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We study H-systems with a Dirichlet boundary data g. Under some conditions,
we show that if the problem admits a solution for some (H0, g0), then it can be
solved for any (H,g) close enough to (H0, g0). Moreover, we construct a solution
of the problem applying a Newton iteration.

1. Introduction

We consider the Dirichlet problem in a boundedC1,1 domainΩ⊂R2 for a vector
function X : Ω→R3 which satisfies the equation of prescribed mean curvature

∆X = 2H(u,v,X)Xu∧Xv in Ω,

X = g on ∂Ω,
(1.1)

where ∧ denotes the exterior product in R3, H : Ω×R3 →R is a given continu-
ous function, and the boundary data g is smooth. Problem (1.1) above arises in
the Plateau and Dirichlet problems for the prescribed mean curvature equation
that has been studied, for example, in [1, 2, 3, 4, 5].

In Section 2, we prove the following theorem.

Theorem 1.1. Let X0 ∈W2,p(Ω,R3) be a solution of (1.1) for some (H0, g0) with
g0 ∈W2,p(Ω,R3) (2 < p <∞) and H0 continuously differentiable with respect to
X over the graph of X0. Set

k =−2 inf
(u,v,Y)∈Ω×R3,|Y |=1

(
∂H0

∂X

(
u,v,X0

)
Y
)((

X0u ∧X0v

)
Y
)

(1.2)

and assume that

k+ 2
√
λ1
∥∥H0

(·,X0
)∥∥∞∥∥∇X0

∥∥∞ < λ1, (1.3)
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where λ1 is the first eigenvalue of −∆. Then there exists a neighborhood � of
(H0, g0) in the space C(Ω×R3,R)×W2,p(Ω,R3) such that (1.1) is solvable for
any (H,g)∈�.

Remark 1.2. It is clear that

0≤−2 inf
(u,v)∈Ω

∂H0

∂X

(
u,v,X0

)(
X0u ∧X0v

)

≤ k ≤ 2
∥∥∥∥∂H0

∂X

(·,X0
)∥∥∥∥
∞

∥∥X0u ∧X0v

∥∥∞.
(1.4)

Moreover, a simple computation shows that k = 0 if and only if (∂H0/∂X)(·,X0)
and X0u ∧X0v are linearly dependent, with (∂H0/∂X)(u,v,X0)(X0u ∧X0v )≥ 0 for
every (u,v)∈Ω.

In Section 3, we show that the solution provided by Theorem 1.1 can be ob-
tained by a Newton iteration. For simplicity, we consider the case where H does
not depend on X and prove the following theorem.

Theorem 1.3. Let X0 ∈W2,p(Ω,R3) be a solution of (1.1) for some (H0, g0) with
g0 ∈W2,p(Ω,R3) (2 < p <∞) and H0 continuous, and assume that

2
∥∥H0

∥∥∞∥∥∇X0
∥∥∞ <

√
λ1. (1.5)

Then, if H and g are close enough to H0 and g0, respectively, the sequence given by

∆Xn+1 = 2H
[(
Xnu ∧

(
Xn+1−Xn

)
v +
(
Xn+1−Xn

)
u∧Xnv

)−Xnu ∧Xnv

]
,

Xn+1|∂Ω = g
(1.6)

is well defined and converges in W2,p(Ω,R3) to a solution of (1.1).

2. Proof of Theorem 1.1

First we will prove a slight extension of a well-known result for linear elliptic
second-order operators.

Lemma 2.1. Let L : W2,p(Ω,R3)→ Lp(Ω,R3) be the linear elliptic operator given
by LX = ∆X +AXu +BXv +CX with A,B,C ∈ L∞(Ω,R3×3) (2 < p <∞), and as-
sume that r := ((‖|A|2 + |B|2‖∞)/λ1)1/2 < 1 and that CY · Y ≤ κ|Y |2 for every

Y ∈R3 with κ < λ1(1− r). Then L|W1,p
0 (Ω,R3) : W2,p∩W

1,p
0 (Ω,R3)→ Lp(Ω,R3) is

an isomorphism.
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Proof. Let Zn ∈W2,p ∩W
1,p
0 (Ω,R3) be a sequence such that ‖LZn‖p → 0. Then

‖LZn‖2 → 0, and from the inequalities

−
∫
LZnZn ≥

∥∥∇Zn

∥∥2
2−

∥∥∥(|A|2 + |B|2)1/2
∥∥∥∞
∥∥∇Zn

∥∥
2

∥∥Zn

∥∥
2−

∫
CZnZn

≥
(

1− r− κ

λ1

)∥∥∇Zn

∥∥2
2,

(2.1)

we deduce that ‖∇Zn‖2 → 0. Thus, ‖Zn‖2 → 0 and hence ‖∆Zn‖2 → 0. From
the invertibility of ∆, there exists a subsequence (still denoted Zn) such that
‖Zn‖2,2→0. By Sobolev imbedding, ‖Zn‖1,p→0 and we conclude that ‖∆Zn‖p→0.
In order to prove that L is onto, it suffices to consider for any ϕ∈ Lp(Ω), the ho-
motopy

∆X = σ
(
ϕ−AXu−BXv −CX

)
(2.2)

and apply a Leray-Schauder argument. �

Now we are able to prove Theorem 1.1. Consider a pair (H,g) with ‖g −
g0‖2,p < δ and ‖(H −H0)|K‖∞ < ε for some compact K containing a neighbor-
hood of the graph of X0. Setting Y = X −X0, equation (1.1) is equivalent to the
problem

LY = F
(
u,v,Y,Yu,Yv

)
in Ω,

Y = g − g0 on ∂Ω,
(2.3)

where L is the linear operator given by

LY = ∆Y − 2H0
(
u,v,X0

)[
X0u ∧Yv +Yu∧X0v

]− 2
(
∂H0

∂X

(
u,v,X0

)
Y
)
X0u ∧X0v

(2.4)

and

F
(
u,v,Y,Yu,Yv

)
:= 2

(
H
(
u,v,X0 +Y

)
Yu∧Yv

+
[
H
(
u,v,X0 +Y

)−H0
(
u,v,X0

)](
X0u ∧Yv +Yu∧X0v

)
+
[
H
(
u,v,X0 +Y

)−H0
(
u,v,X0

)− ∂H0

∂X

(
u,v,X0

)
Y
]
X0u ∧X0v

)
.

(2.5)

We define an operator T : C1(Ω,R3)→ C1(Ω,R3) given by T(Y) = Y where
Y is the unique solution of the linear problem

LY = F
(
u,v,Y,Yu,Yv

)
in Ω,

Y = g − g0 on ∂Ω.
(2.6)
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As L satisfies the hypothesis of Lemma 2.1, it is immediate to prove that T
is well defined and continuous. Furthermore, the range of a bounded set is
bounded with ‖ ‖2,p, and by Sobolev imbedding, we conclude that T is compact.
More precisely, for ‖Y‖1,∞ ≤ R, we obtain

∥∥T(Y)∥∥1,∞ ≤
∥∥g − g0

∥∥
1,∞ + c

∥∥T(Y)− (g − g0
)∥∥

2,p

≤ ∥∥g − g0
∥∥

1,∞ + c1

(∥∥L(T(Y))∥∥p +
∥∥L(g − g0

)∥∥
p

)
≤ k0δ + c1

∥∥F(·,Y ,Yu,Yv
)∥∥

p

(2.7)

for some constants k0 and c1.
On the other hand, a simple computation shows that

∥∥F(·,Y ,Yu,Yv
)∥∥

p ≤ k1R
2 + k2εR+ k3ε (2.8)

for some constants k1, k2, and k3. Hence, if δ and ε are small, it is possible to
choose R such that T(BR)⊂ BR and the result follows by Schauder’s Theorem.

3. A Newton iteration for problem (1.1)

In this section, we apply a Newton iteration to (1.1). For simplicity, we will as-
sume that H does not depend on X .

Let X0 be a solution of (1.1) for some H0 and g0 with

2
∥∥H0

∥∥∞∥∥∇X0
∥∥∞ <

√
λ1. (3.1)

In order to define a sequence that converges to a solution of (1.1) for (H,g) close

to (H0, g0), we consider the function F : g + (W2,p ∩W
1,p
0 (Ω,R3))→ Lp(Ω,R3)

given by

F(X)= ∆X − 2HXu∧Xv. (3.2)

Thus, the problem is equivalent to find a zero of F. The well-known Newton
method consists in defining a recursive sequence

Xn+1 = Xn−
(
DF

(
Xn
))−1(

F
(
Xn
))

(3.3)

or equivalently

DF
(
Xn
)(
Xn+1−Xn

)=−F(Xn
)
. (3.4)
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A simple computation shows that in this case,

DF(X)(Y)= ∆Y − 2H
(
Xu∧Yv +Yu∧Xv

)
. (3.5)

According to this, we start at X0 and define the sequence {Xn} from the following
problem:

∆Xn+1− 2H
(
Xnu ∧

(
Xn+1−Xn

)
v +
(
Xn+1−Xn

)
u∧Xnv

)= 2HXnu ∧Xnv (3.6)

with Dirichlet condition

Xn+1|∂Ω = g. (3.7)

We will prove that if H and g are close enough to H0 and g0, respectively, this
sequence is well defined (i.e., DF(Xn) is invertible for every n) and converges.

Fix a positive R such that

R <

√
λ1

2
∥∥H0

(·,X0
)∥∥∞ −

∥∥∇X0
∥∥∞ (3.8)

and set

�=
{
X ∈W2,p(Ω,R3) : X|∂Ω = g,

∥∥X −X0
∥∥

2,p ≤ R
}
. (3.9)

We will assume that

∥∥H −H0
∥∥∞ < ε,

∥∥g − g0
∥∥

2,p < δ ≤ R (3.10)

with

ε <

√
λ1

2
(∥∥∇X0

∥∥∞ +R
) −∥∥H(·,X0

)∥∥∞. (3.11)

For each X ∈�, we define the linear operator LX given by

LXY = ∆Y − 2H
(
Xu∧Yv +Yu∧Xv

)
. (3.12)

By Lemma 2.1, LX |W1,p
0 (Ω) is invertible for anyX ∈�. Furthermore, we claim that

‖L−1
X ‖ is bounded over �. Indeed, for Z ∈W2,p∩W

1,p
0 (Ω,R3) and X,Y ∈�, we

have
∥∥LYZ∥∥p ≥ ∥∥LXZ∥∥p−∥∥(LX −LY

)
Z
∥∥
p

≥
(

1∥∥L−1
X

∥∥ − 2‖H‖∞
∥∥∇(X −Y)

∥∥∞
)
‖Z‖2,p.

(3.13)
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Taking, for example, Y such that ‖∇(Y −X)‖∞ ≤ 1/(4‖H‖∞‖L−1
X ‖) := RX , we

obtain

∥∥L−1
Y

∥∥≤ 2
∥∥L−1

X

∥∥. (3.14)

By compactness, there exist X1, . . . ,Xn ∈� such that

�⊂
n⋃
i=1

{
Y :

∥∥∇(Y −Xi
)∥∥∞ ≤ RXi

}
(3.15)

and hence,

∥∥L−1
X

∥∥≤ 2 max
1≤i≤n

∥∥L−1
Xi

∥∥. (3.16)

Let Zn = Xn+1−Xn. For n= 0, we have
∥∥Z0

∥∥
2,p ≤

∥∥g − g0
∥∥

2,p +
∥∥Z0−

(
g − g0

)∥∥
2,p

≤ ∥∥g − g0
∥∥

2,p + c
(∥∥LX0Z0

∥∥
p +

∥∥LX0

(
g − g0

)∥∥
p

)
≤ 2δ

(
1 +‖H‖∞

∥∥∇X0
∥∥∞)+ c

∥∥LX0Z0
∥∥
p.

(3.17)

As

∥∥LX0Z0
∥∥
p =

∥∥2
(
H −H0

)
X0u ∧X0v

∥∥2
2p ≤ ε

∥∥∇X0
∥∥
p, (3.18)

we conclude that

∥∥Z0
∥∥

2,p ≤ 2δ
(
1 +

(∥∥H0
∥∥∞ + ε

)∥∥∇X0
∥∥∞)+ cε

∥∥∇X0
∥∥2

2p := c(δ,ε). (3.19)

Then we may establish a more precise version of Theorem 1.3.

Theorem 3.1. With the previous notations, assume that

c(δ,ε)≤ R

1 +Rc0c
(∥∥H0

∥∥∞ + ε
) , (3.20)

where c0 is the constant of the imbedding W2,p(Ω,R3)↩C1(Ω,R3). Then the se-
quence given by (1.6) is well defined and converges in W2,p(Ω,R3) to a solution of
(1.1).

Proof. By (3.20), we have that ‖Z0‖2,p ≤ c(δ,ε) ≤ R, proving that X1 ∈ �. For
n > 0, we assume as inductive hypothesis that Xk ∈� for k ≤ n, and then

∥∥Zn

∥∥
2,p ≤ c

∥∥LXnZn

∥∥
p = 2c

∥∥HZn−1u ∧Zn−1v

∥∥
p

≤ c‖H‖∞
∥∥∇Zn−1

∥∥∞∥∥∇Zn−1
∥∥
p

≤ c0c‖H‖∞
∥∥Zn−1

∥∥2
2,p.

(3.21)
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Inductively,

∥∥Zn

∥∥
2,p ≤

(
c0c‖H‖∞

)2n−1∥∥Z0
∥∥2n

2,p =A2n−1
∥∥Z0

∥∥
2,p, (3.22)

where A= c0c‖H‖∞‖Z0‖2,p. By hypothesis, it is immediate that A < 1, and hence

∥∥Xn+1−X0
∥∥

2,p ≤
n∑
j=0

∥∥Zj

∥∥
2,p ≤

∥∥Z0
∥∥

2,p
1

1−A
≤ R. (3.23)

Thus, Xn ∈� for every n, and

∥∥Xn+k −Xn

∥∥
2,p ≤

A2n−1

1−A
(3.24)

for every k ≥ 0. Then Xn is a Cauchy sequence, and the result follows. �

Remark 3.2. It is clear from definition that c(δ,ε)→ 0 for (δ,ε)→ (0,0).

Acknowledgment

This work was partially supported by UBACYT TX45.

References

[1] P. Amster, M. C. Mariani, and D. F. Rial, Existence and uniqueness of H-system’s
solutions with Dirichlet conditions, Nonlinear Anal., Ser. A: Theory Methods 42
(2000), no. 4, 673–677.

[2] H. Brezis and J.-M. Coron, Multiple solutions of H-systems and Rellich’s conjecture,
Comm. Pure Appl. Math. 37 (1984), no. 2, 149–187.

[3] S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature,
Comm. Pure Appl. Math. 23 (1970), 97–114.

[4] M. Struwe, Plateau’s Problem and the Calculus of Variations, Mathematical Notes,
vol. 35, Princeton University Press, New Jersey, 1988.

[5] G. F. Wang, The Dirichlet problem for the equation of prescribed mean curvature, Ann.
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