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We study H-systems with a Dirichlet boundary data g. Under some conditions,
we show that if the problem admits a solution for some (Hy,go), then it can be
solved for any (H, g) close enough to (Hy, g). Moreover, we construct a solution
of the problem applying a Newton iteration.

1. Introduction

We consider the Dirichlet problem in a bounded C*! domain Q C R? for a vector
function X : Q — R? which satisfies the equation of prescribed mean curvature

AX =2H(u,v, X)X, AX, 1InQ,

X=g onodQ, (1-1)
where A denotes the exterior product in R?, H : Q X R* — R is a given continu-
ous function, and the boundary data g is smooth. Problem (1.1) above arises in
the Plateau and Dirichlet problems for the prescribed mean curvature equation
that has been studied, for example, in [1, 2, 3, 4, 5].

In Section 2, we prove the following theorem.

TueOREM 1.1. Let Xog € W2P(Q,R3) be a solution of (1.1) for some (Ho, go) with
g0 € W2P(Q,R?) (2 < p < ) and Hy continuously differentiable with respect to
X over the graph of X. Set

. oH,
k=2 inf ( o (u v,Xo)Y) ((Xo, A Xo,)Y) (12)

and assume that
ket 2 [Ho (- Xo) ||| Xl ., <A, (1.3)
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where A, is the first eigenvalue of —A. Then there exists a neighborhood %R of
(Ho, go) in the space C(Q x R3,R) x W>P(Q,R?) such that (1.1) is solvable for
any (H,g) € .

Remark 1.2. It is clear that

. 0H,
<-2 f —(u,v,Xo) (X X
0= WL ox (u,v,Xo) (Xo, A Xo,)

oH,
<k< 2‘ X (-, Xo)

(1.4)

0*

‘ || Xo, A Xo,
(e}

Moreover, a simple computation shows that k = 0 if and only if (dH/0X)(+, Xo)
and Xo, A Xo, are linearly dependent, with (0Hy/0X)(u, v, Xo)(Xo, A Xo,) = 0 for
every (u,v) € Q.

In Section 3, we show that the solution provided by Theorem 1.1 can be ob-
tained by a Newton iteration. For simplicity, we consider the case where H does
not depend on X and prove the following theorem.

THEOREM 1.3. Let Xo € W2P(Q,R3) be a solution of (1.1) for some (Ho, go) with
g0 € W2P(Q,R3) (2 < p < ) and Hy continuous, and assume that

2| | Hollo ||V Xoll, < y/Ar. (1.5)

Then, if H and g are close enough to Hy and gy, respectively, the sequence given by

AXp1 = 2H [ (X, A (Xt = X)), + (X1 = Xa) , A Xiny) — Xno A X, |5

v

(1.6)
Xans1loa = g

is well defined and converges in W*?(Q,R?) to a solution of (1.1).

2. Proof of Theorem 1.1

First we will prove a slight extension of a well-known result for linear elliptic
second-order operators.

LEMMA 2.1. Let L: W2P(Q,R?) — LP(Q,R?) be the linear elliptic operator given
by LX = AX+AX,+BX,+CX with A,B,C € L¥(Q,R¥3) (2 < p < ), and as-
sume that r:= ((|||A]> + |BI?||«)/M)Y? < 1 and that CY - Y < «|Y|? for every
Y € R with & < 1 (1=r). Then Ll s g sy : WP 0 Wo P (QR?) — LP(Q,R) ds
an isomorphism.
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Proof. Let Z, € W>P N Wé’P (Q,IR?) be a sequence such that ||LZ, |, — 0. Then
ILZ,ll; — 0, and from the inequalities

—jLGzn = (VZill; - || (1412 +1BP) || IV Zdll N1 Zal], - jcznzn
y (2.1)

= (1-r= ) Ivzil

we deduce that |VZ,||; — 0. Thus, ||Z,]l, — 0 and hence ||AZ,|l; — 0. From
the invertibility of A, there exists a subsequence (still denoted Z,) such that
| Z4 12,2 —0. By Sobolev imbedding, || Z,l1,,—0 and we conclude that [|AZ,|| ,—0.
In order to prove that L is onto, it suffices to consider for any ¢ € LP(Q)), the ho-
motopy

AX = o(¢ — AX, — BX, — CX) (2.2)

and apply a Leray-Schauder argument. O

Now we are able to prove Theorem 1.1. Consider a pair (H,g) with [lg —
gll2p <8 and [[(H — Hp) |kl < € for some compact K containing a neighbor-
hood of the graph of Xj. Setting Y = X — X, equation (1.1) is equivalent to the
problem

LY =F(u,v,Y,Y,,Y,) inQ,

2.3
Y=g—-g onodQ, (23)
where L is the linear operator given by
0H,
LY =AY — 2H0(u, V,X()) [X()u ANY,+Y, A X()v] -2 a—X (u, V,X()) Y Xou A X()V
(2.4)

and

F(u,v,Y,Y,, Y,)
= Z(H(u, X0+ Y)Y, AY,

+ [H(u, v, Xo + Y) — H()(u, V,Xo)] (Xou ANY,+Y, /\X()V)

J0H,
+ [H(u, v, Xo+Y) — Ho(u,v,Xo) — —O(u,v,Xo)Y]XOM /\Xov).

0X
(2.5)

We define an operator T : C'(Q,R?) — C'(Q,R?) given by T(Y) = Y where
Y is the unique solution of the linear problem
LY =F(u,v,Y,Y,,Y,) inQ,

2.6
Y=g—-g onoQ. (2.6)
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As L satisfies the hypothesis of Lemma 2.1, it is immediate to prove that T
is well defined and continuous. Furthermore, the range of a bounded set is
bounded with || ||, and by Sobolevimbedding, we conclude that T is compact.
More precisely, for || Y||1, < R, we obtain

1T < llg = oll1,0 +elIT(Y) = (g = g0) L,

< |lg = golly oo + e (IL(T XN, +1L(g — g0)1],) (2.7)
< k06+c1||F(-,7,7u,?v)||p

for some constants ko and ¢;.
On the other hand, a simple computation shows that

F(',?,Yu,Yv) < k1R2+k28R+k38 (2.8)
p

for some constants ki, kz, and k3. Hence, if § and ¢ are small, it is possible to
choose R such that T(Bg) C Bg and the result follows by Schauder’s Theorem.

3. A Newton iteration for problem (1.1)

In this section, we apply a Newton iteration to (1.1). For simplicity, we will as-
sume that H does not depend on X.
Let X, be a solution of (1.1) for some Hy and g, with

21 Hol [V Xoll., < M. (3.1)
In order to define a sequence that converges to a solution of (1.1) for (H, g) close
to (Ho,go), we consider the function F: g+ (W>P n W&’P(Q, R3)) — LP(Q,R?)
given by

F(X) = AX — 2HX,, A X, (3.2)

Thus, the problem is equivalent to find a zero of F. The well-known Newton
method consists in defining a recursive sequence

Xp1 =Xy = (DF(X,)) ™ (F(X,)) (3:3)
or equivalently

DF(Xn) (Xn+1 _Xn) = _F(Xn)- (3-4)
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A simple computation shows that in this case,
DE(X)(Y) =AY —2H(Xu A Yy + Yu A X,). (3.5)

According to this, we start at X, and define the sequence {X,} from the following
problem:

AXpi1 —2H (X, A (X1 — Xn) , + (X1 = Xi) , A X)) = 2HX,, A Xy, (3.6)

v

with Dirichlet condition

Xusloa =g (3.7)

We will prove that if H and g are close enough to H, and gy, respectively, this
sequence is well defined (i.e., DF(X,,) is invertible for every n) and converges.
Fix a positive R such that

R< St Il oy
and set
©={Xe W QR : Xl =g I|IX-Xoll,, <R}. (3.9)
We will assume that
[|[H—Hyl|, <e& ||g—g0||2)p<6sR (3.10)
with
< m —|[H (- X0) || - (3.11)
For each X € 6, we define the linear operator Lx given by
LyY =AY —2H(X, A Y, + Y, A X,). (3.12)

By Lemma 2.1, Lx]| Wi () is invertible for any X € €. Furthermore, we claim that

ILx" || is bounded over 6. Indeed, for Z € W>P n Wol’p(Q, R3)and X,Y € €, we
have

Ly ZIl, = lILxZ|l, = [[(Lx - Ly) Zll,
(3.13)

1
= <_1 2| Hll||V(X ~ Y)||oo> 1 Z112,p-
1Ll
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Taking, for example, Y such that |V(Y = X) |l < 1/(4|H|l«|ILx"Il) := Rx, we

obtain
LY T < 2013 l-

By compactness, there exist X!,..., X" € € such that

©C O{Y: V(Y - X)||., <Rxi}

i=1
and hence,
12511 = 2 max L]
<i<n
Let Z,, = X41 — Xp. For n = 0, we have

1Zoll,,, = [lg = 8ol + 120 = (g = g0l

< llg = goll,p +e (Il Zoll, +[1Lx, (g ~ 20)l,,)
<28(1+ Il Xoll..) + el Ly Zoll

|ILx, Zol|, = ||2(H — Ho) Xo, A Xo,

2 < llVXol L
we conclude that
1Zoll,,, < 28(1+ (|| Holl., +)[|VXo][.) +cel |V Xoll5, = c(S,e).

Then we may establish a more precise version of Theorem 1.3.

THEOREM 3.1. With the previous notations, assume that

_ R
~ 1+ Rcoc(||Hol|, +¢)’

c(d,¢)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

where ¢y is the constant of the imbedding W>P(Q,R3) — C'(Q,R?). Then the se-
quence given by (1.6) is well defined and converges in W>P(Q,R?) to a solution of

(1.1).

Proof. By (3.20), we have that [|Zll,, < c(d,¢) < R, proving that X; € 6. For

n >0, we assume as inductive hypothesis that Xi € € for k < #, and then

Zall,,, < €llLx, Zull, = 2¢/[HZy-1, A Zy1,
,P p
< clHllw||VZi-r |||V Zua ],

p

< cocl Hlll|Zomr |15,

(3.21)
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Inductively,

2"-1

1Zally,p = (ocllHll) ™ 1 Zol15, = A1 Zoll o (3.22)

where A = coc||H||» | Zoll2,p- By hypothesis, it is immediate that A < 1, and hence
& 1
X=Xl = S NZi s, < 120l <R (3.23)
j=0

Thus, X, € 6 for every n, and

A1
||Xn+k _X”||2,p < m (324)
for every k = 0. Then X,, is a Cauchy sequence, and the result follows. O

Remark 3.2. It is clear from definition that ¢(,¢) — 0 for (6,¢) — (0,0).
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