z. (10.13)

Let IT and A = I —II be the projectors, with ranges kerd¢;(xo) and kerZ,
associated to this direct sum decomposition of €.
Since, for any x € € and any f > £,

de: (x0) TIx = depy—s, (x0) (debs, (x0) TIx) = 0, (10.14)
then, by (10.12),
dee (x0)x = depe (x0) Ax = Ax, (10.15)
and therefore

Ao (x0)x = dy (x0) Ax = Ax = d¢ (xo) x. (10.16)
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Hence, if d¢y,(xo) and d¢y, (xo) are idempotents of £(€), and if t/ty & Q,
then

d¢i(xo) = d¢y, (x0) V= min {5} (10.17)
Let 0 < t < to. If x € kerdg, (xo) and dgb; (x0)x # 0, then
Ad¢, (x0)x € ker Z\ {0}, (10.18)
and therefore
0 = deby, ¢ (x0)x = depe (x0) (Adepe (x0)x) = Adpe (x0)x # 0. (10.19)

This contradiction proves that if x € ker d¢y, (xo), then x € d¢,(xp) for all t €
(0,t0].

Summing up, if 1 € a(d¢y, (x0)) and if #;/ty & Q, then d¢;(xp) is an idempo-
tent of £(€) which is independent of ¢ > 0. The strong continuity of the semi-
group d¢.(xp) implies then that d¢,(xo) = I forall t = 0.

Since D is a bounded domain, Cartan’s identity theorem yields the following
theorem.

TueoreMm 10.2. If d¢y, (xo) and dy, (xo), with t1/ty & Q, are idempotents of L(€),
and if 1 € o(d¢y,(x0)), then ¢ =id forall t € R,.

As in Section 4, and with the same notations, let D be the open unit ball B
of the complex Hilbert space K, and let ¢ be the periodic continuous semiflow,
with period 7, of holomorphic automorphisms of B, defined by the group T.

If 0 € Fix¢, (4.8) shows that ¢ is (the restriction to B of) a strongly continu-
ous group of linear operators on J{,

¢t = d¢t(0)|B’ (10.20)
and Z = X11 - inzIf]{.
If 0 € po(Z) and x € ker Z\ {0}, then
dr(x) =d¢(0)x=x VteR. (10.21)
Vice versa, if ¢;(x) = x for some x € B\{0} and all ¢ € R, Bart’s theorem in
[1] implies that 0 € po(Z). That proves the following lemma.
Lemma 10.3. Let 0 € Fix¢. Then {0} = Fix¢ if, and only if, 0 & po(Z).
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