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We survey and announce some current results on the existence, the viability,
and the topological structure of the viable solutions of differential equations and
inclusion in Banach spaces under set constraints. Some new results concerning
semilinear differential inclusions with state variables constrained to the so-called
regular and strictly regular sets, together with their applications, are presented
and discussed.

1. Introduction

It is our purpose to study solutions of the Cauchy problem for a semilinear dif-
ferential inclusion

u′(t)∈ Au(t) +ϕ
(
t,u(t)

)
, t ∈ J, u∈D,

u
(
t0
)= x0 ∈D,

(1.1)

where ϕ : J ×D � E is an upper-Carathéodory set-valued map, J is an inter-
val (i.e., a connected subset) of the real axis R, t0 ∈ J , D is a closed subset
of a Banach space E, and A is the infinitesimal generator of a C0-semigroup
{U(t)}t≥0 of bounded linear operators on E (A ≡ 0 and/or E = RN is not ex-
cluded). Problem (1.1) withD = Ewas studied by many authors—see the mono-
graphs [43, 44, 46, 51] and the rich bibliography therein—and diversity of results
has been obtained. Here, we address the question of the topological character-
ization of the set of all solutions (understood in an appropriate sense) of (1.1)
under rather weak assumptions concerning the geometry of D (satisfied, e.g., if
D is convex) and some natural boundary conditions. If ϕ is defined on J × E,
then our problem is intimately related to the viability or the invariance proper-
ties ofD (see [5, 6]) with respect to ϕ, that is, the existence of a solution u : J → E
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of (1.1) such that u(t) ∈ D on J ; however, we also determine the topological
structure of the set of such viable solutions. Problems of this kind seem to be
of importance not only from the viewpoint of the academic interest. An appro-
priate characterization of the set of viable solutions and the use of topological
methods involving the fixed-point index theory helps to establish the existence
of the constrained periodic dynamics and stationary points (equilibria) of the
system governed by the above differential inclusion.

We first state the standing hypotheses (Hi), i = 1, . . . ,5, and recall some pre-
liminary terminology. Throughout the paper, E stands for a separable Banach
space.

(H1) ϕ : J ×D � E is a set-valued upper-Carathéodory map; that is, for each
t ∈ J , x ∈ D, the value ϕ(t,x) is a nonempty, compact, and convex subset E; the
map ϕ(t,·) : D � E is upper semicontinuous and ϕ(·,x) : J � E is measurable.
(See, e.g., [31] or [8] for the concepts of continuity and measurability of set-
valued maps; we only remark that, under separability, assumption measurability
coincides with strong (Bochner) measurability.) Upper-Carathéodory maps en-
joy the weak superpositional measurability property: for a continuous u : J →D,
ϕ(·,u(·)) possesses a measurable selection w(·). Hence, from the viewpoint of
the solvability of (1.1), the regularity requirements seem to be rather minimal.
Simple examples show that we cannot dispense with the convexity assumption.

(H2) ϕ has linear growth; that is, there is a c∈L1
loc(J,R) such that supz∈F(t,x)‖z‖

≤ c(t)(1 +‖x‖) on J ×D. Therefore, ϕ induces the set-valued (Nemytskij) oper-
ator Nϕ defined on the set C(J,D) of continuous functions J →D into the space
L1

loc(J,E) of (locally) Bochner integrable functions J → E given by

Nϕ(u) :=
{
w ∈ L1

loc(J,E) |w(t)∈ ϕ(t,u(t)
)

a.e. on J
}
. (1.2)

(H3) ϕ transforms precompact subsets of J ×D into compact ones.
This assumption is automatically satisfied if ϕ is (jointly) upper semicontin-

uous or if dimE <∞ and c ≡ const and seems to be a minimal compactness
condition required in an infinite dimensional setting and in the presence of con-
straints.

(H4) A closed densely defined linear operator A : E ⊃D(A)→ E is the infini-
tesimal generator of a C0-semigroup �= {U(t)}t≥0 such that ‖U(t)‖ ≤ exp(ωt)
where ω ∈R for t ≥ 0.

It is clear (using an appropriate renorming procedure) that this does not re-
strict generality (for details, cf. [50, Chapter VII] and [53, 58]).

(H5) D is a closed subset E, invariant with respect to �, that is, U(t)D ⊂ D,
t ≥ 0.

This condition may be stated in terms of A only (see [50, Proposition VII.5.3,
Remark VII.5.2] and [51]) holds if and only if liminf t→0+ dD(U(t)x)/t = 0 for all
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x ∈D, where dD is the distance function

dD(x) := inf
y∈D

‖x− y‖, x ∈ E. (1.3)

Given x0 ∈ E, t0 ∈ J , and f ∈ L1
loc(J,E), the function

M
(
x0, t0; f

)
(t)=U(

t− t0
)
x0 +

∫ t

t0
U(t− s) f (s)ds, t ∈ J (1.4)

is, by definition, the mild solution of the initial value problem

u′(t)=Au(t) + f (t), u
(
t0
)= x0. (1.5)

Note that even the continuity of f does not imply that (1.5) has a strong solution,
that is, an almost everywhere (a.e.) differentiable function u : J → E such that
u′ ∈ L1

loc(J,E), u(t0) = x0, and u′(t) = Au(t) + f (t) a.e. on J ; however, if � is
uniformly continuous (i.e., ‖I −U(t)‖ → 0 when t→ 0+), or the function v : t �→∫ t
t0 U(t− s) f (s)ds is differentiable a.e. with v′ ∈ L1

loc and x0 ∈D(A), then the mild
solution is a (unique) strong solution (see [53]).

A continuous function u : J → D is a mild solution to (1.1) if there is w ∈
Nϕ(u) such that u =M(x0, t0;w); hence, the set S(x0, t0) of all mild solutions of
(1.1) coincides with the set of fixed points of the set-valued operatorM(x0, t0;·)◦
Nϕ defined on C(J,D).

To state the results, we need to recall some other concepts. By the Bouligand
and Clarke tangent cones to D at x ∈D, we understand the cones

TD(x) :=
{
y ∈ E : liminf

h→0+

dD(x+hy)
h

= 0
}
,

CD(x)=
{
u∈ E | lim

h→0+, y
D−→x

dD(y +hu)
h

= 0

}
,

(1.6)

respectively (y
D−→ x means that y converges to x remaining in D). Observe that

CD(x) is a closed convex cone and CD(x)⊂ TD(x). If D is convex, then TD(x)=
CD(x) (see [8] for details).

Given a locally Lipschitz continuous function f : E→ R, by f ◦(x;u) we de-
note the Clarke generalized directional derivative of f at x ∈ E in the direction
u ∈ E. The Clarke generalized gradient of f at x, ∂ f (x) := {p ∈ E∗ | 〈p,u〉 ≤
f ◦(x;u) for all u ∈ E}, is a nonempty w∗-compact convex subset of E∗ and
f ◦(x;u)= supp∈∂ f (x)〈p,u〉. It is clear that u∈ ∂ f (x)− (where ∂ f (x)− := {u∈ E |
〈p,u〉 ≤ 0 for all p ∈ ∂ f (x)} is the negative polar cone) if and only if f ◦(x;u)≤
0. In particular, CD(x)= ∂dD(x)− for all x ∈D (see [21] for details).

Given a bounded Ω⊂ E,

α(Ω) := inf
{
ε > 0 |Ω admits a finite covering by sets of diameter≤ ε},

β(Ω) := inf
{
ε > 0 |Ω admits a finite covering by ε-balls

} (1.7)
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are the Kuratowski and Hausdorff measures of noncompactness, respectively.
These measures are regular, monotone, and nonsingular, that is, for γ = α or β,
we have γ(Ω) = 0 if and only if Ω is precompact, γ(Ω) ≤ γ(Ω′) if Ω ⊂Ω′, and
γ({x}∪Ω)= γ(Ω) for each x ∈ E (see [1] for details).

In the space C(J,E) of continuous functions J → E, we consider the compact-
open topology. Thus, C(J,E) is a Fréchet (locally convex metrizable and com-
plete) space with the metric

ρ(u,v) :=max
k≥1

2−k pk(u− v)
1 + pk(u− v)

, u,v ∈ C(J,E), (1.8)

where pk(u) = supt∈Jk ‖u(t)‖ and {Jk}∞k=1 is a family of compact intervals such
that Jk ⊂ int Jk+1 and J = ⋃∞

k=1 Jk. Thus, C(J,E) has the projective topology in-
troduced by restrictions {πk : C(J,E)→ C(Jk,E) | k ≥ 1}, πk(u) = u | Jk for u ∈
C(J,E). A set S ⊂ C(J,E) is compact if and only if Sk := πk(S) is compact for
each k ≥ 1. It is also easy to see that S is homeomorphic to the inverse limit
liminvk→∞ Sk of the inverse system {Sk,πkl}, where πkl is the restriction of func-
tions from Sk to Jl (l ≤ k).

2. Existence

Among many existence results (see, e.g., [43, 44, 51, 57] or [46] with huge bibli-
ography), the one due to Bothe [16, Theorem 7.2, Corollary 7.1] seems to be the
most general.

Theorem 2.1. Assume that

ϕ(t,x)∩TD(x) �= ∅ for a.e. t ∈ J and all x ∈D. (2.1)

Then, the set-valued map S : D× J � C(J,D), assigning to (x0, t0)∈D× J the set
S(x0, t0) of all mild solutions of (1.1), is upper semicontinuous with nonempty com-
pact values provided one of the following conditions holds:

(i) for any bounded Ω⊂D,

lim
h→0+

β
(
ϕ
(
J(t,h)×Ω

))≤ k(t)β(Ω) for each t ∈ J, (2.2)

where J(t,h) := (t−h,t+h)∩ J and k ∈ L1
loc(J,R); or

(ii) the semigroup � is compact (� is compact if U(t) is compact for all t > 0).

Remark 2.2. (1) Observe that a compactness assumption (2.2) implies (H3).
Moreover, if D = E, then a weaker condition

β
(
ϕ
({t}×Ω

))≤ k(t)β(Ω) on J (2.3)

for bounded Ω⊂D (i.e., (2.2) with J(t,h)= {t}) is also sufficient for the asser-
tion of Theorem 2.1 (see [46]). If D �= E, then (2.3), together with (H3), is also
sufficient provided we know more about D—see Theorems 5.4 and 6.6.
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(2) In particular, if f : J ×D→ E is single valued, for any x ∈D, t ∈ J , f (·,x)
is measurable and maps compact subsets of J into compact sets, f (t,·) is locally
Lipschitz (uniformly with respect to t from compact subsets of J) and satisfies
(2.1), then (1.1) has a unique mild solution which depends continuously on
(x0, t0) ∈ D × J . Indeed, under these assumption, f satisfies all hypotheses of
Theorem 2.1 locally; hence, a local unique mild solution exits. To establish the
result, we apply the usual continuation method.

Observe that, for any x ∈D, y ∈ E, and h > 0,

dD
(
U(h)x+hy

)≤ h∥∥U(h)y− y
∥∥+dD

(
U(h)(x+hy)

)
; (2.4)

thus, condition (2.1) implies

F(t,x)∩T�
D (x) �= ∅ for a.e. t ∈ J and all x ∈D, (2.5)

where

T�
D (x) :=

{
y ∈ E : liminf

h→0+

dD
(
U(h)x+hy

)
h

= 0
}

(2.6)

(in general, T�
D (x) is not a cone). Theorem 2.1 has been proved under assump-

tion (2.5) instead of (2.1). Condition (2.5) is strictly weaker than our (2.1). To
see this, consider E =R, U(t)= e−t for t ≥ 0, and let D = [−1,1]. Then, D is in-
variant with respect toU(t) (i.e., U(t)D ⊂D), but TD(1)= (−∞,0]⊂ (−∞,1]=
T�
D (1). Both conditions (2.1) and (2.5) are natural since we have the following

proposition.

Proposition 2.3. Condition (2.5) is necessary for the existence of solutions of
(1.1). Precisely, if ϕ is upper semicontinuous and, for every x0 ∈D and t0 ∈ J , (1.1)
has a mild solution, then (2.5) is satisfied.

Next, in view of the inequality

∣∣dD(x+h(Ax+ y)
)−dD(U(h)x+hy

)∣∣≤ ∥∥x+hAx−U(h)x
∥∥ (2.7)

valid for all x ∈D(A), we see that (2.5) implies

[
Ax+F(t,x)

]∩TD(x) �= ∅ for every t ∈ J, x ∈D∩D(A). (2.8)

In case E =RN , (then, A is defined everywhere and bounded) condition (2.8) is
sufficient and necessary for the existence. Simple, constructive and based on the
technique of the so-called proximal aiming, proof of this fact is given in [14].



330 Structure of solution sets

Moreover, (2.8) may be relaxed (instead of TD(·), we can consider the convex
envelope convTD(·)).

Some other tangency conditions leading to the existence in the unconstrained
case are considered, for example, in [19, 32] or [51].

3. Solution sets of the semilinear system

A classical result of Aronszajn [4] states that the solution set for the Cauchy
problem in RN is a compact Rδ-set; it is also true for differential inclusions—see
for example, [25, 40, 41] (autonomous systems), [26, 38] (nonautonomous), cf.
[7, Corollary 5, page 109] and the surveys [33, 38]; asymptotic problems have
been studied recently for example in [2, 3]. (This paper provides an extensive
survey on the characterization of the fixed-point set of set-valued maps.)

Recall that a compact metric space X is an Rδ-set if there is an ANR (abso-
lute neighborhood retract) Y containing X as a closed subspace such that X is
contractible in each of its open neighborhoods (i.e., given an open neighbor-
hood V of X in Y , there is a continuous map h : X × [0,1]→ V with h(x,0)= x
and h(x,1)= x0 ∈ V , for all x ∈ X). (Rδ-sets are sometimes called cell-like sets.)
The Rδ-property is a homotopy invariant: if compacta X1 and X2 are homotopy
equivalent and X1 ∈ Rδ , then so is X2. Similarly, given an ANR Z containing X as
a closed subspace, if X ∈ Rδ , then X is contractible in each of its neighborhoods
in Z. It is clear that if X is a subset of a metric space T and there is a decreas-
ing family {Xn}n≥1 of closed contractible sets such that γ(Xn)→ 0, where γ is
a regular, monotone and nonsingular measure of noncompactness on T , then
X ∈ Rδ . The celebrated result of Hyman [45] states that if X ∈ Rδ , then there is
a decreasing sequence of contractible compacta {Xn} containing X as a closed
subspace such that X =⋂

n≥1Xn. Rδ-sets are connected, have trivial shape, and
are acyclic with respect to any continuous (co)homology theory, that is, they
have the same (co)homology as a one-point space. Recall (see [35]) that if X is
homeomorphic to the inverse limit liminvn≥1Xn of the countable inverse system
{Xn;πnm : Xm → Xn, n ≤m} and Xn ∈ Rδ for all n, then X ∈ Rδ . In particular,
S ⊂ C(J,E) is Rδ if and only if, for all n ≥ 1, the set Sk = πk(S) of restrictions of
functions from S to Jk is Rδ .

We establish the Rδ-structure of the set S(x0, t0) of mild solutions of the con-
strained semilinear system (1.1). This result is known whenD = E (see [16, 46]);
it is also believed that, in fact, the existence implies the Rδ-structure (see [20]).
See also [22, 43, 44] for other results and many bibliographical comments. The
constrained case seems to be more involved. The result holds if D is invariant
with respect to �, convex, and intD �= ∅, or if D is convex proximinal (i.e., each
x ∈ E admits a nearest point in D) and � is nonexpansive (see [11, 17, 43, 44])
and ϕ obeys the tangency condition (2.1). For the finite-dimensional situation,
see [13, 29, 30, 31, 42].

To see that even in the convex case the situation is more complicated, we
consider the following example.
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Example 3.1 (see [31]). Let D = [0,∞), f (x) = 2
√|x|sgnx, and x0 = 0. Then,

f (x)∈ TD(x)= CD(x)=R on D, but u(t)=−t2 �∈D is a solution of (1.1) (with
ϕ= f , A≡ 0, and t0 = 0).

The example shows that even a stronger tangency condition

ϕ(t,x)⊂ TD(x) (3.1)

(or ϕ(t,x)⊂ CD(x)) on J ×D does not prevent some solutions to leave D. Hence,
in the case ϕ is defined on J ×E, the “unconstrained” results fail to help in the
characterization of the set of solutions surviving inD: to get convex-constrained
results, we need slightly more involved arguments. In the next section, we pro-
vide a result valid for a general convex closed D.

The topological structure of S(t0,x0) changes dramatically in case the set D
is not convex. We study some examples (for simplicity, we consider a finite-
dimensional situation withD (automatically) invariant with respect to the semi-
group generated by A≡ 0).

Example 3.2 (see [31]). Let D = {(x, y)∈R2 | x ≥ 0, y = x2}∪ [0,∞)×{0} and
f (x, y) = (1,2√y) on D. Then, f (z) ∈ TD(z) for z ∈ D and the problem u′ =
f (u), u(0)= 0 has only two solutions: u(t)= (t,0) and u(t)= (t, t2) for t ≥ 0.

Example 3.3. Let E=R3,D :={x = (x1,x2,x3)∈ E | |x| ≤ √2 and
√
x2

1 + x2
2 ≥ x3},

S := {x ∈D | x2
1 + x2

2 = 1 and x3 = 1}, and Z = {x ∈ E | x2
1 + x2

2 ≤ 1 and x3 = 1}.
Next, for x ∈D, let

ϕ(x)=
Z for x ∈D \ S,

conv
{
Z∪ {(− x2,x1,0

)}}
for x ∈ S. (3.2)

Clearly, ϕ :D� E is upper semicontinuous and ϕ(x)∩TD(x) �= ∅ onD. But it is
easy to see that S(x0, t0) (with t0 = 0, x0 = 0) is homeomorphic to the unit sphere
S1 := {x ∈ R2 | ‖x‖ = 1}; hence, it is not an Rδ-set. Notice that, for all x ∈ D,
x �= 0, the Bouligand and the Clarke tangent cones TD(x) and CD(x) coincide;
however, TD(0) �= CD(0) and F(0)∩CD(0)=∅.

In the above example, if we consider ϕ satisfying (2.1) with the Clarke cone
replacing the Bouligand one, then the situation becomes clear. However, it is not
true that such a procedure would be the general remedy.

Example 3.4 (see [14]). LetD = S1∪ S−1, where Si = {x = (x1,x2)∈R2 | (x1− i)2

+ x2
2 = 1}, and, for x ∈D, let

ϕ(x)=

(
x2,1− x1

)
for x ∈ S1,(− x2,1 + x1

)
for x ∈ S−1.

(3.3)
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Then, ϕ(x) ∈ TD(x) = CD(x) on D, but S(x0, t0) (with t0 = 0 and x0 = 0) is not
connected.

It seems, therefore, that in order to state the correct tangency condition which
implies the expected topological structure of solution sets to (1.1), we should
replace in (2.1) the Bouligand cones by the Clarke ones, that is, assume that

∀(t,x)∈ J ×D, F(t,x)∩CD(x) �= ∅ (3.4)

and take care of the geometry of the involved set D. The first attempt in this
direction (for E = RN and A ≡ 0) was done by Plaskacz [54], where he studies
the class ρ of sets (called proximate retracts in [37]) and assumes (3.1); Plaskacz’s
result was extended to the Hilbert space context (see [39]). Up to now, the most
general results for the finite dimensional case were given in [13]. Below, we will
generalize them to the present infinite dimensional situation.

4. Convex case

The general strategy to obtain the Rδ-structure of solution sets is to approximate
ϕ in an appropriate way by a sequence of auxiliary set-valued maps {ϕn} possess-
ing locally Lipschitz selections and, then, to show that S(x0, t0) is an intersection
of solution sets corresponding to ϕn. In the constrained case, the main difficulty
is to assure that maps ϕn and their locally Lipschitz selections obey the necessary
tangency condition implying existence.

We first deal with the general convex case. We state the result with a sketch of
the proof in order to show how the above described procedure works.

For a convex closed subset X of a normed space Y and x ∈ X ,

CX(x)= TX(x)= SX(x), (4.1)

where

SX(x) :=
⋃
h>0

X − x
h

. (4.2)

Our improvement of the mentioned results on the structure of solutions living
in convex sets (cf. [11, 18]) is based upon the following lemma.

Lemma 4.1. If Φ : X � Y is upper semicontinuous with closed convex values and,
for each x ∈ X ,

Φ(x)∩TX(x) �= ∅, (4.3)

then, for any ε > 0, there is a locally Lipschitz map F : X → Y such that

∀x ∈ X, F(x)∈Φ
(
BX(x,ε)

)
+BY (0, ε) (4.4)
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(where BX(x,r) := {y ∈ X | d(x, y) < r} is the ball in X ; usually the subindex X is
suppressed from the notation) and

∀x ∈ X, F(x)∈ TX(x). (4.5)

Remark 4.2. If Y is complete, then the existence of a continuous (single-valued)
map F : X → Y satisfying conditions (4.4) and (4.5) follows from a general result
from [14]. Here, we need no completeness and improve this result obtaining a
locally Lipschitzian ε-selection.

Proof. Take ε > 0 and x ∈ X . There is v(x)∈ Y such that

v(x)∈Φ(x) +BY

(
0,
ε

4

)
∩ SX(x) (4.6)

in view of (4.3) and (4.1). Hence, by (4.2), there is α(x) > 0 such that

x+α(x)v(x)∈ X. (4.7)

By upper semicontinuity, choose γ(x), 0 < γ(t,x) < ε/4 such that

Φ
(
BX

(
x,2γ(x)

))⊂Φ(x) +BY

(
0,
ε

2

)
(4.8)

and δ(x), 0 < δ(x) <min{γ(x),γ(x)/α(x)}.
Let {λs : X → [0,1]}s∈S be a locally finite locally Lipschitz partition of unity

refining the open cover {BX(x,δ(x)α(x))}x∈X . For any s∈ S, there is xs ∈ X such
that suppλs ⊂ BX(xs,δsαs) where we have put δs := δ(xs) and αs := α(xs). Addi-
tionally, we set vs := v(xs) and γs := γ(xs).

For any s∈ S, consider a map Fs : X → Y given by

Fs(x) := 1
αs

(
xs− x

)
+ vs, x ∈ X. (4.9)

For s∈ S, x ∈ X ,

x+αsFs(x)= xs +αsvs ∈ X (4.10)

in view of (4.7); hence,

Fs(x)∈ SX(x)⊂ TX(x). (4.11)

Clearly, Fs, s∈ S, is Lipschitz continuous (with the Lipschitz constant α−1
s ).

A map F : X → Y defined by the formula

F(x) :=
∑
s∈S
λs(x)Fs(x), x ∈ X, (4.12)

satisfies the requirements of Lemma 4.1. �
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Remark 4.3. In the course of the proof, we have not used the lower semiconti-
nuity of TX(·). Instead, the following astonishingly simple observation (already
employed in a different situation in [24]) has been used.

If X is a convex closed subset of a normed space Y , then, for every x0 ∈
X , v0 ∈ SX(x0) and α0 > 0 such that x0 + α0v0 ∈ X , an affine mapping g(x) =
(1/α0)(x0 − x) + v0, x ∈ X , provides a selection of SX(x). This proves the lower
semicontinuity of both SX(·) and TX(·).

Theorem 4.4. If D is convex and (2.1) holds, then S(x0, t0) is an Rδ-set in C(J,E)
provided that (2.2) is satisfied or � is compact.

Proof. To illustrate the setting, we consider an upper-semicontinuous ϕ. Take
(x0, t0) ∈ D× J and choose a family {Jk = [ak,bk]}∞k=1 of compact subintervals
in J such that Jk ⊂ int Jk+1,

⋃
Jk = J , and t0 ∈ Jk for all k ≥ 1. Fix k ≥ 1 and let

Φ : Jk ×D � Y := R× E, Φ(t,x) = {0} × ϕ(t,x) (in Y , we consider the norm
‖(t,x)‖ =max{|t|,‖x‖}). By Lemma 4.1, there is a locally Lipschitz Fn : Jk ×D→
Y such that Fn(t,x)∈ TJk×D(t,x) and Fn(t,x)∈Φ(B((t,x),n−1)) +BY (0,n−1) on
Jk ×D (n≥ 1). Define fn := p ◦ Fn where p : Y → E is the projection p(t,x)= x.
Then, fn(t,x)∈ ϕn(t,x) := convϕ(B((t,x),n−1)) +B(0,n−1) and fn(t,x)∈ TD(x)
on Jk ×D. Clearly, for n≥ 1, ϕ(t,x)⊂ ϕn(t,x)⊂ ϕn+1(t,x) on Jk ×D; thus,

∅ �= Skn
(
x0, t0

)⊃ Skn+1, Sk
(
x0, t0

)⊂⋂
n≥1

Skn
(
x0, t0

)
, (4.13)

where Sk(x0, t0) (resp., Skn(x0, t0)) stands for the set of all mild solutions on Jk of
(1.1) (resp., of (1.1) with ϕ replaced by ϕn).

Let un ∈ Skn(x0, t0) for all n≥ 1. We then show that there exists a subsequence
(unm)m≥1 such that unm → u0 ∈ Sk(x0, t0) in C(Jk,E) as m→∞. It follows that

Sk
(
x0, t0

)= ∞⋂
n=1

Skn
(
x0, t0

)
,

β0
(
Skn
(
x0, t0

))−→ 0 as n−→∞,
(4.14)

where β0 stands for the Hausdorff measure of noncompactness in C(Jk,E).
For each n≥ 1, z ∈ Jk, and y ∈D, the problem

v′ ∈Av+ fn(t,v), v(z)= y (4.15)

admits a unique solution vn(·;z, y) : [ak,bk]→ D, which depends continuously
on (z, y) (see Remark 2.2). Define a homotopy h : [0,1]× Skn(x0, t0)→ C(J,E) by
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the formula

h(λ,u)(s)

:=


u(s) if s∈ [

ak + λ
(
t0− ak

)
,

bk + λ
(
t0− bk

)]
,

vn
(
s;ak + λ

(
t0− ak

)
, u

(
ak + λ

(
t0− ak

))
if s∈ [

ak,ak + λ
(
t0− ak

)]
,

vn
(
s;bk + λ

(
t0− bk

)
, u

(
bk + λ

(
t0− bk

))
if s∈ [

bk + λ
(
t0− bk

)
,bk

]
(4.16)

for u ∈ Skn(x0, t0) and λ ∈ [0,1]. It is easy to see that h is continuous. More-
over, we have h([0,1]× Skn(x0, t0)) ⊂ Skn(x0, t0). From the continuity of h, we in-
fer that h([0,1]× Skn(x0, t0)) ⊂ Skn(x0). Finally, observe that h(1,u) = vn(·; t0,x0)
and h(0,u) = u for every u ∈ Skn(x0, t0), that is, Skn(x0) is contractible. Hence,
Sk(x0, t0)∈ Rδ and so is S(x0, t0). �

5. Epi-Lipschitz case

An important role in optimization is played by the so-called epi-Lipschitz sets.
This notion (in the finite-dimensional context) has been introduced by Rock-
afellar [56]. The corresponding notion for subsets of a Banach space has been
studied in [14].

Definition 5.1. A closed set D ⊂ E is epi-Lipschitz if, for all x0 ∈ D, there are
a neighborhood U of x0 (in E), a Banach space Z, a topological isomorphism
L : Z×R→ E with L(z0,λ0)= x0, and a locally Lipschitz function g : Z →R such
that

D∩U =U ∩L(Epig), (5.1)

where Epig := {(z,λ) | g(z)≤ λ} is the epigraph of g.

Proposition 5.2 (see [21, 23, 56]). If D ⊂ E = Rn is closed, then the following
conditions are equivalent:

(i) D is epi-Lipschitz;
(ii) for any x ∈ D, intCD(x) �= ∅ (or, equivalently, the Clarke normal cone

ND(x) := CD(x)− is pointed, that is, ND(x)∩ (−ND(x))= {0});
(iii) for any x ∈ ∂D, CD(x) = ∂∆D(x)−, where, for y ∈ R, ∆D(y) := dD(y)−

dE\intD(y) and 0 �∈ ∂∆D(x).

Implication (i)⇒(ii) is obvious. Implication (iii)⇒(ii) follows since if 0 �∈
∂∆D(x) for x ∈ ∂D, then ∂∆D(x)− ⊂ CD(x) (see [21, Theorem 2.4.7]); hence,
ND(x)⊂ (∂∆(x)−)− =⋃

λ≥0 λ∂∆D(x) and ND(x) is pointed. Both these facts hold
if dimE =∞. In order to prove implications (ii)⇒(i) and (ii)⇒(iii), we need typ-
ically finite-dimensional arguments. The author does not know whether they
hold when dimE =∞. The partial answer is given in the following result.



336 Structure of solution sets

Proposition 5.3. If dimE ≤∞, then (i)⇒(iii).

Theorem 5.4. IfD is an epi-Lipschitz set and (3.4) is satisfied, then, for each t0 ∈ J
and x0 ∈D, the set S(x0, t0) of all mild solutions of the initial value problem (1.1)
is an Rδ-set provided the compactness condition (2.3) is satisfied or the semigroup
� is compact. One may replace (3.4) by (2.1) in case ϕ is single-valued.

Proof. The last statement is easy. For x ∈ intD, CD(x)= TD(x)= E. Take x ∈ ∂D
and a sequence (yn) in D such that yn→ x. Then, for all t ∈ J , ϕ(t, yn)∈ TD(yn)
and, in view of [8, Theorem 4.1.9],

ϕ(t,x)= lim
n→∞ϕ

(
t, yn

)∈ Liminf
y

D−→x

TD(y)= CD(x) (5.2)

and the first part of the theorem applies.
As concerns the first part, we again construct, for each n ≥ 1, a map fn : J ×

D → E such that fn(·,x) is measurable, fn(t,·) is locally Lipschitz (uniformly
with respect to t), each point x ∈ D has a neighborhood W with fn(Jk ×W)
lying in a compact subset of E, fn(t,x)∈ CD(x), and

fn(t,x)∈ ϕn(t,x) := convϕ
({t}× [

B
(
x,n−1)∩D])

+B
(
0,n−1) (5.3)

for all t ∈ J and x ∈D. The construction recalls that from Lemma 4.1, but it also
makes a strong use of the facts that CD(x) = ∂∆D(x)− and 0 �∈ ∂∆D(x) on ∂D.
Namely,

fn(t,x)=
∑
s∈S
λs(x)ws(t), (5.4)

where {λs}s∈S is an appropriate locally Lipschitz partition of unity and, for ∈ S,
ws : J → E is a measurable finite-valued function such that ∆◦D(y;ws(t)) < 0 for all
t ∈ J and y ∈ suppλs. Having this, the proof concludes similarly as above. �

6. Regular case

It is clear that epi-Lipschitz sets have nonempty interiors, and, therefore, neither
convex sets nor Plaskacz’s proximate retracts are epi-Lipschitz in general. We
introduce a class of sets that encompasses epi-Lipschitz or convex sets as well as
proximate retracts. Namely, we will deal with the so-called regular domains.

Definition 6.1. We say that a closed set D ⊂ E is regular if, for any x ∈ ∂D,

liminf
y

E\D−−→x

∣∣∥∥∂dD(y)
∥∥∣∣ > 0, (6.1)

where ∣∣∥∥∂dD(x)
∥∥∣∣ := inf

p∈∂dD(x)
‖p‖. (6.2)
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It is clear that∣∣∥∥∂dD(x)
∥∥∣∣= sup

‖u‖≤1
inf

p∈∂dD(x)
〈p,u〉 = − inf

‖u‖≤1
d◦D(x;u). (6.3)

Observe that regularity ofD means that the distance function dD has no criti-
cal points in a neighborhood ofD intersected with the complement ofD. If there
is a neighborhood U of D such that inf y∈U\D |‖∂dD(y)‖| > 0, then D is regular;
if D is regular compact (or ∂D is compact), then such a neighborhood exists. It
appears that regular sets are well designed to study solutions of (1.1) in case of
a nonexpansive semigroup �. In order to study a general situation we will also
deal with the so-called strictly regular sets.

Definition 6.2. We say that a closed set D ⊂ E is strictly regular if there is an r > 0
such that

inf
y∈B(D,r)\D

∣∣∥∥∂dD(y)
∥∥∣∣ > 0. (6.4)

Clearly, strictly regular sets are regular and compact regular sets are strictly
regular.

The class of (strictly) regular sets has been introduced in [24] in a different
(and a bit more general) setting and studied in the context of equilibria. This
class is rich: for instance, the set D in Example 3.3 is strictly regular and the set
D from Example 3.4 is not regular.

Example 6.3. (i) Any convex closed set D ⊂ E is strictly regular: in fact we easily
show that |‖∂dD(y)‖| ≥ 1 for all y ∈ E \D (see [24]).

(ii) Suppose that a closedD ⊂ E is proximinal, that is, there is a neighborhood
U of D such that, for all y ∈ U , the set πD(y) := {z ∈ D | ‖y − z‖ = dD(y)} �=
∅. If, for any y ∈ U , πD(y)∩ Liminf z→y πD(z) �= ∅ (Liminf denotes the lower
limit in the sense of Painlevé-Kuratowski (see, e.g., [8, Definition 1.4.6]), then D
is regular. Indeed, take y∈U \D, let x∈πD(y)∩Liminf z→y πD(z), put u := x−
y, and take sequences yn → y, hn → 0+. There is xn ∈ πD(yn) such that xn → x.
Hence,

dD
(
yn +hnu

)−dD(yn)
≤ hn

∥∥(xn− yn
)−u∥∥+dD

(
yn +hn

(
xn− yn

))−dD(yn). (6.5)

We easily check that dD(yn +hn(xn− yn))= (1−hn)dD(yn); therefore, d◦D(y;u)≤
−‖u‖ and |‖∂dD(y)‖| ≥ 1. If U is a ball around D, then D is strictly regular.

(iii) In particular, all proximate retracts (i.e., proximinal closed sets for which
πD(x) is a singleton for all x ∈U) are regular, πD, in this case, is continuous.

(iv) If D is epi-Lipschitz, then it is regular.
(v) A smooth (i.e., C1) Banach submanifold M ⊂ E of codimension 1 is reg-

ular.
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Now, we will discuss in detail the proper tangency condition which leads to
the Rδ-characterization of the solution set of (1.1). Since values of ϕ are compact
and CD(x)= ∂dD(x)− (x ∈D), it is clear that (3.4) is equivalent to

∀x ∈D, sup
t∈J

inf
z∈ϕ(t,x)

d◦D(x;z)≤ 0. (6.6)

This, in turn, implies that, for all x ∈D,

limsup
y→x

[
sup
t∈J

inf
z∈ϕ(t,x)

d◦D(y;z)

]
≤ 0, (6.7)

sup
ε>0

inf
η>0

sup
y∈B(x,η)

inf
x′∈B(x,ε)∩D

σϕ(y;x′)≤ limsup
y→x

σϕ(y;x)≤ 0, (6.8)

for all x ∈D, where, to simplify the notation, we have set

σϕ(y;x) := sup
t∈J

inf
z∈ϕ(t,x)

d◦D(y;z). (6.9)

Finally, observe that, in case D is compact, (6.8) holds uniformly with respect to
x ∈D, that is,

sup
ε>0

inf
η>0

sup
x∈D, y∈B(x,η)

inf
x′∈B(x,ε)∩D

σϕ(y;x′)≤ 0. (6.10)

Note that the implication (3.4)⇒(6.8) always holds, while the implication
(3.4)⇒(6.10) is true if D is compact. Our assumptions on ϕ imply that (6.10)⇒
(6.8)⇒(3.4).

In order to compensate the lack of compactness as concerns D (which seems
to be an intrinsic problem in an infinite-dimensional setting), we consider the
following condition.

Definition 6.4. We say that ϕ satisfies the uniform tangency condition on D if
(6.10) holds locally uniformly onD, that is, any point p ∈D has a neighborhood
V (in D) such that

sup
ε>0

inf
η>0

sup
x∈V, y∈B(x,η)

inf
x′∈B(x,ε)∩D

σϕ(y;x′)≤ 0. (6.11)

The uniform tangency depends on the geometry of the domain D.

Example 6.5. Suppose that (3.4) holds. Condition (6.11) holds in each of the
following cases:

(i) the set D is proximinal and satisfies assumptions of Example 6.3(ii);
(ii) D is convex and E is reflexive;

(iii) D is compact (then (6.11) holds with V =D, that is, (6.10) holds).

Situation (iii) has been discussed above (the conclusion may be achieved via
standard compactness arguments). To show (i), we sustain the notation from
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Example 6.3 and take p ∈D; there is r > 0 such that B(p,2r)⊂U . For ε > 0, let
η ≤min{ε/2, r} and take x ∈V := B(p,r)∩D and y ∈ B(x,η). Then, ‖y− p‖ ≤
2r, that is, y ∈U . Choose x ∈ πD(y)∩Liminf z→y πD(z); clearly, ‖x− x‖ < ε. By
(3.4), for each t ∈ J , there is zt ∈ CD(x)∩ϕ(t,x). Take arbitrary sequences yn→
y and hn → 0+. There is a sequence xn ∈ πD(yn) such that xn → x, and since
zt ∈ CD(x), there is a sequence zn→ zt such that xn +hnzn ∈D. Hence,

limsup
n→∞

dD
(
yn +hnzt

)−dD(yn)
hn

= limsup
n→∞

dD
(
yn +hnzn

)−dD(yn)
hn

≤ limsup
n→∞

∥∥xn− yn
∥∥+dD

(
xn +hnzn

)−d(yn)
hn

= 0.
(6.12)

Thus, zt ∈ ∂dD(y)−; hence, σϕ(y;x)≤ 0 as required.
Situation (ii) is similar. The set D, being convex in a reflexive space E, is

proximinal (with U = E); however, it is not clear whether the Liminf prop-
erty (from Example 6.3) of πD is satisfied. Nevertheless, choose an arbitrary
ε > 0; take η = ε/2, x ∈ D, y ∈ B(x,η), and t ∈ J . There is x ∈ πD(y). Take zt ∈
CD(x)∩ ϕ(t,x) = TD(x)∩ ϕ(t,x). There exist sequences hn → 0+ and zn → zt
such that x+hnzn ∈D. Therefore,

dD
(
y +hnzn

)≤ ‖x− y‖+dD
(
x+hnzn

)= α := dD(y). (6.13)

Thus, y +hnzn ∈Dα := {z ∈ E | dD(z)≤ α}. In other words, zt∈TDα(y)=CDα(y)
= ∂dD(y)−.

Theorem 6.6. Suppose that condition (6.11) is satisfied and

(i) either D is strictly regular, or
(ii) D is regular and the semigroup � is nonexpansive. (� is nonexpansive if

ω = 0.)

Then, for any x0 ∈D, the set S(x0, t0) is an Rδ-set provided condition (2.3) is satis-
fied or � is compact.

The proof of Theorem 6.6 is technically involved and long. It resembles the
above sketched arguments with important modifications: we show that ϕmay be
appropriately extended to a map ϕn defined on a neighborhood Dn := {x ∈ E |
dD(x,D)≤ ηn} (where ηn→ 0 as n→∞), possessing a locally Lipschitz selection
fn : J ×Dn → E such that d◦D(x; fn(t,x)) ≤ 0 for (t,x) ∈ Jk ×Dn for any n,k ≥ 1
(where Jk has the same meaning as in the proof of Theorem 4.4). Finally, we show
that Sk(x0, t0) is the intersection of the decreasing family of the contractible sets
Skn(x0, t0) of all mild solution on Jk of (1.1) with D replaced by Dn and ϕ by ϕn.
The additional property of � undertaken in (ii) helps establish the invariance of
Dn. In case (i), the strict regularity allows to do without it.
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Remark 6.7. Suppose that ϕ : J ×U � E, whereU is a neighborhood of a strictly
regular D, satisfies assumptions enlisted at the beginning of the paper. If condi-
tion (2.3) holds (withU replacingD) or the semigroup is compact, then S(x0, t0)
is an Rδ-set for all (x0, t0) ∈ D × J provided the uniform tangency condition
(6.11) is replaced by the exterior tangency condition

∀y ∈Ω \D, ∀t ∈ J, F(t, y)∩ ∂dD(y)− �=∅. (6.14)

It seems that condition (6.14) is better designed to study the viability issues
than (6.11) for it is simpler but requires that ϕ is defined outside D.

7. The periodic problem

Let 0,T ∈ J where T > 0. We now apply the preceding results in order to study
the periodic problem considered as the two-point boundary value problem

u′(t)∈ Au(t) +ϕ
(
t,u(t)

)
, x(0)= x(T) (7.1)

(by a solution of (7.1), we mean a mild solution of u′(t) ∈ Au(t) + ϕ(t,u(t))
such that u(0) = u(T) and u : J → D). In that, the method of the translation
operator plays an important role, see, for example, [14, 37, 48]. The extension
of this method to the case of differential inclusions (or equations) in infinite
dimensional spaces is limited by the fact that the translation operator possesses
the sufficient compactness properties only in exclusive cases (see [47]).

In view of Theorem 2.1, if (2.1) and (2.2) hold or the semigroup � is com-
pact, then we associate with (7.1) the set-valued Poincaré translation operator
along trajectories P = PT : D � D given by P := eT ◦ S, where S : D � C(J,D),
S(x) = S(x,0), is the solution operator and eT : C(J,D) → D is the evaluation
mapping eT(u) := u(T). Observe that P maps bounded sets onto bounded ones.
Clearly, the existence of periodic solutions is equivalent to the existence of fixed
points of P.

Suppose that there is θ ∈R such that, for any t > 0,

∥∥U(t)
∥∥β := β(U(t)B(0,1)

)≤ exp(θt). (7.2)

Since ‖U(t)‖β ≤ ‖U(t)‖, the number θ always exists and θ ≤ ω. Note that, for a
bounded Ω⊂ E, β(U(t)Ω)≤ ‖U(t)‖ββ(Ω).

Theorem 7.1. Assume that P is well defined, and let Ω⊂ E be bounded.
(i) If the semigroup � is compact, then P(Ω) is precompact. Thus, P is a com-

pact operator.
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(ii) Suppose that (2.3) holds. Then,

β
(
P(Ω)

)≤ exp
(
θT +‖k‖L1

)
β(Ω). (7.3)

This result improves some results obtained in [10] (see also [46] for analytic
semigroups) and gives means to establish conditions necessary for P to be a ν-
set contraction. If θT +‖k‖L1 < 0, then P (if defined) is a ν-set contraction (with
respect to β) with ν := exp(θT +‖k‖L1 ). Moreover, in the situation of Theorems
4.4, 5.4, and 6.6 or Remark 6.7, P is a decomposable map.

Let X be a metric space. A set-valued map Φ : X � X is decomposable (see
[37, 49]) if there are a metric ANRM, an upper-semicontinuous set-valued map
ψ : X �M such that, for every x ∈ X , the set ψ(x)⊂M is Rδ and a continuous
(single-valued map) f :M→ X such that Φ= f ◦ψ.

If, for any x ∈ D, S(x) is an Rδ-set, then P is a decomposable map. Addi-
tionally, P is homotopic (through a decomposable homotopy) to the identity
idD :D→D; the homotopy is provided by the composition D× [0,1]� (x,λ) �→
Ψ(x,λ)= eλT ◦ S(x) where eλT is the evaluation eλT(u) := u(λT) for u∈ C(J,D);
then, Ψ(x,0)= x and Ψ(x,1)= P.

The class of decomposable maps falls into a much broader class of admis-
sible maps (see [36]) particularly well-designed for the fixed-point problems.
Roughly speaking, an upper semicontinuous map Φ : X � X is admissible if it
admits a set-valued selection being a finite composition of acyclic maps (a map
is acyclic if it is upper semicontinuous with nonempty compact acyclic values).
Clearly, a decomposable map Φ= f ◦ψ, where ψ is as above, is admissible.

We have the following fixed-point result.

Proposition 7.2 [36, Chapter V]. If X is an ANR and Φ : X � X is a decompos-
able map, then Φ has a fixed point provided

(i) X is compact and χ(X) �= 0 (where χ(X) stands for the Euler characteristic
of X defined in terms of the rational Čech homology with compact supports.
For any compact ANR X , χ(X) is a well-defined integer. In particular, if X
is a compact absolute retract, then χ(X)= 1), or

(ii) X is acyclic (e.g., contractible) and Φ is compact (here, it means that Φ(X)
is compact).

Observe that, in Theorems 4.4, 5.4, 6.6, and Remark 6.7, assumptions con-
cerning D always imply that D is a regular set. In [24], it was shown that strictly
regular sets are neighborhood retracts (we construct a neighborhood retraction
r :U →D, where U is a neighborhood of D via some variational arguments); so,
they are compact regular sets. If D is epi-Lipschitz, then, by the very definition,
each point in D has a neighborhood which is an ANR; hence, by the Hanner
theorem (see, e.g., [15, Theorem 5.1]), D is an ANR. In particular, χ(D) is well
defined wheneverD is compact. Proposition 7.2 applies and we get the following
results.
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Theorem 7.3. Suppose that D ⊂ E is compact and that one of the following condi-
tions hold:

(i) D is regular (in particular, epi-Lipschitz), χ(D) �= 0, and (3.4) or (6.14) is
satisfied (recall that if D is compact, then (3.4) implies (6.11); if F is single
valued, then (3.4) may be replaced by (2.1));

(ii) D is convex and (2.1) holds.

Then problem (7.1) admits a solution.

In the caseA≡ 0, the above theorem gives a positive answer to the open prob-
lem 13.1 in [31].

In order to dispense with the compactness of D, we need to impose com-
pactness of � (observe that given a closed and bounded set D and a compact
map f : J ×D → E, the translation operator along trajectories associated with
the equation x′ = f (t,x) is easily seen to be only a 1-set-contraction, and, there-
fore, Proposition 7.2 does not apply; Deimling has given an example of such a
map without any periodic solutions—see [27] and Remark 6.7 below).

Theorem 7.4. Suppose that � is compact and D is bounded and acyclic. If

(i) D is strictly regular and (6.11) or (6.14) is satisfied, or;
(ii) D is convex (i.e., automatically contractible) and (2.1) holds, or;

(iii) D is epi-Lipschitz and (3.4) holds,

then problem (7.1) admits a solution.

The compactness assumption on � may still be relaxed.

Theorem 7.5. If D is convex bounded, (2.1) and (2.2) hold, and θT + ‖k‖L1 < 0,
then (7.1) has a solution.

Proof. Theorems 4.4 and 7.1 imply that P is a decomposable ν-set contraction
with ν < 1. In order to complete the proof, we will evoke the following result
(see, e.g., [9, 57]).

If D is convex, closed and bounded, Φ :D�D is a decomposable ν-set contrac-
tion with respect to some regular, monotone and nonsingular measure of noncom-
pactness γ with ν < 1, then Φ has a fixed point. �

Remark 7.6. In fact, we can do much better. Following Nussbaum [52], we sup-
pose that a bounded and closed set D ∈ �, that is, assume that D = ⋃

i∈I Di

where {Di}i∈I is a locally finite family of closed convex subsets of E. Combining
methods of [52] with those from [36] and given a decomposable ν-set contrac-
tion (with ν < 1) Φ : D � D, we are in a position to define an integer valued
invariant i(Φ,D) such that if i(Φ,D) �= 0, then Φ possesses a fixed point. Then,
we show (see, e.g., [52, Section E, Theorem 4] for a hint) that if D is acyclic, then
i(Φ,D)= 1. Having this, we easily see that we may replace the convex boundedD
from Theorem 7.5 by an acyclic closed D ∈�. Then, assuming that D is strictly
regular (It is, for instance, not difficult to get conditions implying that a finite
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union of closed convex sets is strictly regular.) and condition (6.11) is satisfied,
we obtain a generalization of Theorem 7.5.

In Theorem 7.5, θ < 0 (this holds, e.g., if ω < 0). In the next result, we may
also consider the case ω= 0.

Theorem 7.7. Let the assumptions in front of Theorem 7.5 be fulfilled. Then, the
periodic problem (7.1) has a mild solution provided 0 ∈ D, ω ≤ 0, ϕ is compact
(i.e., ϕ([0,T]×D) is compact) and 1 is in the resolvent set ρ(U(T)) of U(T).

Proof. For ε > 0, we consider the equation y′ ∈ Ay− εy +ϕ(t, y). Then, the C0-
semigroup �ε := {Uε(t)}t≥0, where Uε(t) = e−εtU(t), generated by A− εI , sat-
isfies Uε(t)D ⊂ D for any t ≥ 0 since 0 ∈ D. By Theorem 7.5, we thus get the
existence of a periodic solution uε to the perturbed equation. Since the resolvent
set ρ(U(T)) is open, we have the invertibility of I −Uε(T) for ε > 0 sufficiently
small. Thus, the following representation holds:

uε(t)=Uε(t)
(
I −Uε(T)

)−1
∫ T

0
Uε(T − s)wε(s)ds+

∫ t

0
Uε(t− s)wε(s)ds (7.4)

for each t ∈ J with some wε ∈Nϕ(uε).
Let εn ↘ 0. Since ϕ is compact and using (7.4), the Arzela-Ascoli theorem

shows that {uεn : n ≥ 1} is relatively compact in C(J,E). Hence, without loss of
generality, uεn → u∈ C(J,E). Clearly, u is a mild solution of (7.1). �

Remark 7.8. (1) Theorems 7.1, 7.3, 7.4, 7.5, and 7.7 contain the results on pe-
riodic solutions given in [11] as particular cases. Specialized to single-valued
maps, our Theorems 7.5 and 7.7 improve [55, Theorems 3 and 4], where, as ad-
ditional conditions, “D has nonempty interior” and “the metric projection onD
exists,” respectively, were considered.

(2) We may formulate the following periodic existence theorem of the Brow-
der type. Suppose now that E is a separable Hilbert space with the inner product
〈·,·〉. If (2.3) holds and there is r > 0 such that

∀t ∈ J, x ∈ E,‖x‖ = r ∃z ∈ ϕ(t,x), 〈z,x〉 ≤ 0, (7.5)

then the periodic problem (7.1) has a mild solution provided ωT +‖k‖L1 < 0.
LetD := B(0, r). Then, (7.5) exactly means that ϕ(t,x)∩TD(x) �= ∅ on J ×D.

Since ω < 0, � is nonexpansive and U(t)D ⊂ D for each t ≥ 0. Thus, Theorem
7.5(ii) shows the existence of the periodic solution.

(3) We recall [28, Example 24.12]; let f : R × D → E and g : R × D → E
be continuous and T-periodic in the first variable such that α( f ({t} ×Ω)) ≤
k1(t)α(Ω) for all bounded Ω⊂D and

∀x, y ∈D, (
g(t,x)− g(t, y),x− y

)
− ≤ k2(t)‖x− y‖2, (7.6)
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where (·,·)− denotes the semi-inner product (·,·)− : E×E→R given by

(x, y)− := ‖y‖ lim
t→0+

‖y‖−‖y− tx‖
t

; (7.7)

f0 := f + g is uniformly continuous and bounded and satisfies (2.1); the func-

tions k1,k2 ∈ L1(J) and k := ∫ T
0 (k1(s) + k2(s))ds < 0. In [28], existence of peri-

odic orbits is shown in case D as having nonempty interior. We may dispense
with this assumption: as in the proof of Theorem 4.4, we also show that in this
situation where the set of continuously differentiable solutions is an Rδ-set. The
translation operator along the trajectories P :D�D satisfies β(P(Ω))≤ ekβ(Ω)
for bounded Ω⊂D (see [28]). Hence, we may again apply the fixed-point result
stated in the proof of Theorem 7.5 to show the existence of a fixed point of P,
that is, a periodic solution.

Assumptions in Theorems 7.4, 7.5, and 7.7 implicitly require that the linear
part A is nonzero (except for Theorem 7.3 where D is compact). We now deal
with a noncompact domain not excluding the caseA≡ 0, but our discussion will
be specialized to strongly continuous nonlinearities.

A set-valued map Φ : D � E is strongly upper semicontinuous if, for every
weakly convergent sequence xn⇀ x0 in D, a sequence yn ∈Φ(xn) has a subse-
quence ynk → y0 ∈Φ(x0).

The notion of a strongly upper semicontinuous map was first introduced
in [34] under the name of completely continuous maps (however not in connec-
tion with differential equations or inclusions). Obviously, strong upper semi-
continuity implies upper semicontinuity.

Example 7.9. If E′ is a Banach space, j : E→ E′ is a compact bounded linear map,
and ψ : E′ � E is upper semicontinuous, then Φ := ψ ◦ j |D :D� E is strongly
upper semicontinuous. For if xn⇀ x0 ∈ D, then j(xn)→ j(x0) and the strong
upper semicontinuity follows from the upper semicontinuity of ψ. In particular,
if E↩↩E′ (i.e., E is compactly embedded into E′) and ψ : E′ � E is upper
semicontinuous, then Φ= ψ |D is strongly upper semicontinuous.

Our interest in strongly upper semicontinuous maps is motivated by the fol-
lowing fixed-point result.

Proposition 7.10. LetD ⊂ E be a weakly compact convex, and let Φ :D�D be a
decomposable map. Assume there is a linear, bounded operatorU : E→ E, ‖U‖ ≤ 1
and a strongly upper semicontinuous map ψ :D� E such that

∀x ∈D Φ(x)=Ux+ψ(x). (7.8)

Then, Φ has a fixed point.
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The proof follows arguments given in [9, Corollary 11]. Note that in
Proposition 7.10, we cannot replace the strong upper semicontinuity of ψ by
the upper semicontinuity and compactness of ψ. To see this, let E := �2, D :=
B(0,1) ⊂ �2, U : E→ E be given by U(x) := (0,x1,x2, . . .) and ψ(x) := (1−‖x‖,
0, . . .). Then, Φ := T +ϕ :D→D, but it has no fixed points.

Theorem 7.11. Assume that � is uniformly continuous and ‖U(T)‖ ≤ 1. If D is
convex and weakly compact, ϕ satisfies (2.1) and (2.2) and that, for all t ∈ [0,T],
ϕ(t,·) is strongly upper semicontinuous, then problem (7.1) has a strong solution.

As stated above, the case A = 0 is not excluded. Thus, in view of the remark
following Theorem 7.3, compactness of the nonlinearity is not sufficient for the
existence of periodic solutions. This is why the stronger assumption is consid-
ered here.

Proof. We apply Proposition 7.10; to this end, introduce the map ψ :D� E,

ϕ(x) :=
{∫ T

0
U(T − s)w(s)ds |w(·)∈ F(·,u(·)), u∈ S(x)

}
, (7.9)

for x ∈D, and let U :=U(T). We easily see that

P(x)=Ux+ψ(x) on D. (7.10)

Our assumptions concerning ϕ imply that all the assumptions of Theorem 4.4
are fulfilled; hence, P (and ψ) is decomposable. In view of representation (7.10),
we conclude the proof of the existence of a mild solution of (7.1) by showing
that ψ is strongly upper semicontinuous. In order to get a strong solution, we
use the uniform continuity of �. �

Remark 7.12. If ϕ is single-valued, then we do not need the uniform continu-
ity of �. In this case, we assume that E is reflexive and D is convex bounded
(thus weakly compact), and, in order to get the existence of a mild solution, the
weak equicontinuity of {U(·)x}x∈D is shown and employed. In particular, if ϕ is
single-valued and (jointly) strongly continuous and A≡ 0, then the existence of
a classical solution of the problem

u′ = f (t,u), u(0)= u(T) (7.11)

is easily obtained (reflexivity is not relevant for it was necessary only to establish
the weak equicontinuity of {U(·)}x∈D).

8. Equilibria

Let F :D� E. A stationary solution of the autonomous inclusion

u′(t)∈ Au(t) +Φ
(
u(t)

)
, (8.1)
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that is, a point u0 ∈D(A)∩D satisfying 0∈ Au0 +F(u0), is called an equilibrium
of (8.1). The existence of equilibria (for A≡ 0) has been carefully studied in [24]
by different methods and in [13] in a finite-dimensional setting (see also [8] and
others). Here, we assume that Φ is upper semicontinuous and have nonempty,
convex and compact values. Moreover, we assume that Φ is subject to one of the
following tangency conditions:

∀x ∈D, Φ(x)∩TD(x) �= ∅; (8.2)

∀x ∈D, Φ(x)∩CD(x) �= ∅; (8.3)

that is, “autonomous” analogs of conditions (2.1) and (3.4), respectively.

Theorem 8.1. Suppose that D is compact. Then, (8.1) has an equilibrium pro-
vided

(i) D is regular (in particular, epi-Lipschitz), χ(D) �= 0, and (8.3) is satisfied; or
(ii) D is convex and (8.2) holds.

Proof. Fix T > 0. By Theorem 7.3, for each n≥ 1, there is a 2−nT-periodic mild
solution un of (8.1). The compactness ofD shows that (passing to a subsequence)
un → u ∈ C([0,T],E) and u is a mild solution of (8.1). Clearly, u(t) ≡ u0 ∈ D.
Thus,

u0 =U(t)u0 +
∫ t

0
U(t− s)w(s)ds, t ∈ [0,T], (8.4)

wherew(s)∈Φ(u0) on [0,T]. The function v(t)= ∫ t
0 w(s)ds is differentiable a.e.;

suppose that for z ∈ (0,T), v′(z)=w(z)=: y0 ∈Φ(u0) exists. By (8.4), for h > 0,

u0 =U(h)u0 +
∫ z+h
z U(z+h− s)w(s)ds. Hence,

U(h)u0−u0

h
= 1
h

∫ z+h

z

(
w(s)−U(z+h− s)w(s)

)
ds− v(z+h)− v(z)

h
. (8.5)

The first term in the right-hand side tends to 0 as h→ 0+, and the second one
converges to −y0. Hence, u0 ∈D(A) and Au0 =−y0. �

In a similar manner, we get the next results.

Theorem 8.2. Let D be bounded and acyclic. If the semigroup is compact and one
of the following conditions holds

(i) D is strictly regular, Φ is defined on a neighborhood U of D, and

∀y ∈U Φ(y)∩ ∂dD(y)− �=∅; (8.6)

(ii) D is epi-Lipschitz and (8.3) holds; or
(iii) D is convex and (8.2) holds,

then (8.1) has an equilibrium.
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Theorem 8.3. Let D be convex bounded and (8.2) hold. Then, (8.1) has an equi-
librium provided one of the following conditions is satisfied:

(i) Φ is a ν-set contraction, θ + ν < 0;
(ii) 0∈D, ω ≤ 0, Φ is compact and there is t0 > 0 such that 1∈ ρ(U(t)) for each

0 < t < t0;
(iii) Φ is strongly upper semicontinuous, D is weakly compact, and � is uni-

formly continuous and nonexpansive;
(iv) Φ is single-valued strongly continuous, � is nonexpansive, and E is reflexive.

For the proof, observe that if ϕ (independent of t) is a ν-set contraction,
then (2.2) holds true (on [0,T]) with k(·) ≡ ν. Hence, ‖k‖L1([0,T]) = νT , and
it follows that θT + νT < 0 for each T > 0. Then, we can proceed exactly as in
the proof of Theorem 8.1. That (un) has a convergent subsequence follows since
{un(0)}, as the fixed point set of an appropriate Poincaré operator, is compact.

Observe that ifD is strictly regular, then we may easily state an “autonomous”
version of (6.11) and obtain a different result asserting the existence of equilibria.
At the same time in Theorems 8.1(i) or 8.2(ii), condition (8.3) may be replaced
by (8.2) if Φ is single-valued.

Remark 8.4. (1) Let f : �2 → �2 be defined by f (x) = y where yn := αnxn +
βn(‖x‖− 1)2 for n ≥ 1, where αn → 0,αn < 0,(βn) ∈ �2, and (βn/αn) /∈ �2. Then,
f is compact and satisfies 〈 f (x),x〉 < 0 for each x ∈ �2 with ‖x‖ = 1; hence,
f (x) ∈ TD(x) on the unit ball D. However, the problem u′(t) = f (u(t)) has
no solution of any period (see [27]). In view of Remark 7.12, it is clear that

f is not strongly continuous. Indeed, let em := (δnm). Then, em
�2

⇀ 0, f (em) =
(0, . . . ,0,αm,0, . . .) and thus, f (em)

�2−→ 0 as m→∞. But f (0) = (βm) �= 0. How-
ever, problem 0 = f (x) has a solution in case αn → ω < 0. This follows from
Theorem 8.3(ii).

(2) In [28, page 211], it is conjectured that if D ⊂ E is closed, bounded and
convex, f ,g :D→ E are continuous and bounded, α( f (Ω))≤ ν1α(Ω) for all Ω⊂
D and

(
g(x)− g(y),x− y

)
− ≤ ν2‖x− y‖2 for each x, y ∈D, (8.7)

and f + g is weakly inward (i.e., Φ := f + g − idE satisfies (8.2)), then f + g has a
fixed point provided that ν1 + ν2 < 1.

We may prove this conjecture under the additional assumption that f + g
is uniformly continuous improving previous results (see [28]). Indeed, let g0 :=
g − idE; the properties of the semi-inner product (·,·)− imply that g0 satisfies the
estimate (8.7) with ν2− 1 replacing ν2. For each T > 0, k := T(ν1 + (ν2− 1)) < 0
and hence, by the result given in Remark 7.8(3), the existence of a T-periodic
solution of u′(t)= F(u(t)) follows. Arguing as in the proof of Theorem 8.3, we
get a constant solution u(t)≡ u, which means 0=Φ(u), that is, u= f (u) + g(u).
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9. Final remarks

We observe that, in most of the above results, we can do without the separability
of E assuming that ϕ is upper semicontinuous or even almost upper semicon-
tinuous in the sense of Deimling (see [31]) although the proofs are a bit more
involved. The important changes have to be done in Theorem 7.1, if E is an ar-
bitrary (resp., weakly compactly generated) Banach space, then the Poincaré op-

erator is a ν-set contraction with respect to the measure of noncompactness β̃0

on E given by

β̃0(Ω) := sup
{
β(C) | C ⊂Ω countable

}
(9.1)

for a bounded Ω ⊂ E (β̃0 is regular, monotone and nonsingular (see [1, Sec-
tion 1.4]) with ν = θT + 4‖k‖L1 (resp., ν = θT + 2‖k‖L1 ). Consequently, chang-
ing assumptions in Theorems 7.5 and 8.3(i), we obtain other criteria for the
existence of periodic orbits or equilibria.

The detailed proofs of the main results of this paper will appear in the forth-
coming paper [12].
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