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The Schauder conjecture that every compact convex subset of a metric linear
space has the fixed-point property was recently established by Cauty (2001). This
paper elaborates on Cauty’s proof in order to make it more detailed and there-
fore more accessible. Such a detailed analysis allows us to show that the convex
compacta in metric linear spaces possess the simplicial approximation property
introduced by Kalton, Peck, and Roberts. The latter demonstrates that the orig-
inal Schauder approach to solve the conjecture is in some sense “correctable.”

1. Introduction

Throughout most of this paper, X will be a compact convex subset of a sepa-
rable metric linear space (E,‖ · ‖) which is not necessarily locally convex. We
can always assume (and we will) that ‖ · ‖ is an F-norm on E; hence, we have
‖x + y‖ ≤ ‖x‖ + ‖y‖, ‖tx‖ ≤ ‖x‖ for all x, y ∈ E and −1 ≤ t ≤ 1; in general,
‖ · ‖ is not homogeneous. Generalizing the classical Brouwer theorem, in 1930,
Schauder [28] claimed the proof of the fixed-point property of X ; unfortunately,
his argument contained a gap. As an effect, the question of whether every com-
pact convex subset of a metric linear space has the fixed-point property was
put, in August 1935, [25, Problem 54]; it became known as Schauder’s conjec-
ture. Since then, many partial results were obtained but the general case went
unsettled. Almost all those partial results were based on the so-called finite-
dimensional approximation property that some convex compacta possess. The
property requires that, idX , the identity map on X , is, in a uniform way, arbitrar-
ily closely approximated by maps ψ : X → X such that dim(ψ(X)) <∞. Here, the
dimension “dim” can be understood in any reasonable (i.e., “linear” or purely
topological) way; for further information, see [7]. In the case that E is locally
convex, such an approximation can be obtained via partitions of unity. Such an
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approach predominates in the textbook proofs of the Schauder-Tychonoff theo-
rem which states that every compact convex subset of a locally convex topolog-
ical vector space has the fixed-point property. This most transparent fact in the
area was published by Tychonoff [29] in 1935.

Note that, as a consequence of some advanced results of infinite-dimensional
topology, a convex compactum X having the finite-dimensional property not
only has the fixed-point property, but actually is homeomorphic either to [0,1]n,
n ∈ N, or to [0,1]∞, the Hilbert cube, see [7, 12]. As later becomes clear, it
is remarkable that Schauder in his failed attempt did not intend to verify the
finite-dimensional property, but a weaker property which was later formalized
by Kalton et al. in [21]. This “local” property, which is called the simplicial
approximation property in [21], yields the fixed-point property, but itself is
rather far from the finite-dimensional property, which in turn could be viewed
as a “global” property. In [21], the simplicial approximation property was used
to verify the fixed-point property of certain convex compacta without extreme
points. Those compacta were earlier discovered by Roberts.

Finally, in 1999, Cauty [5] provided a proof of the Schauder conjecture. His
proof did not rely on any of the above properties, but was based on the exis-
tence of a certain resolution map ϕ : Z → X from a certain countable-dimen-
sional compactum Z onto X . Actually, Cauty has proved a more general result
stating that, for an arbitrary convex subset C of a topological vector space, every
map f : C → C such that f (C) is contained in a compact subset of C (i.e., ev-
ery relatively compact map f : C→ C) has the fixed-point property. We mention
that a similar result for the locally convex case was obtained by Mazur [26] and
Hukuhara [19] in 1938 and 1950, respectively.

This paper elaborates on Cauty’s proof of the metric case only; that is, on the
following result.

Theorem 1.1 (Cauty [5]). Let X be a convex compactum of a metric linear space
(E,‖ · ‖) and let f : X → X be a map. There exists x ∈ X with f (x)= x.

Revisiting Cauty’s proof, we were able to isolate its two basic ingredients.
The first ingredient is of purely topological (or, better to say, metric) nature;
it deals with the construction of the resolution ϕ. The second ingredient has a
linear (affine) flavor and, employing the resolution map ϕ, it establishes a certain
approximation property. We hope that our analysis makes Cauty’s proof more
accessible. Surprisingly, such an analysis enables us to verify the simplicial ap-
proximation property of X (cf. [8]). This shows that the original approach of
Schauder is “correctable.” As it stands, the proof of the fixed-point property is
very much complex. Now, knowing that the simplicial approximation property
holds for every X , it is reasonable to ask for a simple way of verifying it.

According to a result of [10], every noncompact convex subset C of a met-
ric linear space contains a topological copy of [0,∞) (this observation, for the
normed case, was made long before by Klee [22]). As easily observed, it follows
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that such a C fails the fixed-point property. Combining this with Cauty’s re-
sult, we infer that for convex subsets of metric linear spaces, only compacta have
the fixed-point property. On the other hand, there are examples of noncompact
convex subsets of locally convex topological vector spaces that do have the fixed-
point property, see [10, Example 4.1].

Cauty has extended his technique to show the fixed-point property for com-
pacta that are uniformly contractible. Recall that a space X is locally uniformly
contractible if there exists a continuous map µ(x, y; t) (which is referred to as an
equiconnecting map) defined for all (x, y) in a neighborhood U of the diagonal
in X ×X and t ∈ I = [0,1], such that µ(x, y;0)= x, µ(x, y;1)= y, and µ(x,x; t)=
x for all (x, y; t)∈U × I . If U can be taken as the whole X ×X , then X is called
uniformly contractible. All convex sets are uniformly contractible. If r : C → X
is a retraction of a convex set C onto X , then X is uniformly contractible be-
cause µ(x, y; t)= r((1− t)x + ty) is as required. If a topological group G is con-
tractible, that is, there exists a homotopyH :G× I →G such thatH(g,0)= g and
H(g,1)= e (e is the unit element of G) for all (g, t)∈G× I , then G is uniformly
contractible via µ(g,h; t) = (H(e, t))−1 ·H(g · h−1, t) · h, see [7]. It follows that
every retract of such a G is uniformly contractible. On the other hand, a metriz-
able uniformly contractible compactum is a retract of a contractible metrizable
topological group [3]. Generalizing the classical Lefschetz-Hopf fixed-point the-
orem, Cauty [4] has shown that every self-map f of a locally uniformly con-
tractible compactum X has a fixed-point if the Lefschetz number Λ( f ) �= 0.
In particular, all uniformly contractible compacta have the fixed-point prop-
erty. Necessary modifications for obtaining the proof of this fact are presented
at the end of Section 2 (see also the end of Section 3). Observe that every uni-
formly contractible compactum is a contractible and locally contractible space.
The question of whether a contractible and locally contractible metrizable com-
pactum has the fixed-point property remains unanswered.

For the locally convex case, the fixed-point property of X yields, for an upper
semicontinuous (USC) convex-valued map F : X ⇒ X , the fixed-point property
of F, that is, there exists x ∈ X such that x ∈ F(x). (Here, by a convex-valued
map F, we mean a multivalued map such that F(x) is a convex compactum;
such a map is USC if {x ∈ X | F(x) ⊂ U} is open for every open set U ⊂ X .)
Again, known techniques require partitions of unity, a tool that does not work
for the nonlocally convex case. Our approach enabled us to show that, for ev-
ery dense convex subset C of the convex compactum X , every map f : C → X
admits approximate fixed-points; that is, there exists a sequence (xn) ⊂ C such
that lim‖ f (xn)− xn‖ = 0, see Corollary 2.6. In [9], we used this fact, together
with yet another approximation result that was based on a certain technique de-
veloped by Cellina-Lasota [6], to obtain the fixed-point property for every USC
convex-valued map F of a compact convex set of an arbitrary topological vector
space. The details of such a generalization of Cauty’s result go beyond the scope
of this paper and will not be included here. For the record, we mention that
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the convex-valued case has been established, among others, by Kakutani [20],
Bohnenblust and Karlin [2], Fan [15], and Glicksberg [16].

This introduction alludes to the author’s observations that were made while
revisiting Cauty’s paper [5]. It contains only a handful of historical remarks on
the fixed-point property of convex compacta that were needed to put those ob-
servations in some historical perspective. The author did not intend to make an
expository paper on the subject with such overwhelming literature.

2. The simplicial approximation property

Following [21], we say that a convex set C ⊂ E has the simplicial approximation
property if for every ε > 0, there exists a finite-dimensional compact convex set
Cε ⊂ C such that if S is any finite-dimensional simplex in C (i.e., S is a convex
hull of finitely many vectors in C), then there exists a continuous map γ : S→ Cε
with ‖γ(x)− x‖ < ε, x ∈ S. According to [21, Remark (2), page 217] (see also
[11, Lemma 5.1]), if a convex compactum X has the simplicial approximation
property, then it has the fixed-point property. We have the following obvious
generalization of that fact.

Lemma 2.1. Assume that a convex set C ⊂ E has the simplicial approximation
property. Then every map f : C→ C̄ has an approximate fixed-point, that is, lim
‖ f (xn)− xn‖ = 0 for some sequence (xn)⊂ C.

Proof. According to the definition above, for each n ∈ N, pick a convex com-
pactum Cn ⊂ C such that for a simplex S, we have a sequence γn : S→ Cn with
lim‖γn− idS‖ = 0. Approximate f | Cn by a map fn : Cn→ Sn, where Sn is a sim-
plex inC, see [7]. By Brouwer fixed-point theorem, there exists xn ∈ Cn such that
γn( fn(xn))= xn. It is easy to see that lim‖ f (xn)− xn‖ = 0. �

Say that a convex set C ⊂ E has the ℵ0-simplicial approximation property if for
every ε > 0, there exists a countable-dimensional convex set Cε ⊂ C such that if
S is any ℵ0-simplex in C (i.e., S is a convex hull of countable many vectors of
C), then there exists a relatively compact map γ : S→ Cε with ‖γ(x)− x‖ < ε,
x ∈ S. Actually, this property is equivalent to the one that requires Cε to be an
ℵ0-simplex. To see this, use the separability of E to find an ℵ0-simplex C′ε ⊂ Cε
that is dense in Cε. Now, let γ be a relatively compact map of S into Cε. Using
the fact that Cε is countable dimensional, find a map of Cε into C′ε that is as
close to the identity as we wish, see [7]. Composing this map with γ, we obtain
a relatively compact map of S into C′ε.

Lemma 2.2. If a convex set C ⊂ E has the ℵ0-simplicial approximation property,
then it has the simplicial approximation property.

Proof. Fix ε > 0. Use the above modification of the ℵ0-simplex approximation
property to find, for ε/3, an ℵ0-simplex Cε ⊂ C as required in the definition. Let



Tadeusz Dobrowolski 411

γ0 : Cε → Cε be a relatively compact map with ‖γ0(x)− x‖ < ε/3, x ∈ Cε. There
exists a map g : γ0(Cε)→ Cε whose range is contained in a finite-dimensional
compact convex set Kε and that satisfies ‖g(x)− x‖ < ε/3 for all x, see [7, Lemma
2]. Now, let S be a finite-dimensional simplex in C. Assuming that Cε is dense
(here we employ the separability of E), we find a map γ : S→ Cε with ‖γ(x)−
x‖ < ε/3, x ∈ S. Then, the composition g ◦ γ0 ◦ γ : S→ Kε is as required. �

Remark 2.3. Replacing the convexity assumption on Cε by the assumption that
Cε ∈ ANR, we obtain a weaker version of the ℵ0-simplicial approximation prop-
erty. Such a weaker property also yields the approximate fixed-point property
of C. To see this, we employ the ANR property of Cε (use a factorization of an
ANR through a locally finite-dimensional, locally compact, separable space) to
approximate a map Cε → C by one whose range is S, an ℵ0-simplex. Next, using
the contractibility of S, we extend this map to c(Cε), the metric cone over Cε.
Composing such a map with a relatively compact γ : S→ Ce ⊂ c(Cε), which is
provided by the definition (of such a weaker version of the ℵ0-simplicial approx-
imation property), we obtain a relatively compact self-map of c(Cε). An applica-
tion of the so-called generalized Schauder theorem (stating that every relatively
compact self-map of an AR space has the fixed-point property [13, page 94])
yields a fixed-point xe ∈ Ce, which is a counterpart of xn that was obtained in
the proof of Lemma 2.1.

Below, we state the main technical ingredient of Cauty’s proof that establishes
a property which, in a sense, is equivalent to the ℵ0-simplicial approximation
property of X .

Proposition 2.4 (cf. [5, Lemma 3]). For the convex compactum X , there exist
a countable-dimensional compactum Z and a map ϕ : Z → X such that, if Z is
embedded onto a linearly independent subset of a metric linear space (F,| · |) so that
the affine extension ϕ̂ : conv(Z)→ X of ϕ is continuous (the existence of such an
embedding is ensured by Lemma 2.5 below), then, for every ε > 0, every separable
metrizable space Y ∈ ANR, and every map ξ : Y → X , there exists a map

η : Y −→ conv(Z) (2.1)

such that

(i) ‖ϕ̂(η(y))− ξ(y)‖ < ε for all y ∈ Y ,
(ii) η(Y)∪ conv2(Z) is a compact subset of conv(Z); hence, η is relatively com-

pact.

Here by conv2(Z), we mean {t1z1 + t2z2 | z1, z2 ∈ Z, 0≤ t1, t2 ≤ 1, t1 + t2 = 1}.
Lemma 2.5. Given a map ϕ : Z → X of a compactum Z, there exists a metric linear
space (F,| · |) topologically containing Z as a linearly independent subset such that
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ϕ̂ : conv(Z)→ X defined by

ϕ̂

( k∑
i=1

tizi

)
=

k∑
i=1

tiϕ
(
zi
)
, (2.2)

where
∑k

i=1 ti = 1, ti ≥ 0, k ∈N, is continuous.

Proof of Lemma 2.5. Embed Z onto a linearly independent subset of (�2,|‖ · ‖|).
Extend ϕ to a linear (not necessarily continuous) map ϕ̂ : �2 → E. Define an F-
norm on �2 by

|x| = ∣∣‖x‖∣∣+
∥∥ϕ̂(x)

∥∥. (2.3)

Let F = (�2,| · |). Then ϕ̂ : F → E is continuous, and (Z,| · |) yields the original
topology of Z. �

Corollary 2.6 (cf. [8, Theorem]). Every convex set C ⊂ E with a compact clo-
sure X has the ℵ0-simplicial approximation property. Consequently, by Lemma 2.1,
every map f : C→ X has an approximate fixed-point.

Proof. Let Z, ϕ, and ϕ̂ be that of Proposition 2.4. Fix ε > 0. Since the compactum
Z is countable dimensional, so is conv(Z). An application of an argument of [7]
shows that there exist an ℵ0-simplex Xε ⊂ C and a map ϕε : conv(Z)→ Xε such
that ‖ϕ̂(z)−ϕε(z)‖ < ε/2, z ∈ conv(Z). Let S be ℵ0-simplex in C. By a theorem
of Haver [17] (see also [7, Note 4]), we have S ∈ AR. Apply Proposition 2.4 to
Y = S and to ξ, the inclusion of S into X . There exists a relatively compact η :
S→ conv(Z) with ‖ϕ̂ ◦ η(x)− x‖ < ε/2, x ∈ S. Let γ = ϕε ◦ η : X → Xε. We have
that ‖γ(x)− x‖ ≤ ‖ϕε ◦η(x)− ϕ̂◦η(x)‖+‖ϕ̂◦η(x)− x‖ ≤ ε/2 + ε/2= ε. �

Proof of Theorem 1.1. Applying Corollary 2.6, we conclude that f has an ap-
proximate fixed-point. By the compactness of X , f has a fixed-point. �

Reduction Fact 2.7. The assertion of Proposition 2.4 holds provided it does hold
for the class of spaces Y that are separable, metrizable, locally finite dimensional,
and locally compact.

Proof. Let Y be an arbitrarily separable, metrizable ANR, let ξ : Y → X be a map,
and let ε > 0. By [18, page 138], there exist a countable locally finite simplicial
complex |N| (considered in the metric topology) and maps

α : Y −→ |N|, β : |N| −→ Y (2.4)

such that

∥∥ξ(β ◦α(y)
)− ξ(y)

∥∥ < ε

2
, (2.5)
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y ∈ Y . The space |N| is separable, locally finite dimensional, and locally com-
pact. For the map ξ ◦β : |N| → X , we can find a relatively compact map η̃ : |N| →
conv(Z) with ‖ϕ̂ ◦ η̃(p)− ξ ◦ β(p)‖ < ε/2, p ∈ |N|. Set η = η̃ ◦ α : Y → conv(Z).
We see that η is relatively compact and ‖ϕ̂◦η(y)− ξ(y)‖ = ‖ϕ̂◦ η̃(α(y))− ξ(β ◦
α(y))‖+‖ξ(β ◦α(y))− ξ(y)‖ < ε/2 + ε/2= ε. �

Since every map of a countable locally finite simplicial metric complex into
X can be uniformly, arbitrarily closely approximated by a map whose range is
contained in an ℵ0-simplex S, Proposition 2.4 holds if we verify its assertion for
all Y = S, where S is such a simplex. In this way, Proposition 2.4 establishes a
property that is equivalent to the ℵ0-simplicial approximation property. A di-
rect argument for the ℵ0-simplicial approximation property in case X enjoys the
simplicial approximation property is not known to us. Also the relationship of
the finite-dimensional approximation property to both simplicial approxima-
tion properties is unclear.

The results of Proposition 2.4, Lemma 2.5, and Reduction Fact 2.7 can be ex-
tended to the uniformly contractible spaces X ; consequently, the fixed-point
property holds for such X . We say that ψ : conv(Z) → X is µ-affine (µ is an
equiconnecting mapX) if µ(ψ(z1),ψ(z2); t)=(1−t)z1 +tz2 for all z1, z2∈conv(Z)
and t ∈ I . Proposition 2.4 holds for a uniformly contractible compactum X if
ϕ admits a continuous µ-affine extension ϕ̂ : conv(Z)→ X , where conv(Z) is a
convex subset (of a vector space) with a metric topology that makes the con-
vex combination map (z1, z2; t)→ (1− t)z1 + tz2 continuous. Such an extension
can be obtained by inspecting the proof of Lemma 2.5. As in that proof, we em-
bed the compactum Z onto a linearly independent subset of �2. Next, extend ϕ
to (not necessarily continuous) ϕ̂ : conv(Z)→ X that is µ-affine. Finally, letting
d for a metric on X , ρ(z1, z2) = |‖z1 − z2‖|+ d(ϕ̂(z1), ϕ̂(z2)) defines a required
metric on conv(Z), a convex subset of �2. Before we show how to obtain ϕ̂, for
x1, . . . ,xn ∈ X and (t1, . . . , tn) ∈ sn = {(t1, . . . , tn) | ti ≥ 0 for all i and

∑n
i=1 ti = 1},

we inductively let

µn
(
x1, . . . ,xn; t1, . . . , tn

)= µn−1
(
x1, . . . ,xn−1; t1/

(
1− tn

)
, . . . , tn−1/

(
1− tn

))
(2.6)

if tn �= 1, and µn(x1, . . . ,xn; t1, . . . , tn)= xn otherwise; set µ1(x1;1)= x1. Now, well
order the set Z by a relation < and, for z =∑n

i=1 tizi where (t1, . . . , tn) ∈ sn and
z1, . . . , zn ∈ Z with z1 < ··· < zn, define ϕ̂(z) = µn(ϕ(z1), . . . ,ϕ(zn); t1, . . . , tn). It
is easily seen that ϕ̂ is µ-affine. Using the cross-section method (see [1, page
271]), we can show that conv(Z)= (conv(Z),ρ) is countable dimensional. Since
conv(Z) is locally contractible and contractible, by a theorem of Haver [17],
conv(Z) ∈ AR. To conclude the fixed-point property of X by such a general-
ized version of Proposition 2.4, we find a sequence of relatively compact maps
(ηn) of Y = conv(Z) with lim ϕ̂ ◦ ηn = f ◦ ϕ̂. By a generalized Schauder theorem
[13, page 94], there exists yn ∈ Y such that η(yn)= yn. We can assume that the
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sequence (ϕ̂(yn)) converges to x ∈ X . Such an x is a fixed-point of f because
f (x)= lim f (ϕ̂(yn))= lim ϕ̂(ηn(yn))= lim ϕ̂(yn)= x.

3. The proof of Proposition 2.4

This section contains the proof of Proposition 2.4. The proof will rely on Lemma
3.1, a purely topological fact, which is an abstraction on Cauty’s construction
of the resolution ϕ : Z → X (that will be provided in Section 4). However, after
completing the proof of Proposition 2.4, we give a rough sketch of the proof of
Lemma 3.1 for the reader who is not interested in all details.

Lemma 3.1. Let (X,d) be a metric space. There exist an inverse sequence (Zn,πn+1
n ),

where each Zn is a (finite-dimensional) compactum, a map kn : X → Zn, a finite
open cover {Wα | α ∈ A(n)} of Zn, n ∈ N, and a map ϕ : Z = lim←−(Zn,πn+1

n )→ X
that satisfy the following conditions:

(1) Z is a countable-dimensional compactum;
(2) d(ϕ(z), V̄α)≤ 2∆n whenever πn(z)∈Wα and α∈ A(n), where πn : Z → Zn

is an obvious projection and Vα = k−1
n (Wα), α∈ A(n);

(3) ∆n = sup{diamd(Vα) | α∈A(n)} →∞ as n→∞.

The space Z = lim←−(Zn,πn+1
n ) is equipped with a metric dZ , a restriction of

dZ((xn),(yn))=∑∞n=1 2−ndn(xn, yn) defined on
∏∞

n=1Zn, where each dn is a com-
patible, bounded by 1, metric on Zn.

Proof of Proposition 2.4. The convex compactum X will be equipped with the
metric d that is induced by an F-norm ‖ · ‖. Lemma 3.1 provides us with a com-
pactum Z and a map ϕ : Z → X that satisfy (1), (2), and (3). (Further on, the
countable dimensionality of Z will not be used.) Moreover, Z is assumed to be a
linearly independent subset of a metric linear space (F,| · |) such that the affine
extension ϕ̂ : conv(Z)→ X is continuous. Let ξ : Y → X be a map, and let ε > 0,
ε ≤ 1. Applying Reduction Fact 2.7, we may assume that Y is a locally finite-
dimensional, locally compact, separable, metrizable space. There exists an open
cover {Yi}∞i=1 such that, for every i, Yi is relatively compact, dim(Yi) ≤ i, and
Yi∩Yj =∅ whenever |i− j| > 1, see [14, page 291].

By the compactness of Z, for each i, there exists δi > 0 that satisfies

δi ≤ ε

2i+ 3
, dZ(z,z′) < δi =⇒ |z− z′| < 1

2(2i+ 3)i
(3.1)

for all z,z′ ∈ Z. Choose ni ∈N such that ni−1 < ni and max(2−ni ,∆ni) < δi/3. For
i and for every 1 ≤m ≤ ni, define �ni

m = {(πnim ◦ kni ◦ ξ)−1(B(z,2−ni)) | z ∈ Zm}
(here, B(z,r) stands for the open dm-ball in Zm that is centered at z with radius
r) and �ni

0 = {(kni ◦ ξ)−1(Wα) = ξ−1(Vα) | α ∈ A(ni)}. Write �0 = �ni
0 ∩�ni−1

0 ,
and define �i = �0∩

⋂ni−1
m=1 �ni−1

m ∩⋂ni
m=1 �ni

m , an open cover of Y . Here, for open
covers �1, . . . ,�p, we designate �1 ∩ ··· ∩�p = {A1 ∩ ··· ∩Ap | Ai ∈�i, i =
1, . . . , p}. Write � = {G∩Yi |G∈ �i for some i}. Pick an open cover � that is a
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star refinement of �. Using the fact dimYi ≤ i, find a partition of unity {λU}U∈�

such that supp(λU) = λ−1((0,1]) ⊂ U and
⋂i+2
k=1 supp(λUk ) =∅ if each Uk is a

subset of Yi. For each U ∈�, choose the smallest i ∈ N with U ⊂ Yi, and pick
zU ∈ Z such that πni(zU)∈ kni ◦ ξ(U). Define η(y)=∑U∈� λU(y)zU , y ∈ Y .

Fix y ∈ Y and write A(y)= {U | y ∈ supp(λU)}. Suppose i∈N is the first in-
dex such that y ∈ Yi. It may happen that y ∈ Yi+1. Consequently, the cardinality
of A(y) is at most 2i+ 3. It also follows that U(y) =⋃{U | U ∈ A(y)} ⊂ Yi ∪
Yi+1. We conclude that for each l = ni or ni+1, there exists α(l) ∈ A(l) such that
U(y) ⊂ (kl ◦ ξ)−1(Wα(l)). On the other hand, for each U ∈ A(y) and for a cer-
tain such l, we have πl(zU)∈ kl ◦ ξ(U); so, we haveU ⊂ (kl ◦ ξ)−1(Wα)= ξ−1(Vα)
and πl(zU)∈ kl ◦ ξ(U)⊂Wα for α∈ A(l), where l = ni or l = ni+1. It shows that
ξ(y) ∈ Vα and, by (2) of Lemma 3.1, that d(ϕ(zU), V̄α) ≤ 2∆l; hence, ‖ϕ(zU)−
ξ(y)‖ ≤ 3∆l <max(δi,δi+1) because l is either ni or ni+1. We can estimate

∥∥ϕ̂(η(y)
)− ξ(y)

∥∥=
∥∥∥∥∥

∑
U∈A(y)

λU(y)
(
ϕ
(
zU
)− ξ(y)

)∥∥∥∥∥
≤ (2i+ 3)

∥∥ϕ(zU)− ξ(y)
∥∥

≤ (2i+ 3)max
(
δi,δi+1

)
≤ ε.

(3.2)

The last inequality follows from the first part of (3.1). This shows (i).
To show (ii), we first partition the family A(y) into A1(y) and A2(y); U ∈

Aj(y) if and only if i + j − 1 is the first index so that U ⊂ Yi+ j−1, j = 1,2. As
previously, for each l = ni or ni+1 and m≤ l, there exists z(l,m) ∈ Zm such that

U(y)⊂ (πlm ◦ kl ◦ ξ)−1(
B
(
z(l,m),2−l

))
= (kl ◦ ξ)−1((

πnim
)−1(

B
(
z(l,m),2−l

)))
.

(3.3)

Hence, if πl(zU)∈ kl ◦ ξ(U), then πm(zU)∈ B(z(l,m),2−l). It follows that, given m
with 1≤m≤ ni, πm(zU)∈ B(z(ni,m),2−ni) for allU ∈A1(y); so, diamdm{πm(zU) |
U ∈A1(y)} ≤ 2−ni . Since

diamdZ (S)≤
∞∑
m=1

2−mdiamdm

(
πm(S)

)

≤
( ni∑
m=1

2−mdiam(S)

)
+ 2−ni for every S⊂ Z,

(3.4)

we conclude that diamdZ{zU |U ∈ A1(y)} ≤ 2−ni + 2−ni ≤ δi. In a similar way, we
show that diamdZ{zU |U ∈ A2(y)} ≤ 2−ni+1 + 2−ni+1 ≤ δi+1. Hence, by the second
part of (3.1),

∣∣zU1 − zU ′1
∣∣ < 1

2(2i+ 3)i
,

∣∣zU2 − zU ′2
∣∣ < 1

2(2i+ 5)(i+ 1)
(3.5)
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for all zU1 , zU ′1 ∈ A1(y) and all zU2 , zU ′2 ∈ A2(y). Fix zUj , where Uj ∈ Aj(y), and
let t j =

∑{λU(y) |U ∈ Aj(y)}, j = 1,2. From (3.5), we obtain

∣∣η(y)− (t1zU1 + t2zU2

)∣∣=
∣∣∣∣∣

∑
U∈A(y)

λU(y)
(
zU − zU1

)
+

∑
U∈A2(y)

λU(y)
(
zU − zU2

)∣∣∣∣∣
≤ (2i+ 3)

(
1

2(2i+ 3)i
+

1
2(2i+ 5)(i+ 1)

)
<

1
i
.

(3.6)

Now, if {η(yk)} is a sequence in conv(Z), then either {yk} has a subsequence
contained in some Yi (this subsequence, in turn, contains a convergent subse-
quence because η(Ȳi) is compact), or else it contains a subsequence {yi(n)} such
that yi(n) ∈ Yi(n) for all n. In the latter instance, from the above estimate, we have
|η(yi(n))− (t1nz

1
n + t2nz

1
n)| ≤ 1/i(n) for some t1n, t

2
n ≥ 0 with t1n + t2n = 1 and some

z1
n,z

2
n ∈ Z. By the compactness of Z, it now easily follows that {η(yi(n))} con-

tains a subsequence that converges to conv2(Z). Since conv2(Z) is compact, (ii)
is shown. �

In what follows, we present a general overview of the argument that justifies
Lemma 3.1. More precisely, we give a sketch of the proof of Lemma 3.1 assuming
that {Vα} and the inverse sequence (Zn,πn+1

n ) satisfy conditions (3.7), (3.8), and
(3.9). We will not comment on the construction of the sequence (Zn,πn+1

n ). This
will be done in Section 4.

Remark 3.2. The continuity of ϕ is easily obtained from condition (2) of Lemma
3.1 as follows. For every n, {π−1

n (Wα) | α ∈ A(n)} is an open cover of Z. If
z,z′ ∈ π−1

n (Wα), then d(ϕ(z),ϕ(z′)) ≤ d(ϕ(z), V̄α) + diam(V̄α) + d(ϕ(z′), V̄α) ≤
5∆n→ 0.

Now, we first define ϕ in case (3.7) holds.

Remark 3.3. Fix z ∈ Z and let A(z)= {α∈ A(n) | πn(z) ∈Wα}. Define Fn(z)=⋂{V̄α | α∈A(z)}. Assume

dH
(
Fn(z),Fm(z)

)≤ 2∆n (3.7)

for 1 ≤ n ≤ m (here, dH stands for the Hausdorff metric induced by d). Let
ϕ(z) = x, where {x} = limdH Fn(z). Note that (3.7), together with condition (3)
of Lemma 3.1, implies that the sequence {Fn(z)} converges to a singleton in the
hyperspace of X ; hence, ϕ is well defined. On the other hand, Fn(z)⊂ V̄α for all
α∈ A(z). Applying (3.7) again, we easily obtain (2) of Lemma 3.1.

Next, we indicate how the countable dimensionality of Z can be achieved
(here, we can compare this argument with that of Zarichnyı̆ [30]). We stress that
the countable dimensionality of Z is essential for deducing Corollary 2.6 from
Proposition 2.4.
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Remark 3.4. Suppose that each Zn is a tower of compacta Zkn (in Section 4, de-
noted by Mk

n), 0≤ k < n, such that

dim
(
Zkn
)≤ k, (

πn+1
n

)−1(
Zkn
)⊂ Zkn+1 (3.8)

for every 0≤ k < n. Furthermore, suppose Zn \Zn−1
n =⋃�n for a certain family

�n = {Uβ | β ∈ B(n)} that consists of finite, pairwise disjoint open subsets of Zn
with

diamdm

(
πnm
(
Uβ
))≤ 2−n+1 (3.9)

for every 0≤m < n and β ∈ B(n). Then, we have Z = P0∪
⋃∞
n=1Pn, where P0 =⋂∞

n=1π
−1
n (

⋃
�n) and Pn = π−1

n (Zn−1
n ). Since condition (3.9) yields diamdZ (π−1

n

(UβB)) < 2−n+2 for every β ∈ B(n), n ∈ N, it follows that for every n, P0 can be
covered by the finite family {π−1

n (Uβ) | β ∈ B(n)} which consists of open pair-
wise disjoint sets of diameter < 2−n+2; hence, dim(P0) ≤ 0. On the other hand,
it can be easily checked that Pn = π−1

n (Zn−1
n ) = lim←−(πm(Pn),πkm | πk(Pn)). From

(3.8), we infer that πm(Pn)⊂ Zn−1
m (and consequently, dim(πm(Pn))≤ n− 1 be-

cause dim(Zn−1
m )≤ n− 1) for all m≥ n. This yields dim(Pn)≤ n− 1.

In the case that X is merely a uniformly contractible compactum, the proof
of Proposition 2.4 requires the following adjustments (that were initiated at the
end of Section 2). Formally, the definition of η is the same, but to guarantee
Proposition 2.4(i) and (ii), we must modify the choice of δi made in condition
(3.1). Assuming δi+1 ≤ δi, it suffices to have d(µ2i+3(x1, . . . ,x2i+3; t1, . . . , t2i+3),x)≤
ε for d(xi,x) < δi and i = 1, . . . ,2i+ 3, and ρ(t1z1 + ···+ t2i+5z2i+5 + t′1z

′
1 + ···+

t′2i+5z
′
2i+5, tz+ t′z′) < 1/i for dZ(zi,z) < δi and dZ(z′i , z′) < δi, i= 1, . . . ,2i+ 5, where

(t1, . . . , t2i+5, t
′
1, . . . , t

′
2i+5)∈ s4i+10 and t =∑2i+5

i=1 ti, t
′ =∑2i+5

i=1 t
′
i .

4. The proof of Lemma 3.1

We begin with a statement of the three main points of Cauty’s original construc-
tion of ϕ : Z → X . Having done this, we show how Lemma 3.1 can be deduced.
The detailed Cauty’s construction is performed in Sections 4.1 and 4.2.

Step 1. With the metric compactumX = (X,d), we associate an inverse sequence
(Kn,qn) of finite simplicial complexes Kn, dim(Kn)≤ n, which are nerves of cer-
tain open finite covers �n = {Vα | α∈ An} of X , which is indexed in such a way
that α �= α′ implies Vα �=Vα′ . Writing Kn = nerv(�n), we identify elements of An
with the vertices of Kn. Later, the set of the vertices of K is denoted by Vert(K);
for a vertex α ∈ Vert(K), st(α,K) stands for the open star of α in |K|, the body
of K . We further assume that

(K1) �n+1 ≺ �n (i.e., �n+1 is inscribed in �n) and the simplicial map qn :
Kn+1→ Kn is onto, which is a consequence of (K2);



418 Revisiting Cauty’s proof of the Schauder conjecture

(K2) each canonical map

ψn : X −→ ∣∣Kn∣∣ (4.1)

is onto; recall that ψ−1
n (st(α,Kn))=Vα, α∈ A;

(K3) dim(Kn)≤ n;
(K4) ∆n = sup{diamd(Vα) | α∈An} → 0 as n→∞.

We are not going to elaborate on justifying the assertion of this step which, in
a sense, belongs to the topological folklore (see [23, 24, 27]). Note that though
we could have additionally arranged X = lim←−(Kn,qn), we do not request that.
Our objective is just the opposite: to “modify” this inverse sequence in order to
get a countable-dimensional compactum as its limit.

Step 2. The space Z is constructed as the inverse limit of the sequence (Zn,πn+1
n )

of finite-dimensional compacta Zn so that |Kn| ⊂ Zn and |Kn| is a retract of Zn;
that is, there exists a retraction ρn : Zn→ |Kn|. Moreover, we have

πn+1
n

(∣∣Kn+1
∣∣)⊃ ∣∣Kn∣∣ (4.2)

for every n. The compactum Zn is built in two stages; first, we enlarge Kn to yet

another finite complex Mn =M(K (kn)
n ,n), and then the body |Mn| is enlarged to

the compactum Zn. Write πn : Z = lim←−(Zn,πn+1
n )→ Zn for the natural projection.

Condition (4.2) guarantees that πn(Z)⊃ |Kn| for every n.

Step 3. For a point z ∈ Z, we define a subcompactum Fn(z) ⊂ X as follows. To
z we assign the smallest simplex sn(z)∈ Kn containing ρn ◦πn(z). Then Fn(z)=⋂{V̄α | Vα ∈ �n is a vertex of sn(z)}. For every z, the sequence of compacta
(Fn(z)) is convergent to a singleton; we set

ϕ(z)= lim
n
Fn(z). (4.3)

Lemma 4.1, a counterpart of Lemma 3.1, contains a fact that is detached from
Cauty’s original work related to the construction of ϕ : Z → X . Following the
statement, we note that actually Lemma 4.1 implies Lemma 3.1; this shows that
the original construction of Cauty yields Lemma 3.1. The proof of Lemma 4.1
will be given in Sections 4.1 and 4.2.

Lemma 4.1. Steps 1, 2, and 3 can be performed in order, for Z = lim←−(Zn,πn+1
n ), to

be a countable-dimensional compactum and, for the map ϕ : Z → X , to satisfy the
following condition:

d
(
ϕ(z), V̄α

)≤ 2∆n (4.4a)

for all z ∈ Z and all α∈ An, such that ρn ◦πn(z)∈ st(α,Kn).
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Proof of Lemma 3.1. Let Kn, {Vα | α ∈ An}, ρn, and ψn be that of Lemma 4.1.
Designate Wα = ρ−1

n (st(α,Vα)), A(n)= An, and kn = ψn. We see that ψ−1
n (Wα)=

ψ−1
n (st(α,Vα))=Vα for ρn ◦πn(z)∈st(α,Kn) if and only if πn(z)∈ρ−1

n (st(α,Kn))=
Wα. Now, conditions (1), (2), and (3) of Lemma 3.1 follow from (K4) and (4.4a)
of Lemma 4.1. �

Note 4.2. In deriving Proposition 2.4 from Lemma 4.1, the full power of (4.4a)
is needed only to show the continuity of ϕ. (As in Remark 3.2, for every n, {(ρn ◦
πn)−1(st(α,Kn)) | α∈ An} is an open cover of Z. Now, if z,z′ ∈ (ρn ◦πn)−1(st(α,
Kn)), then d(ϕ(z),ϕ(z′))≤ d(ϕ(z), V̄α) + diam(V̄α) + d(ϕ(z′), V̄α) ≤ 5∆n. Since
lim∆n = 0, the continuity of ϕ follows.) The remaining part of the proof of
Proposition 2.4 employs the following weaker version of condition (4.4a):

d
(
ϕ(z), V̄α

)≤ 2∆n (4.4b)

for all z ∈ Z and all α∈ An, such that πn(z)∈ |Kn| and πn(z)∈ st(α,Kn).

4.1. The compactumZ. In this subsection, which is split in a few units, we grad-
ually provide details related to the statement of Step 2.

4.1.1. Construction and properties of M(K,n). Let K , a finite complex, and n =
0,1,2, . . . be given so that dim(K) ≤ n. For a simplex σ ∈ K , bσ denotes the
barycenter of σ . ByK (1) we denote the first barycentric subdivision ofK (K (l) de-
notes the lth barycentric subdivision ofK);K (1) consists of simplices (bσ0 , . . . ,bσk )
where σ0 ≤ ··· ≤ σk (i.e., σ0 ⊆ ··· ⊆ σk), σj ∈ K . Mimicking this pattern, we
construct a finite simplex M(K,n) associated with K and n. We let

Vert
(
M(K,n)

)= {v = (bσ ,m) | σ ∈ K, m∈ {dim(σ),1 + dim(σ), . . . ,n
}}
.

(4.5)

A finite set of vertices {v0 = (bσ0 ,m0), . . . ,vk = (bσk ,mk)} is a simplex of M(K,n)
if

σo ≤ ··· ≤ σk, m0 < ··· <mk. (4.6)

The retraction r = r(K,n) : M(K,n)→ K (1). Define r((bσ ,m)) = bσ to obtain a
simplicial map ofM(K,n) ontoK (1). IdentifyingK (1) with a subcomplexM(K,n)
generated by the vertices (bσ ,dim(σ)), we see that such r = r(K,n) is a simplicial
retraction of M(K,n) onto K (1).

The subcomplex Mk(K,n). For 0 ≤ k ≤ n, define Mk(K,n) as a subcomplex of
M(K,n) generated by the vertices (bσ ,m) with m ≤ k. Notice that K (1) ⊂
Mdim(σ)(K,n) and Mn(K,n)=M(K,n).
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The map v(x)= v(K,n)(x). For x ∈ |M(K,n)|, define

v(x)=
∑{

tv(x) | v = (bσ ,m)∈Vert
(
M(K,n)

)
with m> dim(σ)

}
, (4.7)

where tv(x) stands for the vth barycentric coordinate of x. Note that v||K| = 0.
The following lemma shows that K (1) is a deformation retract of M(K,n);

furthermore, there exists a deformation (whose other technical properties are
listed below) that preserves the fibres of r.

Lemma 4.3 (cf. [5, Lemma 4]). There exists a homotopyH : |M(K,n)|→|M(K,n)|
satisfying

(i) H(x,0)= x for every x ∈ |M(K,n)| and H(x, t)= x for every x ∈ |K| and
0≤ t ≤ 1,

(ii) H(x,1)= r(x) for every x ∈ |M(K,n)|,
(iii) (for all (x, t)∈ |M(K,n)|× [0,1]) [r(H(x, t))= r(x)],
(iv) (for all 0≤ k ≤ n) [x ∈ |Mk(K,n)| ⇒H(x, t)∈ |Mk(K,n)|],
(v) (for all 0 ≤ k ≤ n) [x ∈ |Mk(K,n)| ⇒ H(x, t) = H(x,k/n) = H(x,1) if

k/n≤ t ≤ 1],
(vi) (for all x ∈ |M(K,n)|) [t→ v(H(x, t)) is decreasing],

(vii) (for all x ∈ |M(K,n)|) (for all t ∈ [0,1]) (for all v = (bτ ,m)) [tv(H(x, t)) �=
0 ⇒ m = dim(τ) or m ≤ k], where k = max{m | v = (bσ ,m) with m >
dim(σ) and tv(x) �= 0},

(viii) (for all x ∈ |M(K,n)|) (for all v = (bσ ,m) ∈ Vert(M(K,n)) with m > 0)
[tv(x) > 0 and dim(σ) < m⇒ [(m− 1)/n,m/n] � t → tv(H(x, t)) linearly
decreases to zero]; in the remaining case (i.e., whenever tv(x)= 0 or dim(σ)
=m) for every (m− 1)/n≤ t ≤m/n, tv(H(x, t)) is constant.

Proof. LettingH(x,0)=x, we first defineH over the interval 0≤ t ≤ 1/n. Namely,
for v = (bσ ,m)∈ Vert(M(K,n)), we let H(v, t)= v if m= dim(σ), and H(v, t)=
(1−nt)(bσ ,m) +nt(bσ ,dim(σ)) ifm= 1. Extend this homotopy affinely with re-
spect to t over all simplices of M(K,n), and notice that H(x,1/n) belongs to a
subcomplex L1 of M(K,n) that is generated by the vertices v = (bσ ,m) for which
either m= dim(σ) or m≥ 2.

For 1/n≤ t ≤ 2/n,H(x, t) will be of the formG(H(x,1/n), t), where G is a cer-
tain homotopy defined on L1 × [1/n,2/n]. Namely, for v = (bσ ,m) ∈ Vert(L1),
let G(v, t)= v if m �= 2, and G(v, t)= (2−nt)(bσ ,m) + (nt− 1)(bσ ,dim(σ)), oth-
erwise. To extend G over the simplices of L1, it is enough to consider a sim-
plex {(bσ0 ,m0), . . . ,(bσk ,mk)} ∈ L1 (m0 < ··· < mk) such that, for some j ≥ 1,
dim(σj) < mj = 2. Then mj−1 < 2, and hence mj−1 = dimσj−1 ≤ dimσj . It fol-
lows that {(bσ0 ,m0), . . . ,(bσj−1 ,mj−1),(bσj ,dimσj),(bσj ,mj), . . . ,(bσk ,mk)} is a sim-
plex of L1 (we obviously have (bσj−1 ,mj−1) = (bσj ,dimσj) if dimσj−1 = dimσj).
This allows us to extend G affinely with respect to t over |L1| and conclude that
H(x,2/n) will be a point of a subcomplex L2 generated by the vertices v = (bσ ,m)
for which either m= dim(σ) or m≥ 3.
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After finitely many steps, we finally define H over the interval [(n− 1)/n,1]
such that H(x,1) ∈ Ln = K (1). Since, for every vertex v, we have r ◦H(v, t) =
r(v), it follows that r ◦H(x, t)= r(x) for every x; in particular, H(x,1)= r(x).
Properties (iv), (v), (vi), (vii), and (viii) also follow. �

Corollary 4.4. The following holds:

(i) (for all σ ∈ K) [Dσ = r−1(|σ|) is contractible],
(ii) the family {Dσ \ |Mn−1(K,n)| | σ ∈ K} is finite and consists of open, pair-

wise disjoint sets of |M(K,n)|.

Proof. Item (i) follows from Lemma 4.3(iii). To prove item (ii), observe that for
each σ ∈ K , r−1(σ) \ |Mn−1(K,n)| = st(v,M(K,n)), where st(v,M(K,n)) is the
open star of the vertex v = (bσ ,n)∈M(K,n). No such stars have a point in com-
mon since there is no simplex in M(K,n) with two vertices of this kind (i.e., for
any other vertex (bτ ,m), we must have m< n). �

Corollary 4.5 ([5, Lemma 5]). For every ε>0, there exists a map hε : |M(K,n)|→
|M(K,n)| such that

(i) hε||K| = id|K|,
(ii) (for all x ∈ |M(K,n)|) [r(hε(x))= r(x)],

(iii) (for all 0≤ k ≤ n) [h−1
ε (|Mk(K,n)|)= |Mk(K,n)|],

(iv) (for all x ∈ |M(K,n)|) [v(hε(x))≤ ε].

Proof. Let H be a homotopy of Lemma 4.3. Define α(x) = sup{t ∈ [0,1] |
v(H(x, t)) ≥ ε} (let sup∅= 0) and β(x) = inf{t ∈ [0,1] | v(H(x, t)) = 0}; α is
upper semicontinuous and β is lower semicontinuous. Denote by G the comple-
ment of β−1(0); G is an open set. By Lemma 4.3(vi), for all x ∈ G, α(x) < β(x).
There exists a continuous function γ : G→ [0,1] such that α(x) < γ(x) < β(x),
x ∈G. Extend γ to a (necessarily) continuous function over the whole |M(K,n)|
by letting γ(x)= 0 off G. Finally, let hε(x)=H(x,γ(x)).

Properties (i), (ii), and (iv) follow from those (i) and (iii) of Lemma 4.3 and
the definition of α. Taking into account Lemma 4.3(iv), property (iii) reduces to
h−1
ε (|Mk(K,n)|) ⊂ |Mk(K,n)| for 0 ≤ k ≤ n. To show this, let x �∈ |Mk(K,n)|,

and additionally, x �∈ |K|; the latter implies β(x) > 0. Find the smallest sim-
plex {(bσ0 ,m0), . . . ,(bσp ,mp)} containing x. Then mp > k and, by Lemma 4.3(v),
H(x, t)=H(x,mp/n)∈ |K| for all t ≥mp/n. Since γ(x) < β(x)≤mp/n, by an ap-
plication of Lemma 4.3(viii) to the vertex v = (bσp ,mp), we get tv(H(x,γ(x))) �=
0; hence, hε(x) �∈ |Mk(K,n)|. �

For l≥1, consider the complexM(K (l),n) associated withK (l), the lth barycen-
tric subdivision of K . Together with the map r : M(K,n)→ K (1), we consider
r1 = r(K (l),n) : M(K (l),n)→ (K (l))(1) = K (l+1). In the next lemma, we list prop-
erties of an important map |M(K (l),n)| → |M(K,n)| that will be used in con-
structing πn+1

n .
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Lemma 4.6 ([5, Lemma 6]). There exists f : |M(K (l),n)| → |M(K,n)| satisfying

(i) f ||K| = id|K|,
(ii) (for all x ∈ |M(K (l),n)|) [d(r( f (x)), r1(x)) < ε],

(iii) (for all 0≤ k ≤ n) [ f −1(|Mk(K,n)|)⊂ |Mk(K (l),n)|],
(iv) (for all σ ∈ K (l)) [ f (r−1

1 (|σ|))⊂ r−1(|σ|)],
(v) (for all x ∈ |M(K (l),n)|) [v( f (x)) < ε].

Proof. Notice that if f satisfies (i), (ii), (iii), and (iv), then, letting hε be that
of Corollary 4.5, hε ◦ f satisfies all conditions (i), (ii), (iii), (iv), and (v). Fur-
thermore, we claim that it is enough to consider the case of l = 1. Suppose
fi : |M(K (i),n)| = |M((K (i−1))(1),n)| → |M(K (i−1),n)|, 1 ≤ i ≤ l, has been con-
structed in order to satisfy conditions (i), (ii), (iii), (iv), (v) (with a suitable
εi > 0), and (vi) below. Then the composition f1 ◦ ··· ◦ fl can serve for f .

We use induction with respect to dim(K) to construct the requested
f : |M(K (1),n)| → |M(K,n)|; we impose the following extra condition on f :

(vi) (for all x ∈ |Mk(K (1),n)|) (for all v = (bσ ,m)∈Vert(M(K,n))) [tv( f (x))
�= 0⇒m= dim(σ) or m≤ k].

If dim(K) = 0, then f = id will work. So, letting dim(K) = d > 0, we may
assume that the assertion of Lemma 4.6 holds for all complexes of dimension
less than or equal to d− 1. Denote by Kd−1 the (d− 1) skeleton of K and let f ′ :

|M(K (1)
d−1,n)| = r−1

1 (|Kd−1|)→ |M(Kd−1,n)| = r−1(|Kd−1|) be a map that satisfies
(i), (ii), (iii), (iv), and (vi) with ε > 0. Our goal is to extend f ′ to a required map
f step by step over all simplices of dimension d.

Fix s∈ K , dim(s)=d, and let bs be its barycenter. WriteV={v ∈Vert(M(K (1),
n)) | r1(v)∈ s(2)} and let

S= {v ∈V | r1(v)∈ st
(
bs,K

(2))}, T = {v ∈V | r1(v)∈ (∂s)(2)}; (4.8)

we have V = S∪T . For x ∈ r−1
1 (|s|), define

α(x)=
∑
v∈S

tv(x), β(x)=
∑
v∈T

tv(x); (4.9)

clearly, α(x) + β(x)= 1. First, we define auxiliary maps ξ : r−1
1 (int|s|)→ r−1(bs)

by

ξ(x)=
∑

v=(bσ ,m)∈S

tv(x)
α(x)

(
bs,max(m,d)

)
, (4.10)

and η : r−1
1 (|s| \ |st(bs,K (2))|)→ r−1

1 (|∂s|) by

η(x)=
∑
v∈T

tv(x)
β(x)

v. (4.11)
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We let π = ρ ◦ r1 : r−1
1 (|s| \ {bs})→ |∂s|, where ρ : |s| \ {bs} → |∂s| is the radial

projection. For x ∈ r−1
1 (|s| \ {bs}), the equation

r1(x)= (1−µ(x)
)
π(x) +µ(x)bs (4.12)

determines a continuous function µ : r−1
1 (|s| \ {bs})→ [0,1].

Choose open sets U1,U2 ⊂ r−1
1 (|s|) \ |s| such that r−1

1 (|∂s|) \ |s| ⊂ U1 ⊂ U2

and

Ū2 ⊂ r−1
1

(|s| \∣∣st
(
bs,K

(2))∣∣), Ū2∩|s| = |∂s|, Ū1 ⊂U2∪|∂s|; (4.13)

here, the closure is taken in r−1
1 (|s|). Finally, we employ two steering functions

γ,δ : r−1
1 (|s|) \ |s| → [0,1] such that

γ|r−1
1

(|∂s|) \ |s| = 0, γ(x)= 1 if x �∈U1,

δ|U1 = 0, δ(x)= 1 if x �∈U2.
(4.14)

Letting H be a homotopy of Lemma 4.3, we define a required map f |r−1
1 (|s|) :

r−1
1 (|s|)→ r−1(|s|) by

f (x)=




f ′(x) if x ∈ r−1
1

(|∂s|),(
1−µ(x)

)
H
(
f ′ ◦η(x),γ(x)

)
+µ(x)ξ(x) if x ∈ Ū1 \ r−1

1

(|∂s|),(
1−µ(x)

)[(
1− δ(x)

)
r ◦ f ′ ◦η(x) + δ(x)π(x)

]
+µ(x)ξ(x)

if x ∈ Ū2 \
(
U1∪|s|

)
,(

1−µ(x)
)
π(x) +µ(x)ξ(x) if x ∈ r−1

1

(
int|s| \ {bs}) \U2,

ξ(x) if x ∈ r−1
1

({
bs
})
.

(4.15)
By the properties of γ and δ, the formulas agree on the respective boundaries.

So, f will be well defined if we show that each pair

(a) π(x) and ξ(x),
(b) r ◦ f ′ ◦ η(x) and π(x), and furthermore, (1− δ)r ◦ f ′ ◦ η(x) + δπ(x)

and ξ(x) for 0≤ δ ≤ 1,
(c) H( f ′ ◦η(x),γ(x)) and ξ(x)

belongs to a simplex of M(K,n) for a respective x ∈ r−1
1 (int|s| \ {bs}).

To show (a), find τ ∈ (∂s)(1) ⊂M(K,n) with π(x) ∈ |τ|. Let τ̂ ∈M(K,n) be
the simplex that consists of the vertices of τ and all the vertices of the form
(bs,m), d ≤ m ≤ n; in particular τ ≤ τ̂. By the definition of ξ, we have that
π(x), ξ(x)∈ |τ̂|.
Sublemma 4.7. For x ∈ r−1

1 (int|s|), let {v0 = (bσ0 ,m0), . . . ,vp = (bσp ,mp)} ⊂ V ,
where σ0 ≤ ··· ≤ σp and m0 < ··· < mp, be the smallest simplex of M(K (1),n)
containing x. Then

(i) (∃0≤ q ≤ p− 1) [σi ∈ (∂s)(1)⇐⇒ 0≤ i≤ q],
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(ii) (bσp ,mp)∈ S and mp ≥ dim(σp)= d,
(iii) if η(x) is defined, then η(x)∈ {v0, . . . ,vq},
(iv) ξ(x) is an element of the simplex {(bs,max(d,mq+1)), . . . ,(bs,max(d,mp))}.
To justify (b), assume that x ∈ r−1

1 (int|s| \ |st(bs,K (2))|). With τ as above
and σq as in Sublemma 4.7(i), we have |σq| ⊂ |τ|. It follows that r1(η(x)) ∈
|σq| ⊂ |τ| (see Sublemma 4.7(iii)) and, by Lemma 4.6(iv) applied to f ′, we ob-
tain r( f ′(η(x)))∈ |τ|. This shows that r ◦ f ′ ◦η(x),π(x)∈ |τ| ⊂ |τ̂| and, by the
proof of item (a), (1− δ)r ◦ f ′ ◦η(x) + δπ(x), ξ(x)∈ |τ̂|.

To show (c), assume x ∈ U1. By Sublemma 4.7(iii), η(x) ∈ |Mmq(K (1)
d−1,n)|.

Applying Lemma 4.3(vii) to f ′ (with η(x) and k =mq), for every v = (bσ ,m)∈
Vert(M(Kd−1,n)) with tv( f ′(η(x))) �= 0, either m = dim(σ) or m ≤ mq. Let σ ′

be the smallest simplex of M(Kd−1,n) such that H( f ′ ◦ η(x),γ(x)) ∈ |σ ′|. Take
any vertex (bτ,m) of σ ′; note that τ ∈ ∂s. By Lemma 4.3(vii), if m> dim(τ), then
m≤mq. It then follows thatm≤max(dim(τ),mq) <max(d,mq+1). Enlarge σ ′ to
the simplex σ̂ ′ by adding to the vertices of σ ′ all the vertices of the form (bs,k),
where max(d,mq+1) ≤ k ≤ n. Taking into account Sublemma 4.7(iv), it is now
clear that H( f ′ ◦η(x),γ(x)), ξ(x)∈ |σ̂ ′|.

Now, we verify the continuity of f . By the continuity of all involved maps in
the formula for f , f is continuous on r−1

1 (int|s| \ {bs}). Therefore, it is enough
to show that f is continuous at x0 in the following three cases: x0 ∈ r−1

1 (bs), x0 ∈
r−1

1 (|∂s|) \ |∂s|, and x0 ∈ |∂s|. Let {xi}∞i=1 ⊂ r−1
1 (int|s| \ {bs}) with limxi = x0.

If x0 ∈ r−1
1 (bs), then limµ(xi) = 1 because limr1(xi) = bs. Consequently,

lim f (xi)= lim[(1−µ(xi))π(xi) +µ(xi)ξ(xi)]= ξ(x0)= f (x0). If x0 ∈ r−1
1 (|∂s|) \

|∂s|, then limγ(xi)= 0, limµ(xi)= 0, and limη(xi)= η(x0)= x0 (provided η(xi)
is well defined). Consequently,

limH
(
f ′
(
η
(
xi
))
,γ
(
xi
))=H( f ′(η(x0

))
,0
)= f ′

(
η
(
x0
))= f ′

(
x0
)= f

(
x0
)
,

lim f
(
xi
)= lim

[(
1−µ(xi))H( f ′(η(xi)),γ(xi))+µ

(
xi
)
ξ
(
xi
)]= f

(
x0
)
.
(4.16)

Let x0 ∈ |∂s|. The following family, consisting of sets:

O(W,λ)= {(1− t)y + tz ∈ r−1(|s|) | y ∈W, z ∈ r−1(|s|), 0≤ t ≤ λ}, (4.17)

whereW runs over all neighborhoods of x0 in r−1(|∂s|) and 0 < λ < 1, is a base of
neighborhoods of x0 in r−1(|s|). Fix such a neighborhood O(W,λ) of x0. (Below,
we evaluate maps at x only if they are well defined at such an x.) The continuity
of π and the facts that π(x0)= x0 and limx→x0 H( f ′(η(x)),γ(x))= x0 imply that
there exists a neighborhood P of x0 in r−1

1 (|s|) such thatH( f ′(η(x)),γ(x)),π(x)∈
W provided x ∈ P. On the other hand, since r( f ′(η(x0))) = x0 and π(x0) = x0,
we can assume that (1− δ)r( f ′(η(x))) + δπ(x) ∈W for every x ∈ P and every
0≤ δ ≤ 1. We can also assume that for x ∈ P, µ(x)≤ λ because µ(x0)= 0. Now,
for x ∈ P, (1 − µ(x))π(x) + µ(x)ξ(x), (1 − µ(x))H( f ′(η(x)),γ(x)) + µ(x)ξ(x),



Tadeusz Dobrowolski 425

and (1− µ(x))[(1− δ(x))r( f ′(η(x))) + δ(x)π(x)] + µ(x)ξ(x) belong to O(W,λ).
This completes the proof of the continuity of f .

Now, we verify properties (i), (ii), (iii), and (iv) of Lemma 4.6 and (vi). We
need to consider a point x ∈ r−1

1 (int|s|) only. If, additionally, x �∈ U2, then
r( f (x)) = r1(x). By the inductive assumption, d(r( f (y)), r1(y)) < ε for all y ∈
r−1(|∂s|); by the continuity of the maps involved, this inequality holds for all
x in some neighborhood of r−1

1 (|∂s|) in r−1
1 (|s|). Taking U2 to be contained in

that neighborhood, we see that d(r( f (x)), r1(x)) < ε for all x. This shows (i).
If x ∈ int|s|, x �= bs, then f (x) = (1− µ(x))π(x) + µ(x)bs = r1(x) = x; if x = bs,
then f (x)= ξ(bs)= bs. This shows (ii).

To show (iii), let x ∈ r−1
1 (int|s|) \ |Mk(K (1),n)|, 0 ≤ k ≤ n. Using the nota-

tion of Sublemma 4.7, mp > k; by Sublemma 4.7(ii), vp ∈ S and max(mp,d) =
mp > k. Now, looking at Sublemma 4.7(iv), for the vertex v = (bs,max(mp,d)),
we have tv(ξ(x)) �= 0; consequently, ξ(x) �∈ |Mk(K (1),n)|. This, together with the
fact that µ(x) > 0, yields f (x) �∈ |Mk(K (1),n)| because ξ(x) shows up in all the
formulas defining f (x).

To show (iv), fix σ ∈ K (1) and x ∈ r−1
1 (|σ|)∩ r−1

1 (int|s|). Using the nota-
tion of Sublemma 4.7, we have σp ≤ σ . This implies that both r(ξ(x)) = bs and
r(π(x))= π(x) belong to |σ|, and r1(η(x))∈ |σ|∩ |∂s| (use Sublemma 4.7(iii)).
By an application of Lemma 4.6(iv) to f ′, we infer that r( f ′ ◦ η(x)) ∈ |σ| ∩
|∂s| ⊂ |σ|. Since r(H( f ′ ◦ η(x),γ(x))) = r( f ′ ◦ η(x)), we obtain H( f ′ ◦ η(x),
γ(x)) ∈ |σ|. (All maps are evaluated at x if they are defined at such an x.) Fi-
nally, using the fact that r is simplicial and looking at the formulas that define f ,
we conclude that r( f (x))∈ |σ|.

To show property (vi), let x ∈ |Mk(K (1),n)∩ r−1
1 (int|s|), 0 ≤ k ≤ n. We will

examine v = (bσ ,m) ∈ Vert(M(K,n)) for which tv( f (x)) �= 0 and m > dim(σ).
Using the notation of Sublemma 4.7, by (iii), we obviously have mp ≤ k and
η(x)∈ |Mk(Kd−1,n)|. Now, as in the proof of item (c), by an application of (vi)
to f ′ and Sublemma 4.7(vii), we infer that if tv(H( f ′ ◦η(x),γ(x))) �= 0, thenm≤
k. On the other hand, by Sublemma 4.7(iv), we see that if tv(ξ(x)) �= 0, then m≤
max(mp,d)≤mp ≤ k (see Sublemma 4.7(ii)). Finally, since tv( f (x)) �= 0 implies
either tv(H( f ′ ◦η(x),γ(x))) �= 0 or tv(ξ(x)) �= 0, we complete the proof by noting
that in both these cases m≤ k. �

4.1.2. The compacta Zn and the retractions ρn : Zn→ |Kn|. To the complex Kn, we
assign the finite complex

Mn =M
(
K (kn),n

)
(4.18)

for a certain kn > kn−1 (which will be provided later), and we write

rn = r
(
K (kn)
n ,n

)
:Mn =M

(
K (kn),n

)−→ K (kn+1)
n = (K (kn)

n

)(1)
. (4.19)
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The set Cσ . For a simplex σ ∈ K (kn)
n (not just σ ∈ K (kn+1)

n ), we let

Dσ = r−1
n

(|σ|), Cσ =Dσ × [0,1]. (4.20)

We write [σ,x, t] for a typical point of (x, t)∈Dσ × [0,1]= Cσ and identify Dσ �
x→ [σ,x,0]∈ Cσ . Write pn : Cσ →Dσ for the obvious retraction given by

pn
(
[σ,x, t]

)= x ∀x ∈Dσ, 0≤ t ≤ 1. (4.21)

The space Zn. We let

Zn =
∣∣Mn

∣∣∪⋃{
Cσ | σ ∈ K (kn)

n

}
, (4.22)

where Cσ are attached to |Mn| in such a way that Cσ ∩Cτ =Dσ ∩Dτ for σ �= τ.
Clearly, Zn is a finite-dimensional metric compactum; we let dn ≤ 1 to be a com-
patible metric on Zn. Now, pn gives rise to a retraction ρn : Zn → |Mn| defined
by

ρn = rn ◦ pn : Zn −→
∣∣Kn∣∣. (4.23)

The map x→ v(K (kn)
n ,n)(x), x ∈ |Mn|, gives rise to a map vn = v(K (kn)

n ,n) ◦ pn :
Zn→ [0,1] so that

vn
(
[σ,x, t]

)= v(K (kn)
n ,n

)
(x) ∀x ∈Dσ, 0≤ t ≤ 1. (4.24)

It follows from the definition of vn that vn||Mn| = 0. Finally, we define γn : Zn→
[0,1] so that γn||Mn| = 0 and γn([σ,x, t])= t.
The sequences {kn} and (εn). Now, we inductively specify the sequences {kn} and
(εn) that will be crucial in verifying the countable dimensionality of Z. Suppose
we have defined the spaces Z1, . . . ,Zn (hence, the maps ρn, vn, and γn are also
known) and the bonding maps πnm : Zn → Zm for 1 ≤m ≤ n, and that we have
already chosen k1 < ··· < kn (n ≥ 1). For every set S ⊂ |Kn|, we have ρ−1

n (S)∩
v−1
n (0)∩ γ−1

n (0)= S. This, together with the fact that sup{diam(|s|) | s∈ K (k)
n } →

0 if k→∞, guarantees the existence of kn+1 > kn and 0 < εn ≤ 1 such that

diamdm

[
πnm
(
ρ−1
n

(
B
(|σ|, εn))∩ v−1

n

([
0, εn

])∩ γ−1
n

([
0, εn

]))]≤ 2−n (4.25)

for all σ ∈ K (kn+1)
n and m = 1, . . . ,n. (Here, B(|σ|, εn) stands for the generalized

closed ball around |σ| of radius εn.)
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To start the induction, set k1 = 0. Then K (k1)
1 = K1 andM1 =M(K1,1). Define

ρ1, v1, and γ1. Since, for every set S ⊂ |K1|, ρ−1
1 (S)∩ v−1

1 (0)∩ γ−1
1 (0) = S, and

since sup{diam(|s|) | s∈ K (k)
1 } → 0 if k→∞, there exist k2 > k1 = 0 and 0 < ε1 ≤

1/2 such that diamd1 [ρ−1
1 (B(|σ|, ε1))∩ v−1

1 ([0, ε1])∩ γ−1
1 ([0, ε1])]≤ 1/2 for every

σ ∈ K (k2)
1 .

4.1.3. The bonding maps πn+1
n : Zn+1 → Zn. Together with Mn =M(K (kn)

n ,n) and

Mn+1 =M(K (kn+1)
n+1 ,n+ 1), and maps rn = r(K (kn)

n ,n) and rn+1 = r(K (kn+1)
n+1 ,n+ 1),

we also consider

M
(
K (kn+1)
n ,n

)
, r̂n = r

(
K (kn+1)
n ,n

)
:M

(
K (kn+1)
n ,n

)−→ K (kn+1+1)
n . (4.26)

The simplicial “bonding” map qn : Kn+1→ Kn gives rise to the simplicial map

q(kn+1)
n : K (kn+1)

n+1 −→ K (kn+1)
n . (4.27)

This, in turn, yields a simplicial map

µn :Mn
(
K (kn+1)
n+1 ,n+ 1

)=Mn
n+1 −→M

(
K (kn+1)
n ,n

)
(4.28)

defined as follows:

µn
((
bσ ,m

))= (b
q

(kn+1)
n (σ)

,m
)

for
(
bσ ,m

)∈Vert
(
Mn

n+1

)
. (4.29)

The following functions between complexes will be used throughout the remain-
ing part of this text:

K (kn+1)
n+1 � σ −→ σ ′ = q(kn+1)

n (σ)∈ K (kn+1)
n ,

K (kn+1)
n+1 � σ −→ σ̂ ∈ K (kn)

n , |σ ′| ⊂ |σ̂|,
(4.30)

and σ̂ being the smallest simplex with this property.

Lemma 4.8. For every σ ∈ K (kn+1)
n+1 , µn(r−1

n+1(|σ|)∩Mn
n+1)⊂ r̂−1

n (|σ ′|).

Proof. Assume that x ∈ |Mn
n+1| with rn+1(x)∈ |σ|, where σ ∈ K (kn+1)

n+1 . Then, x =∑{tv(x)v | v = (bτ ,m), m≤ n} (here (bτ ,m) are the vertices of the smallest sim-
plex of Mn

n+1 containing x). It follows that, for each such vertex (bτ,m), we
have τ ≤ σ . By the definition of µn, µn(x)=∑v tv(x)(b

q
(kn+1)
n (τ)

,m). Consequently,

r̂n(µn(x))=∑v tv(x)b
q

(kn+1)
n (τ)

. Hence, r̂(µn(x))∈ |σ ′|. �

Using the fact that for every σ,τ ∈ K (kn+1)
n+1 , σ �= τ, we have that Cσ ∩ Cτ =

r−1
n+1(σ)∩ r−1

n+1(τ), and that r̂−1
n (|σ ′|) is contractible (see Corollary 4.4(i)); by

Lemma 4.8, we extend µn||Mn
n+1| over the whole Zn+1 so that

(∀σ ∈ K (kn+1)
n+1

) [
µn
(
Cσ
)⊂ r̂−1

n

(|σ ′|)]. (4.31)
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We need a “subdivision map” fn : |M(K (kn+1)
n ,n)| → |Mn| = |M(K (kn)

n ,n)| such
that

(∀s∈ K (kn+1)
n

) [
fn
(
r̂−1
n

(|s|))⊂ r−1
n

(|s|)]; (4.32)

we achieve this by applying Lemma 4.6 with K = K (kn)
n , l = kn+1− kn, and ε= εn.

Now, we can define

θn = fn ◦µn : Zn+1 −→
∣∣Mn

∣∣⊂ Zn. (4.33)

Now, we extend θ||Mn
n+1| to the desired map πn+1

n . For σ ∈ K (kn+1)
n+1 , consider

the sets Cσ ⊂ Zn+1 and Cσ̂ ⊂ Zn (for which we have Dσ = r−1
n+1(|σ|) and Dσ̂ =

r−1
n (|σ̂|), respectively). Let

En+1
σ = Cσ \

∣∣Mn
n+1

∣∣. (4.34)

Applying (4.31) and (4.32) (with s = σ ′ ∈ K (kn+1)
n ), we infer that fn(µn(Cσ)) ⊂

r−1
n (|σ ′|) ⊂ r−1

n (|σ̂|) because |σ ′| ⊂ |σ̂|. We conclude that θn(Cσ) ⊂ r−1
n (|σ̂|) =

Dσ̂ . Letting βn+1 : Zn → [0, εn] with β−1
n+1(0) = |Mn

n+1| be a continuous steering
function, it is easy to see that the following formula well defines the required
bonding map πn+1

n : Zn+1→ Zn:

πn+1
n (x)=


θn(x) if x ∈ ∣∣Mn

n+1

∣∣,[
σ̂ ,θn(x),βn+1(x)

]
if x ∈ Ēn+1

σ , σ ∈ K (kn+1)
n+1 .

(4.35)

Moreover, we have

πn+1
n

(
Cσ
)⊂ Cσ̂ . (4.36)

We put πn+1
m = πnm ◦πn+1

n and πn+1
n+1 = id.

We show condition (4.2) of Step 2, that is, πn+1
n (|Kn+1|) ⊃ |Kn|. To this end,

for a given s ∈ Kn, we find σ ∈ Kn+1 such that |s| = πn+1
n (|σ|). Since qn is sur-

jective, there exists σ ∈ Kn+1, dim(σ)= dim(s), with qn(σ)= s. Hence, the maps

qn | σ and q(kn+1+1)
n : σ (kn+1+1) → s(kn+1+1) are simplicial isomorphisms. We iden-

tify K (kn+1+1)
n+1 with a subcomplex of Mn+1, and we have that σ (kn+1+1) ⊂Mn

n+1 be-
cause dim(σ) = dim(s) ≤ dimKn ≤ n. By the definition of µn, µn | σ (kn+1+1) =
q(kn+1+1)
n | σ (kn+1+1). So, using Lemma 4.6(i), πn+1

n (|σ|) = fn(µn(|σ|)) = µn(|σ|) =
|q(kn+1+1)
n (σ)| = |σ|. This shows condition (4.2) of Step 2.
As announced earlier, the compactum Z is defined as

Z = lim←−
(
Zn,π

n+1
n

)
. (4.37)
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4.1.4. The countable dimensionality of Z. Here are some additional properties of
πn+1
n that are needed to prove the countable dimensionality of Z.

Lemma 4.9. The following holds:

(i) (for all 0≤ k ≤ n− 1) [(πn+1
n )−1(|Mk

n|)⊂ |Mk
n+1|],

(ii) (for all σ ∈ K (kn+1)
n+1 ) (for all 0≤m≤ n) [diamdm(πn+1

m (En+1
σ ))≤ 2−n]; con-

sequently, diam(π−1
n+1(En+1

σ )) < 2−n+1,

(iii) the family {En+1
σ | σ ∈ K (kn+1)

n+1 } consists of open, pairwise disjoint subsets of
Zn+1.

Proof. To verify (i), take x ∈ Zn+1 \ |Mk
n+1| for 0≤ k ≤ n− 1. If, additionally, x �∈

|Mn
n+1|, then βn+1(x) �= 0, and consequently, πn+1

n (x)= [σ̂ ,θn(x),βn+1(x)]∈ Cσ̂ \
|Mn| (see the definition of πn+1

n and (4.30) for the choice of σ̂). Now, assume that
x ∈ |Mn

n+1|. Taking into account the smallest simplex of Mn
n+1 that contains x,

we have x =∑ tvi(x)(bσi ,mi), where vi = (bσi ,mi) are the vertices of this simplex.
Then, there exists i0 such that mi0 > k. Since µn(x)=∑ tvi(x)(bσ ′i ,mi) (see (4.30)

for the definition of σ ′i ), we conclude that µn(x) �∈ |Mk(K (kn+1)
n ,n)|. Finally, by

Lemma 4.6(iii),

πn+1
n (x)= θn(x)= fn

(
µn(x)

) �∈ ∣∣Mk
(
K (kn)
n ,n

)∣∣. (4.38)

To verify (ii), let x ∈ En+1
σ for σ ∈ K (kn+1)

n+1 . Then, by the definition of πn+1
n ,

πn+1
n (x)= [σ̂ , fn(µn(x)

)
,βn+1(x)

]
. (4.39)

We show that πn+1
n (x) ∈ ρ−1

n (B(|σ ′|, εn)∩ v−1
n ([0, εn])∩ γ−1

n ([0, εn])) (see (4.30)
for the definition of σ ′); this will yield (ii) via an application of (4.25) (to the
case of m= n).

We recall that βn+1(x)≤ εn. By the definition of γn, we have

γn
(
πn+1
n (x)

)= γn([σ̂ , fn(µn(x)
)
,βn+1(x)

])= βn+1(x)≤ εn; (4.40)

and by (4.24) and Lemma 4.6(v), vn(πn+1
n (x)) = v(K (kn)

n ,n)( fn(µn(x))) < εn (the
“subdivision map” fn was found for ε=εn). It remains to show that ρn(πn+1

n (x))∈
B(|σ ′|, εn). By (4.21),

ρ
(
πn+1
n (x)

)= rn(pn([σ̂ , fn(µn(x)
)
,βn+1(x)

]))= rn( fn(µn(x)
))
. (4.41)

Since, by Lemma 4.6(ii), d(rn(µn(x)), r̂(µn(x))) < εn, we will be done if only
r̂n(µn(x))∈ |σ ′|; but this is a consequence of (4.31) and the fact that Cσ ⊃ En+1

σ

(see (4.36)).
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Let z,z′ ∈ π−1
n+1(En+1

σ ), that is, z = (πm(z)) and z′ = (πm(z′)). Using the fact
that πn+1(z),πn+1(z′)∈ En+1

σ , we can estimate

dZ(z,z′)=
∞∑
m=1

2−mdm
(
πm(z),πm(z′)

)

=
n∑

m=1

2−mdm
(
πm(z),πm(z′)

)
+

∞∑
m=n+1

2−mdm
(
πm(z),πm(z′)

)

≤
n∑

m=1

2−mdm
(
πn+1
m

(
πn+1(z)

)
,πn+1

m

(
πn+1(z′)

))
+ 2−n

≤
( n∑
m=1

2−m2−n
)

+ 2−n < 2 · 2−n = 2−n+1.

(4.42)

Item (iii) easily follows from Corollary 4.4(ii) and the fact that Cσ ∩ Cτ =
Dσ ∩Dτ for σ �= τ. �

According to the definition of Zn, for every n≥ 1,

Zn =
∣∣Mn−1

n

∣∣∪⋃{
Enσ | σ ∈ K (kn)

n

}
; (4.43)

recall that Enσ = Cσ \ |Mn−1
n |. It follows that Z = P0∪

⋃∞
n=1Pn, where

P0 =
∞⋂
n=1

π−1
n

(⋃{
Enσ | σ ∈ K (kn)

n

})
, Yn = π−1

n

(∣∣Mn−1
n

∣∣). (4.44)

It is enough to show that dim(Pn) <∞ for n= 0,1, . . . .

Since, for every n, the space P0 is covered by the family {π−1
n (Enσ) | σ ∈ K (kn)

n },
which consists of open and pairwise disjoint sets of diameter less than 2−n+2 (see
Lemma 4.9(ii) and (iii)), we conclude that dim(P0)≤ 0.

On the other hand, we show that dim(Pn) ≤ n− 1 for n ≥ 1. Since in this
case Pn = π−1

n (|Mn−1
n |), we have that Pn = lim←−(πm(Pn),πkm | πk(Pn)). Now, it is

enough to show that πm(Pn) ⊂ |Mn−1
m | for all m ≥ n. To this end, take z ∈ Pn =

π−1
n (|Mn−1

n |); so, πn(z)∈ |Mn−1
n |. Since πmn (πm(z))= πn(z), it follows that πm(z)

∈ (πmn )−1(|Mn−1
n |)⊂|Mn−1

m |; the last inclusion is a consequence of Lemma 4.9(i).

4.2. The map ϕ : Z → X . This section provides details for the statements of
Step 3.

For every z ∈ Z and n≥ 1, let σn(z) be the smallest simplex σn(z)∈ K (kn)
n with

πn(z) ∈ Cσn(z) and let sn(z) be the smallest simplex of Kn such that |σn(z)| ⊂
|sn(z)|, that is, sn(z) is the smallest simplex of Kn such that ρn(πn(z))∈ |sn(z)|.
We set

Fn(z)=
⋂

α∈sn(z)

V̄α. (4.45)
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Clearly, we have that Fn(z) is a compact subset of X , and

diam
(
Fn(z)

)≤ ∆n (4.46)

(see (K4) for the definition of ∆n).

Lemma 4.10. For every 1≤ n≤m, x ∈ Fn(z), and y ∈ Fm(z), d‖·‖(x, y)≤ 2∆n.

Proof. First, we verify that for all 1 ≤ n < m, sn(z) ≤ qn,m(sm(z)), where qn,m =
qn ◦ qn+1 ◦ ··· ◦ qm−1. Actually, we can assume that m = n+ 1. Assign to z the

simplex σn+1(z)∈ K (kn+1)
n+1 accordingly, and write briefly σn+1(z)= σ . Using (4.30),

consider σ̂ ∈ K (kn)
n and σ ′ ∈ K (kn+1)

n ; hence, |σ ′| ⊂ |σ̂|. Since πn+1(z) ∈ Cσ and
by (4.36), πn(z)= πn+1

n (πn+1(z))∈ Cσ̂ . By the minimality of σn(z), we have that
σn(z) ≤ σ̂ . Since |σn+1(z)| ⊂ |sn+1(z)|, we obtain |σ ′|⊂ |qn(sn+1(z))|. The fact
that qn(sn+1(z)) ∈ Kn implies that |σ ′| ⊂ |σ̂| ⊂ |qn(sn+1(z))| (by the minimality
of σ̂) and, furthermore, it implies sn(z)≤ qn(sn+1(z)) (by the minimality of sn(z)
and the fact |σn(z)| ⊂ |σ̂| ⊂ |qn(sn+1(z))|).

Now, use the fact that qn,m is a projection to see that

Fm(z)⊂ {Vα | α∈ qn,m
(
sm(z)

)}
. (4.47)

By the fact that sn(z)⊂ qn,m(sm(z)),

Fn(z)∪Fm(z)⊂
⋃{

Vα | α∈ qn,m
(
sm(z)

)}
. (4.48)

However, qn,m(sm(z)) is a simplex; hence, the intersection of the above family is
nonempty, and therefore, d(x, y)≤ 2∆n for every x ∈ Fn(z). �

Applying Lemma 4.10, we see that for every z, (Fn(z)) is a Cauchy sequence
in the hyperspace of X . This, together with (4.46), shows that ϕ(z) = limFn(z)
well defines ϕ : Z → X . To verify condition (4.4a) of Lemma 4.1, let α∈ An such
that ρn(πn(z))∈ st(α,Kn). Then, α∈ sn(z) and hence Fn(z)⊂ V̄α. This, together
with Lemma 4.10, shows that d(ϕ(z), V̄α) ≤ 3∆n. This completes the proof of
Lemma 4.1.
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