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The problem of nonuniqueness for a singular Cauchy-Nicoletti boundary value problem
is studied. The general nonuniqueness theorem ensuring the existence of two different
solutions is given such that the estimating expressions are nonlinear, in general, and de-
pend on suitable Lyapunov functions. The applicability of results is illustrated by several
examples.

1. Introduction

The nonuniqueness of a regular or singular Cauchy problem for ordinary differential
equations is studied in several papers such as [3, 4, 5, 13, 14, 15, 16, 17]. Most of these
results can also be found in the monograph [1]. The uniqueness of solutions of Cauchy
initial value problem for ordinary differential equations with singularity is investigated
in [7, 8, 9, 12]. The topological structure of solution sets to a large class of boundary
value problems for ordinary differential equations is studied in [2]. First results on the
nonuniqueness for a singular Cauchy-Nicoletti boundary value problem are given in [10,
11, 12] by Kiguradze, where sufficient conditions for the nonuniqueness are written in the
form of one-sided inequalities for the components in the right-hand side f(t,x1,...,x,)
of the corresponding equation. An expression for the estimation of the jth component
fi(t,x1,...,%x,) of f depends on ¢ and x; and is linear in |x;].

In [6], we studied the nonuniqueness for a singular Cauchy problem. Our criteria in-
volve vector Lyapunov functions and the estimations need not be linear. The present pa-
per deals with the nonuniqueness of the singular Cauchy-Nicoletti problem and extends
the results of [6] to this more general problem.

Supposing —co < a< A < o0, b >0, we will use the following notations throughout
the paper: R¥ and R* denote k-dimensional real Euclidean space and the interval [0, o),
respectively. | - | is used for the notation of Holder’s 1-norm (the sum of the absolute val-
ues of components). x = (x1,...,X,) denotes a variable vector from R" with components
X15...,%Xn, while xo = (xo1,...,%0n) stands for a fixed vector from R” with components
X01,--.>Xon. N is equal to the set {1,...,n}. [ denotes a fixed number from the set {1,...,n}.
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i1,i2,...,4 are fixed integers such that 1 <i; <i, <---<i < n. I is set to be equal to
{i1,...,4}. Prx denotes a projection of x such that Prx = (x;,,...,x;), while Pr*x denotes
a complementary projection to Prx. Clearly, Pr*x = (xj,...,xj,), where 1 < jj <--- <

Jn1 S 1, i1 ity NVl jumi} = . R’;,ﬁ;b(xo) and R’;)A are used for the notation of the
set {(t,x) € RM:a<t<f,|x—x0| < b} and the set {(t,x) € R*!:a<t< A, x € RF},
respectively. The symbol R” , will be used for the set {(t,x) e R"™':a <t <A, x € R"}.
(a, ) denotes the interval (min(a, ), max(a,f3)).

The notation C[I',2] is used for the notation of the class of all continuous mappings
I' — Q. AC[[a,A],R¥] and AC[[a,A],RF] denote the class of all absolutely continuous
mappings [a,A] — R¥ and the class of all mappings from C[[a,A],R¥] which are abso-
lutely continuous on any interval [a,f], where a < « < § < A, respectively. The class of
all Lebesgue-integrable mappings [a,A] — R* is denoted by L[[a,A],R*]. &, [RaA,R+k]
stands for the class of all functions V(£,x): R", — — R** with the following property:
V(t,-) is uniformly continuous, and if a < a < S < A, 7 ¢ [a,f3], then V(t,x(t)) is
absolutely continuous on [a, 3] for any absolutely continuous function x : [, 3] — R"
,,,,, o [IA{’;) 4, R™] denotes the class of all mappings IA{’;) 4 — R™ which satisfy Carathéodory
conditions on Rﬁ)ﬁ;Q(O) for any a,f,a<a<f <A, 0;&[ap](j=1,...,p), o € (0,00),
01,...,0p being numbers from [a,A]. Ny(a,A;11,...,7,) is used for the notation of the
class {A = (Aij(t) 2]-:1 :Aij € L[[a,A],R*]} such that the system of differential inequali-
ties |x(t)] < Z;Ll)tij(t)lxj(t)l, t € [a,A], i € N, possesses no nontrivial solution x(t) =
(x1(8),...,x4(t)) € AC[[a,A],R"] satistying x;(7;) =0 (i = 1,...,n).

The fundamental role in the proof of our main theorem will be played by the following
theorem by Kiguradze, which is adapted from [12] (see also [10]) in a simplified form.

KiGURADZE THEOREM . Leta<t;<A, Xo; ER fori=1,...,n. Supposethat f €Ky, o, [RaA,
R"]. Assume that the components f; of f satisfy

n

filt,x)sgn [(t — 7:) (xi — Roi) | Z () x| +pi(t) (i=1,...,n) (1.1)

for (t,x) = (t,x1,...,%,) € RaA, where Xo; = 0 if 7; € {01,...,0,}. Suppose that A(t) =
()L,-j(l‘))ffj:1 € No(a,A;715...,Tn), pi € L[[a,A],R*]. Then the Cauchy-Nicoletti problem

x' = f(tx), xi(t)) =0 (i=1,...,n) (1.2)
has at least one solution x(t) = (x1(t),...,x,(t)) € AC[[a,A],R"].

2. Results

Consider a Cauchy-Nicoletti boundary value problem
xl :f(t)x)) xi(ti) = Xoi (1: 1)-“)”)) (21)

Where f(tax) = (fl(taxla ’xn fn tX1, an) f € Kal 0p [RaA) ]) Xoi € Ra and
t; € [a,A] (i€ N).
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THEOREM 2.1. Suppose that there are numbers ¢; € R (i € N), B; € [a,A] \ {t;,01,...,0p}
(i € I), a matrix function A = (A,-j),fszl € No(a,A;11,...,Tn) and functions y; € L[ [a,A],R*]
(i € N) such that ¢; = xo; fori € N\ I and

filt,x)[sgn(t—7;) (xi—ci)] < zlij(l‘) |x;j| +ui(t) (ieN) (2.2)
i1

holds for (t,x) = (t,x1,...,%,) € R;‘,A, where 1; = t; or 7, = B; whenever i€ N\1 ori€l,
respectively.
Assume that
(i) there exist vector functions g = (gi1>-..»gik,) € Kaat,B; [RZ’;A,R"*'] (i € I) such that
sgn(t — t;)gij (L, u1,...,Uj1, "5 Uj,..., U;) is nondecreasing for j = 1,...,k; and there
is a solution @;(t) = (@i (t),...,Pik, (1)) of

u; = gi(tur,...,ug,) (2.3)
satisfying
(pi(t) >0 fOT‘ te A(t,’,B,‘), ltli’lgl(p,(t) =0, lntn%nf(pl(t) >0 (2.4)
foriel;

(i) Vi(t,x) = (Va(t,x),..., Vi, (t,x)) € Ly | A;‘)A,RJrk"] (i € I) are such that there exists
yo € R! with the property

sup {Vij(Bi,y) : y € R",Pry = yo} < lirtnligr_lfgo,'j(t) (j=1,....k;) (2.5)
| V,‘(t,x) | > \I/,‘( |x1- — Z,'(t) | ) fOT’ te A(t,‘,Bi), (2.6)

where ¥; € C[R",R"], z; € C[(a,A),R] are such that

¥;(0) =0, Yi(u) >0 foru>0, ltint;z,-(t) = Xoj (2.7)

foriel;
(iii) there exist positive functions ei € C[(a,A),R*] (i € I;k = 1,...,k;) such that
sgn (B — ;) Vi; (£, x(t))

2.8
> sgn (B; — t;) gij (6,01 (1),..., @i j-1(8), Vij (£,x(£)), @i jr1(D)s..., @ik, (1)) (28)

holds for i € 1, j = 1,...,k;, and for any solution x(t) of (2.1) a.e. on any interval
(a1, 0i2) € A(t4,B;) for which

Vik (t,x(1)) < i (t) + e (t)  on (an,an) (k=1,...,k;),

2.9
Vij (t,x(1)) > @ij(t)  on (i, ). (29

Then the Cauchy-Nicoletti boundary value problem (2.1) has at least two different
solutions on [a,Al, either of which satisfies Vi(t,x(t)) < @i(t) for t € A(t;,B;) and
icl
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Proof. Without loss of generality, it can be assumed that I = {1,...,1},

Prx = (x1,...,x1), Prix = (Xii15...5%n). (2.10)
Foranyielandj € {1,...,k;}, denote

Lij = lirtnligr_lf(pij(t), Sij =sup {Vij(Bi,y) : y € R",Pry = yo}. (2.11)

According to (2.5) and to the uniform continuity of V;;(B;, -), we have a relation

Vij(Bi, y*) < Vij(Bi,y) + Vij(Bi, y*) = Vij (B, y)
1 1 3 1 (2.12)
< E(Lij +S,~j) + Z(Lij - Sij) = ZLU + ZSU <Ly

for y € R", Pry = y,, and for y* € R" sufficiently close to y. Hence it can be supposed
without loss of generality that yy # Prx,.
Further, the uniform continuity of V;;(B;, -) implies that the inequality

sup{Vij(Bi,y) : y € R",Pry = yo—A(yo — Prxo)} < liltn]igr‘1f<p,~j(t) (ieLj=1,..,k)
’ (2.13)

holds provided that A > 0 is sufficiently small. Therefore, we can choose %;,%, € R, %, #
X», such that

max [sup {Vij(Bi,y) : y e R",Pry = %}] < lirtn};r_lfgo,-j(t) (i=1,....Lj=1,....k).
S ] (2.14)
Choose & € {X1,X,} arbitrary. Put & = xp — (§,Pr¥xg), X =x—x+ &, and f*(£,X) =
ft,xo+X = &) for (t,X) = (t,X1,...,Xn) € R?,.
Clearly f* € Ky,,..0, [IA{;"A,R”]. By using (2.2), we obtain

1 n
X sgn[(t— 1) (Xi+&—c)] < DA X+ |+ D M| X +x0 | +pi(t)

j=1 j=l+1
< > (01X | +(t)
j=1
' (2.15)

for (t,X) € RZ,A, i=1,...,],and

1 n
fi*(t,X)sgn[(t—Ti)X,-] < Z/lij(t) |Xj +E~j| + Z Aij(f) |Xj +ij| +[/ti(t)
=1 j=l+1 (2.16)

=<

Aij () [ X | + fa(t)

(VR

1

J
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for (t,X) € RZ,A, i=1+1,...,n, where
) B n
i) = > LM 1E |+ D dij(t) [ xoj | +ui(t) (2.17)
j=1 j=l+1

fori=1,2,...,n. As ji; € L[[a,A],R"] holds, Kiguradze theorem implies that the bound-
ary value problem

X' = f*(t,X), Xi(r;))=0 (i=1,...,n) (2.18)
has at least one solution X (¢) € AC[[a,A],R"]. Hence x(t) = X(t) + xo — & is a solution of

X' = f(t,x), xi(t) =& (i=1,...,0),

xi(ti) =x0i (i=1+1,...,n). (2.19)

Now we will prove that lim;_, xi(t) = xo; fori = 1,..., L. Put m;(t) = Vi(t,x(t)), m;;(t) =
Vii(t,x(t)) fori=1,...,land j = 1,..., k;. In view of (2.14), the inequality
m;(t) < i(t) (2.20)

holds for t € (a,A) sufficiently close to B;. Suppose for definiteness that #; < B;, that is,
A(t;,B;) = (t;,B;) for some i € {1,...,1}. We will show that m;(t) < ¢;(t) for t € (t;,B;).
Assume on the contrary that there is a 7 € (¢;,B;) such that m;(7) < ¢;(7) is not true.
Since x(t) is continuous and (2.20) holds for ¢ € (a,A) sufficiently close to B;, there exist
j€1L,...,k;} and an interval J; = (151, 7;2) such that 7 < 7, < 752 < B},
mij(TiZ) = (Pij(TiZ))
@ij(s) < mij(s) < @ij(s) +eij(s) forseJi, (2.21)
mir(s) < pir(s) +eix(s) forse ], k=1,...,k.

Using (2.8), we get

mi;(s) = gij (s, 9i1(5)s -, @i j—1(5), 1 (5), @i 1 (5, ., it (5)) (2.22)
a.e.on Ji. As gi(t, Urs...,Uj_1, "5 Ujs15..., Un(s)) is nondecreasing, we have

mi;(s) = &ij(5,9i1 (s),..., ik, (s)) = 95 (s) (2.23)

a.e. on J;. Therefore, the function m;;(t) — ¢;;(¢) is nondecreasing on J;, which is a con-
tradiction to m;;(1;2) = ¢;;(7;2). Thus

0<m(t) < (,0,'(1’) fort e (ti,Bi). (2.24)

Now the condition lim;_;+ ¢;(t) = 0 implies lim;_,. m;(t) = 0. With respect to the con-
tinuity of x;(¢) on [a,A], we have x;(t;) = lim;_;, x;(t) = xo;. The inequality (2.24) implies
Vi(t,x(t)) < ¢i(¢t) for t € A(t;, B;). O
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CoroLLARY 2.2. Let¢; € R (i € N), B; € [a,A] \ {t;,01,...,0,} (i € I), a matrix function
A= (Aij),*szl € No(a,A;11,...,T,), and functions y; € L[[a,A],R*] (i € N) be such that
¢i = xo; for i € N\ I and condition (2.2) is fulfilled, where 1; = t; or 7; = B; whenever i €
N\ I oriel, respectively.
Assume that
(i) there exist functions g € Ka a5, [R;)A,R] (i € I) such that sgn(t — t;)gi(t,-) are
nondecreasing and there are solutions ¢;(t) of

u; = gi(t,u;) (2.25)

satisfying (2.4);
(ii) there are z; € AC[[a,A],R] and & = (&;,,...,&;) € Cl[(a,A),R*'] such that z;(t;) =
xoi (i € I) and the estimation

sgn(B; — t;) sgn (x; — zi(£)) (fi(t,x) — z{(t)) = sgn (B — t;)gi(t, | xi —zi(t) | ) (i € 1)
(2.26)

is fulfilled on Q= {(tx): 0i(t) < Ix; — zi(t)| < @i(t) +&(t),t € A(t;,B;)} for almost
allt € A(t;,B;). Then the Cauchy-Nicoletti boundary value problem (2.1) has at least
two different solutions on [a,Al, either of which satisfies |x;(t) — zi(t)] < ¢;i(t) for
t e A(t;,B;) and i€ 1.

Proof. Without loss of generality, it can be supposed that I = {1,...,I} and Prx = (xy,...,
x1). Putk; = 1 and V;(t,x(t)) = Vi (t,x) = |x; — zi(t)| fori=1,...,1. Then
sgn (B; — ;) Viy (t,x(t)) = sgn (B; — ;) (fi(t,x(t)) — 2 (£)) sgn (xi(t) — zi(¢))
> sgn (B; — 1) gi(t, | xi(t) — zi(1)|) (2.27)
= sgn (B; — 1) gi(t, Vir (£,x(1)))

holds for any solution x(¢) of (2.1) a. e. on any interval (a;,n) S A(t;,B;) for which
ei(1) < Vi(t,x(t)) < @i(t) + &i(t) on (a1, ai2). The assumptions of Theorem 2.1 are satisfied.

|
Example 2.3. Let fi,..., f» € Ko[R 1, R] be such that
fi(tyx1,... %) sgny = 8(8) |2 |7,
J _ (2.28)
—fi(tx1, 5 x0) sgnxj < D> M) [xe | +pi()  (j=2,...,n)
k=1

for (t,x1,...,%,) € R&l, where y € (0,1) and 8,4, p; € L[[0,1],R*], & being a positive
function. Consider the boundary value problem

X1 = filtsxise.sx0),  x1(0)

xé:fZ(t)xl)'-wxn), xz(l)

>

0
0,

(2.29)

X = fu(t,x15..,%0),  x4(1) = 0.
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Putti, =0,b=t3=---=t,=1,
o(Hu’ foru=0,
t = 2.30
aibu) {0 foru <0, ( )
M) =0(k=1,...,n),Aix(t) =0 (j =2,...,mk = j+1,...,n),and y; (t) = 0. Let B, = 1.
Then11=12— s=1,=1,
fi(t,x1,...5x,) sgn [ (t = By)x1] <0,
‘ (2.31)
fi(tx15..ox0) sgn [(t— 1x;] < zA]k Vx| +pi(t)  (j=2,...,n),
and the equation u; = g;(¢,u) has a positive solution
¢ /(1-y)
o1() = [(1 ) La(s)ds] (2.32)

n (0,1] such that lim;_¢ ¢, (¢) = 0. The assumptions of Corollary 2.2 are fulfilled with
I'={1}, ¢c; =0, and z(t) = z;(t) = 0. Therefore, the considered boundary value problem
has at least two different solutions on [a, A]. Moreover, the first component x; (¢) of these
solutions satisfies |x; (£)| < ¢ (¢) for t € (0,1].

COROLLARY 2.4. Supposethat —o0 <a<A< oo, c€R,A€L[[a,A],R*],and y € L[[a,A],
R*]. Let B € [a,A] \ {t4,01,...,0,} be such that

Ft,x1s..x0) sgn[(t—B) (x, —¢) ] < A(t) | x| +u(t) (2.33)

for (t,x) € R 1. Assume that

(1) there exists a function q € Kga s, 5[ A;)A,R] such that sgn(t — t,)q(t, -) is nondecreas-
ing and there is a solution ¢(t) of

u =q(t,u) (2.34)

satisfying

o(t)>0 forte A(t,,B), l1m(p(t) lirtnian(p(t) > 0; (2.35)

t—t,

(ii) there arez € A\(Jj[[a,A],R] and € € C[(a,A),R"] such that z(t,) = xo, and

sgn (B —t,) sgn (x, — z(1)) (f (t,x1,...,%,) — 2/ () = sgn (B —t,)q(t, | x, — 2(t) | )
(2.36)
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holds on Q) = {(£,x1,...,%n) o(t) < lxn —2(t)| < @(t) +&(t),t € A(ty, B)} for almost

all t € A(t,,B). Then the boundary value problem

v = f(tw,v/,.. v D),
v(t) =xo1, V' (t2) =x02,..., V"V (t) = x0n

has at least two different solutions on [a,A].

(2.37)

Proof. Put I = {n}, k; = 1, Prx = x,, ¢, = ¢, gu(t,u) = q(t,u), @u(t) = @(t), ¢; = xo; for

i=1,...,n—1u(t)=0fori=1,...,n—1, u,(¢) = u(t), B, = B, and

1 forl<i=j-1=<n-1,

Xj(£) = 1A(t) fori=j=n,

0 otherwise.
Considering the system

7

X1 = X2, x1(t) = xo1,
7

Xy = X35 x2(t2) = X0z,

! J—

Xn-1 = Xn> Xn—1(tn=1) = Xon-1

B

X, = (t)-xly-xZ)---:-xn)) xn(tn) = Xon>

and applying Corollary 2.2, we get

ft’l(t)xl)---)xﬂ) Sgn[(t_Bn) (xp—cn)] <

IR

j=1

fi(t)xl)-uyxn)sgn[(t_ ) (xi—ci)) < | xin | < i | i1 |

M

j=1

fori=1,...,n— 1. The result follows from Corollary 2.2.

Example 2.5. Lety € (0,1). Consider the boundary value problem
v = pi(t,v) [V |V sgnv' + pa (6 v,0), v(0) =0, V(1)
where p; € K; [}A?(l)’l,R] and p, € K, [ngl,m] are such that

x2p2(t,x1,%2) <0 for (£,x1,%) € (0,1) x R?,
p1(t,x1) < —6(t) for (t,x1) € (0,1) X R,

6 € L[[0,1],R] being a positive function. Since

—p1(t,x1) |2 |” = pa(tx1,2) sgnxy = 8(8) | x2 |7

)‘nj(t) |xj | +[4n(t))

Aij(8) [ |+ pi(t)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
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the assumptions of Corollary 2.4 are fulfilled withn=2,a=0,A= 1,1, =0,t, = 1,¢ =0,
B=0,z(t)=0,A(t) =0, u(t) =0, and

—0(Hur foru =0, 1 1/1-y
q(tu) = {0 o(t) = [(1 - L 8(s)ds] L (2a4)

for u<o,

Therefore, problem (2.41) has at least two different solutions on [0,1].

COROLLARY 2.6. Let the assumptions of Corollary 2.2 be fulfilled with the exception that the
conditions (i), (ii) are replaced by (i), (i’ ):

(i") there exist functions hi,q; € Kgap,[R aA,R] (i € I) such that functions sgn(t —
t)hi(t,-) and sgn(t — t;)qi(t,-) are nondecreasing for i € I and there are solutions
@i(1), yi(t) of u; = hi(t,u;) and v; = qi(t,v;), respectively, satisfying

¢i(t) >0 forte A(t;,B;), l}gl(p(t) =0, lirtnglf(p(t) >0,

. o (2.45)
vi(t) >0 forte A(t;,B;), ltljrt;w(t) =0, llrtrl}snfw(t) >0

fortel;
(ii') there are z; € AC[[a,A],R] and € = (ei,,...,&;) € C[(a,A),R*'] such that zi(t;) =
Xoi and the inequalities

sgn (Bj — ;) [ (fj(t,x) = Z(1)) = hj(t, (xj —2;(1), )] =0 (j€I) (2.46)
sgn (B — t;)[ — (fi(t,x) = 2j(1)) — q;(t, (x; — z;(1)) )] =0 (j€I) ’
are fulfilled on Q= {(t,x): @;(t) <xj—zj(t) <@;j(t) +&i(t),t € A(t;,Bj)} and Q =
{(t,x) 1 y;(t) < zj(t) — xj < y;(t) +€;(t),t € A(tj,B;j)}, respectively, for almost all
t € A(t},B;). Then the Cauchy-Nicoletti boundary value problem (2.1) has at least
two dzﬁ‘erent solutions on [a,A].

Proof. Without loss of generality, it can again be assumed that I = {1,...,I} and Prx =
(X15...,%1). Put ki =2, gi(t,u) = hi(t,u), gn(t,v) = qi(t,v), @i (t) = @i(t), in(t) = yi(t),
Vi (t,x) = (xi — zi(t))+, Via(t,x) = (x;i — zi(1)) -, and Vi(t,x) = (Vi1 (t,x), Via(t,x)) for i €
I. Then we have

x(t

sgn (Bi — t;) Vi, (t,x(t)) = sgn (B; — t;) (fi( ) -z (1))
t

t,x(t)
= sgn( _tt)gtl(t Vi (t,x(1))),
sgn (Bi — 1) Vi (£,x(t)) = —sgn (B; — ;) (fi(£,x(1)) — 2 (1))
(

> sgn (B; — ;) gin (t, Via (£,x(1)) )

(2.47)

for any solution x = x(t) of (2.1) a.e. on any interval (a1, a;,) S A(t;, Bi) for which

Vi (tx(1) <@i() +&(t),  Va(tx(®) <yit) +e(t) (2.48)
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on (ocﬂ,oc,-z), i= 1,...,l, and
Vit (£x(8)) > @i(t)  or  Vip(t,x(t)) > yi(t) (2.49)

on (a1, a:), respectively. The statement follows from Theorem 2.1. O

CoROLLARY 2.7. Let the assumptions of Corollary 2.4 be fulfilled with the exception that
conditions (i), (ii) are replaced by the following:

(i") there exist functions h € Ka,A,th[IA{;)A,R] andq € KQ,A,tn,B[ﬁ;,A,R] such that sgn(t —
tw)h(t, ) and sgn(t — t,)q(t, -) are nondecreasing and there are solutions (1), y(t)
of ' = h(t,u) and v' = q(t,v), respectively, satisfying

e(t)>0, yw(t)>0 forte A(t,,B), }21%1(/)(1‘) = }ir{llﬂ(t) =0,

.. - ) (2.50)
lntllanf(p(t) >0, 111}11an1//(t) >0;
(ii") there are z € AC[[a,A],R] and ¢ € C[(a,A),R*] such that z(t,) = xon and
sgn (B — ) [ f (£:X15..o%) — 2/ (8) = h(t, (x, — 2(£)),)] = 0,
- (2.51)

sgn (B—t,)[ — f(6x1,...,x0) +2' () —q(t, (xn — 2(1)) )] =0

hold on Q) = {(t,X1,...,%,) : @(t) < X, — 2(t) < () + &(t), t € A(ty,B)} and Q =
(X150 0%0) T y(t) < 2(t) —x, < () +e(t), t € A(t,, B)}, respectively, for almost
all t € A(t,,B). Then the Cauchy-Nicoletti boundary value problem (2.37) has at
least two different solutions on [a, A].

Proof. Corollary 2.7 follows from Corollary 2.6 in the same way as Corollary 2.4 follows
from Corollary 2.2. 0

Example 2.8. Let p; € Ki[R3,R] and p, € K;[R] 1, R] be such that

pl(t,xl,xz) < —81(t)91 (.Xz) for (t,xl,xz) S (0,1) X R X (0,00),
pl(t,xl,xz) 282(t)92(|)€2|) for (t,xl,xz) S (O,I)XRX(—O0,0), (2,52)
x2pa2(t,x1,%2) <0 for (,x1,x2) € (0,1) x R?,

where 81, 8, are positive functions such that §; € L[[0,1],R] and 9; € C[[0,00),R*] (j =
1,2) are nondecreasing and positive on (0, o) and satisfying 9; (0) =9,(0) =0, fol 01(s)ds <
12 1/91(s) ds < o0, and [y 85(s)ds < [;° 1/9,(s) ds < oo.

Consider the boundary value problem

w' = pi(t,w,w') + pa(t,w,w'), w(0) =0, w'(1) = 0. (2.53)
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It holds that
- [pl(t)xl)xZ) +P2(t>xl>x2) +81(t)91 (xZ)] >0
for (t,x1,%x2) € (0,1) X R x (0, 0),
— [—pl(t,xl,xz) —pz(t,xl,xz) +62(t)192( —xz)] >0
for (t,x1,x2) € (0,1) X R X (—00,0).

(2.54)

The problems

u'==86(d%w), ul)=0,

v ==8(1)9%(v), v(1) =0 (2.55)

have positive solutions on [0, 1) and condition (2.54) implies

[pl (t,xl,xz) +p2(t,X1,XQ)] sgnx; < 0. (2.56)

Therefore, the assumptions of Corollary 2.7 are fulfilled witha = 0,A =1,¢ =0, z(¢) =0,
B=0,t1 =0, =1,A(t) =0, u(t) = 0, and

{—al(twl(u) for (£,u) € (0,1) x (0, 0),
h(t,u) =
0 for (t,u) € (0,1) X (—0,0],
(2.57)

—8,(1)9,(v) for (t,v) € (0,1) X (0,00),
q(t,v) = <l
0 for (t,v) € (0,1) X (—00,0].

Hence problem (2.53) has at least two solutions on [0, 1].
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