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The problem of nonuniqueness for a singular Cauchy-Nicoletti boundary value problem
is studied. The general nonuniqueness theorem ensuring the existence of two different
solutions is given such that the estimating expressions are nonlinear, in general, and de-
pend on suitable Lyapunov functions. The applicability of results is illustrated by several
examples.

1. Introduction

The nonuniqueness of a regular or singular Cauchy problem for ordinary differential
equations is studied in several papers such as [3, 4, 5, 13, 14, 15, 16, 17]. Most of these
results can also be found in the monograph [1]. The uniqueness of solutions of Cauchy
initial value problem for ordinary differential equations with singularity is investigated
in [7, 8, 9, 12]. The topological structure of solution sets to a large class of boundary
value problems for ordinary differential equations is studied in [2]. First results on the
nonuniqueness for a singular Cauchy-Nicoletti boundary value problem are given in [10,
11, 12] by Kiguradze, where sufficient conditions for the nonuniqueness are written in the
form of one-sided inequalities for the components in the right-hand side f (t,x1, . . . ,xn)
of the corresponding equation. An expression for the estimation of the jth component
f j(t,x1, . . . ,xn) of f depends on t and xj and is linear in |xj|.

In [6], we studied the nonuniqueness for a singular Cauchy problem. Our criteria in-
volve vector Lyapunov functions and the estimations need not be linear. The present pa-
per deals with the nonuniqueness of the singular Cauchy-Nicoletti problem and extends
the results of [6] to this more general problem.

Supposing −∞ ≤ a < A ≤ ∞, b > 0, we will use the following notations throughout
the paper: Rk and R+ denote k-dimensional real Euclidean space and the interval [0,∞),
respectively. | · | is used for the notation of Hölder’s 1-norm (the sum of the absolute val-
ues of components). x = (x1, . . . ,xn) denotes a variable vector from Rn with components
x1, . . . ,xn, while x0 = (x01, . . . ,x0n) stands for a fixed vector from Rn with components
x01, . . . ,x0n.N is equal to the set {1, . . . ,n}. l denotes a fixed number from the set {1, . . . ,n}.
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i1, i2, . . . , il are fixed integers such that 1 ≤ i1 < i2 < ··· < il ≤ n. I is set to be equal to
{i1, . . . , il}. Prx denotes a projection of x such that Prx = (xi1 , . . . ,xil), while Pr*x denotes
a complementary projection to Prx. Clearly, Pr*x = (xj1 , . . . ,xjn−l), where 1 ≤ j1 < ··· <
jn−l ≤ n, {i1, . . . , il}∩{ j1, . . . , jn−l} =∅. Rkα,β;b(x0) and R̃ka,A are used for the notation of the

set {(t,x) ∈ Rk+1 : α < t < β,|x− x0| ≤ b} and the set {(t,x) ∈ Rk+1 : a < t < A, x ∈ Rk},
respectively. The symbol R̂na,A will be used for the set {(t,x) ∈ Rn+1 : a ≤ t ≤ A, x ∈ Rn}.
∆(α,β) denotes the interval (min(α,β),max(α,β)).

The notation C[Γ ,Ω] is used for the notation of the class of all continuous mappings
Γ → Ω. AC[[a,A],Rk] and ÃC[[a,A],Rk] denote the class of all absolutely continuous
mappings [a,A]→ Rk and the class of all mappings from C[[a,A],Rk] which are abso-
lutely continuous on any interval [α,β], where a < α < β < A, respectively. The class of
all Lebesgue-integrable mappings [a,A]→ R+ is denoted by L[[a,A],R+]. �τ[R̂na,A,R+k]

stands for the class of all functions V(t,x) : R̂na,A → R+k with the following property:
V(t,·) is uniformly continuous, and if a < α < β < A, τ �∈ [α,β], then V(t,x(t)) is
absolutely continuous on [α,β] for any absolutely continuous function x : [α,β]→ Rn.
Kσ1,...,σp[R̂

k
a,A,Rm] denotes the class of all mappings R̂ka,A→Rm which satisfy Carathéodory

conditions on Rkα,β;ρ(0) for any α,β,a ≤ α < β ≤ A, σj �∈ [α,β]( j = 1, . . . , p), ρ ∈ (0,∞),
σ1, . . . ,σp being numbers from [a,A]. N0(a,A;τ1, . . . ,τn) is used for the notation of the
class {Λ = (λi j(t))ni, j=1 : λi j ∈ L[[a,A],R+]} such that the system of differential inequali-
ties |x′i (t)| ≤

∑n
j=1 λi j(t)|xj(t)|, t ∈ [a,A], i ∈ N , possesses no nontrivial solution x(t) =

(x1(t), . . . ,xn(t))∈ AC[[a,A],Rn] satisfying xi(τi)= 0 (i= 1, . . . ,n).
The fundamental role in the proof of our main theorem will be played by the following

theorem by Kiguradze, which is adapted from [12] (see also [10]) in a simplified form.

Kiguradze Theorem . Let a≤τi≤A, x̂0i∈R for i= 1, . . . ,n. Suppose that f ∈Kσ1,...,σp[R̂
n
a,A,

Rn]. Assume that the components fi of f satisfy

fi(t,x)sgn
[(
t− τi

)(
xi− x̂0i

)]≤ n∑
j=1

λi j(t)
∣∣xj∣∣+µi(t) (i= 1, . . . ,n) (1.1)

for (t,x) = (t,x1, . . . ,xn) ∈ R̃na,A, where x̂0i = 0 if τi ∈ {σ1, . . . ,σp}. Suppose that Λ(t) =
(λi j(t))ni, j=1 ∈N0(a,A;τ1, . . . ,τn), µi ∈ L[[a,A],R+]. Then the Cauchy-Nicoletti problem

x′ = f (t,x), xi
(
τi
)= 0 (i= 1, . . . ,n) (1.2)

has at least one solution x(t)= (x1(t), . . . ,xn(t))∈AC[[a,A],Rn].

2. Results

Consider a Cauchy-Nicoletti boundary value problem

x′ = f (t,x), xi
(
ti
)= x0i (i= 1, . . . ,n), (2.1)

where f (t,x) = ( f1(t,x1, . . . ,xn), . . . , fn(t,x1, . . . ,xn)), f ∈ Kσ1,...,σp[R̂
n
a,A,Rn], x0i ∈ R, and

ti ∈ [a,A] (i∈N).
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Theorem 2.1. Suppose that there are numbers ci ∈ R (i ∈ N), Bi ∈ [a,A] \ {ti,σ1, . . . ,σp}
(i∈ I), a matrix function Λ= (λi j)ni, j=1∈N0(a,A;τ1, . . . ,τn) and functions µi∈L[[a,A],R+]
(i∈N) such that ci = x0i for i∈N \ I and

fi(t,x)
[

sgn
(
t− τi

)(
xi− ci

)]≤ n∑
j=1

λi j(t)
∣∣xj∣∣+µi(t) (i∈N) (2.2)

holds for (t,x) = (t,x1, . . . ,xn) ∈ R̃
n
a,A, where τi = ti or τi = Bi whenever i ∈ N \ I or i ∈ I ,

respectively.
Assume that

(i) there exist vector functions gi = (gi1, . . . ,giki) ∈ Ka,A,ti,Bi[R̂
ki
a,A,Rki] (i ∈ I) such that

sgn(t− ti)gi j(t,u1, . . . ,uj−1,·,uj , . . . ,uki) is nondecreasing for j = 1, . . . ,ki and there
is a solution ϕi(t)= (ϕi1(t), . . . ,ϕiki(t)) of

u′i = gi
(
t,u1, . . . ,uki

)
(2.3)

satisfying

ϕi(t) > 0 for t ∈ ∆(ti,Bi), lim
t→ti

ϕi(t)= 0, liminf
t→Bi

ϕi(t) > 0 (2.4)

for i∈ I ;
(ii) Vi(t,x)= (Vi1(t,x), . . . ,Viki(t,x))∈�ti[R̂

n
a,A,R+ki] (i∈ I) are such that there exists

y0 ∈Rl with the property

sup
{
Vij
(
Bi, y

)
: y ∈R

n,Pr y = y0
}
< liminf

t→Bi
ϕi j(t)

(
j = 1, . . . ,ki

)
(2.5)∣∣Vi(t,x)

∣∣≥Ψi
(∣∣xi− zi(t)∣∣) for t ∈ ∆(ti,Bi), (2.6)

where Ψi ∈ C[R+,R+], zi ∈ C[(a,A),R] are such that

Ψi(0)= 0, Ψi(u) > 0 for u > 0, lim
t→ti

zi(t)= x0i (2.7)

for i∈ I ;
(iii) there exist positive functions εik ∈ C[(a,A),R+] (i∈ I ;k = 1, . . . ,ki) such that

sgn
(
Bi− ti

)
V ′
i j

(
t,x(t)

)
≥ sgn

(
Bi− ti

)
gi j
(
t,ϕi1(t), . . . ,ϕi, j−1(t),Vij

(
t,x(t)

)
,ϕi, j+1(t), . . . ,ϕiki(t)

) (2.8)

holds for i ∈ I , j = 1, . . . ,ki, and for any solution x(t) of (2.1) a.e. on any interval
(αi1,αi2)⊆ ∆(ti,Bi) for which

Vik
(
t,x(t)

)
< ϕik(t) + εik(t) on

(
αi1,αi2

) (
k = 1, . . . ,ki

)
,

Vij
(
t,x(t)

)
> ϕij(t) on

(
αi1,αi2

)
.

(2.9)

Then the Cauchy-Nicoletti boundary value problem (2.1) has at least two different
solutions on [a,A], either of which satisfies Vi(t,x(t)) ≤ ϕi(t) for t ∈ ∆(ti,Bi) and
i∈ I .
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Proof. Without loss of generality, it can be assumed that I = {1, . . . , l},

Prx = (x1, . . . ,xl
)
, Pr*x = (xl+1, . . . ,xn

)
. (2.10)

For any i∈ I and j ∈ {1, . . . ,ki}, denote

Li j = liminf
t→Bi

ϕi j(t), Si j = sup
{
Vij
(
Bi, y

)
: y ∈R

n,Pr y = y0
}
. (2.11)

According to (2.5) and to the uniform continuity of Vij(Bi,·), we have a relation

Vij
(
Bi, y∗

)≤Vij
(
Bi, y

)
+Vij

(
Bi, y∗

)−Vij
(
Bi, y

)
≤ 1

2

(
Li j + Si j

)
+

1
4

(
Li j − Si j

)= 3
4
Li j +

1
4
Si j < Li j

(2.12)

for y ∈ Rn, Pr y = y0, and for y∗ ∈ Rn sufficiently close to y. Hence it can be supposed
without loss of generality that y0 �= Prx0.

Further, the uniform continuity of Vij(Bi,·) implies that the inequality

sup
{
Vij
(
Bi, y

)
: y ∈R

n,Pr y = y0− λ
(
y0−Prx0

)}
< liminf

t→Bi
ϕi j(t)

(
i∈ I ; j = 1, . . . ,ki

)
(2.13)

holds provided that λ > 0 is sufficiently small. Therefore, we can choose x̃1, x̃2 ∈Rl, x̃1 �=
x̃2, such that

max
k=1,2

[
sup

{
Vij
(
Bi, y

)
: y ∈R

n,Pr y = x̃k
}]
< liminf

t→Bi
ϕi j(t)

(
i= 1, . . . , l; j = 1, . . . ,ki

)
.

(2.14)
Choose ξ̃ ∈ {x̃1, x̃2} arbitrary. Put ξ = x0 − (ξ̃,Pr*x0), X = x− x0 + ξ, and f ∗(t,X) =

f (t,x0 +X − ξ) for (t,X)= (t,X1, . . . ,Xn)∈ R̂na,A.
Clearly f ∗ ∈ Kσ1,...,σp[R̂

n
a,A,Rn]. By using (2.2), we obtain

f ∗i (t,X)sgn
[(
t− τi

)(
Xi + ξ̃i− ci

)]≤ l∑
j=1

λi j(t)
∣∣Xj + ξ̃ j

∣∣+
n∑

j=l+1

λi j(t)
∣∣Xj + x0 j

∣∣+µi(t)

≤
n∑
j=1

λi j(t)
∣∣Xj

∣∣+ µ̃i(t)

(2.15)

for (t,X)∈ R̃na,A, i= 1, . . . , l, and

f ∗i (t,X)sgn
[(
t− τi

)
Xi
]≤ l∑

j=1

λi j(t)
∣∣Xj + ξ̃ j

∣∣+
n∑

j=l+1

λi j(t)
∣∣Xj + x0 j

∣∣+µi(t)

≤
n∑
j=1

λi j(t)
∣∣Xj

∣∣+ µ̃i(t)

(2.16)
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for (t,X)∈ R̃na,A, i= l+ 1, . . . ,n, where

µ̃i(t)=
l∑
j=1

λi j(t)
∣∣ξ̃ j∣∣+

n∑
j=l+1

λi j(t)
∣∣x0 j

∣∣+µi(t) (2.17)

for i= 1,2, . . . ,n. As µ̃i ∈ L[[a,A],R+] holds, Kiguradze theorem implies that the bound-
ary value problem

X ′ = f ∗(t,X), Xi
(
τi
)= 0 (i= 1, . . . ,n) (2.18)

has at least one solution X(t)∈AC[[a,A],Rn]. Hence x(t)= X(t) + x0− ξ is a solution of

x′ = f (t,x), xi
(
τi
)= ξ̃i (i= 1, . . . , l),

xi
(
τi
)= x0i (i= l+ 1, . . . ,n).

(2.19)

Now we will prove that limt→ti xi(t)= x0i for i= 1, . . . , l. Putmi(t)=Vi(t,x(t)),mij(t)=
Vij(t,x(t)) for i= 1, . . . , l and j = 1, . . . ,ki. In view of (2.14), the inequality

mi(t) < ϕi(t) (2.20)

holds for t ∈ (a,A) sufficiently close to Bi. Suppose for definiteness that ti < Bi, that is,
∆(ti,Bi) = (ti,Bi) for some i ∈ {1, . . . , l}. We will show that mi(t) ≤ ϕi(t) for t ∈ (ti,Bi).
Assume on the contrary that there is a τ ∈ (ti,Bi) such that mi(τ) ≤ ϕi(τ) is not true.
Since x(t) is continuous and (2.20) holds for t ∈ (a,A) sufficiently close to Bi, there exist
j ∈ {1, . . . ,ki} and an interval Ji = (τi1,τi2) such that τ < τi1 < τi2 < Bi,

mij
(
τi2
)= ϕij(τi2),

ϕij(s) <mij(s) < ϕij(s) + εi j(s) for s∈ Ji,
mik(s) < ϕik(s) + εik(s) for s∈ Ji, k = 1, . . . ,ki.

(2.21)

Using (2.8), we get

m′
i j(s)≥ gi j

(
s,ϕi1(s), . . . ,ϕi, j−1(s),mij(s),ϕi, j+1(s), . . . ,ϕiki(s)

)
(2.22)

a.e. on Ji. As gi j(t,u1, . . . ,uj−1,·,uj+1, . . . ,un(s)) is nondecreasing, we have

m′
i j(s)≥ gi j(s,ϕi1(s), . . . ,ϕiki(s))= ϕ′i j(s) (2.23)

a.e. on Ji. Therefore, the function mij(t)−ϕij(t) is nondecreasing on Ji, which is a con-
tradiction to mij(τi2)= ϕij(τi2). Thus

0≤mi(t)≤ ϕi(t) for t ∈ (ti,Bi). (2.24)

Now the condition limt→ti+ϕi(t) = 0 implies limt→ti+mi(t) = 0. With respect to the con-
tinuity of xi(t) on [a,A], we have xi(ti)= limt→ti xi(t)= x0i. The inequality (2.24) implies
Vi(t,x(t))≤ ϕi(t) for t ∈ ∆(ti,Bi). �
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Corollary 2.2. Let ci ∈ R (i ∈ N), Bi ∈ [a,A] \ {ti,σ1, . . . ,σp} (i ∈ I), a matrix function
Λ = (λi j)ni, j=1 ∈ N0(a,A;τ1, . . . ,τn), and functions µi ∈ L[[a,A],R+] (i ∈ N) be such that
ci = x0i for i ∈ N \ I and condition (2.2) is fulfilled, where τi = ti or τi = Bi whenever i ∈
N \ I or i∈ I , respectively.

Assume that

(i) there exist functions gi ∈ Ka,A,ti,Bi[R̂
1
a,A,R] (i ∈ I) such that sgn(t − ti)gi(t,·) are

nondecreasing and there are solutions ϕi(t) of

u′i = gi
(
t,ui

)
(2.25)

satisfying (2.4);
(ii) there are zi ∈ ÃC[[a,A],R] and ε = (εi1 , . . . ,εil) ∈ C[(a,A),R+l] such that zi(ti) =

x0i (i∈ I) and the estimation

sgn(Bi− ti)sgn
(
xi− zi(t)

)(
fi(t,x)− z′i (t)

)≥ sgn
(
Bi− ti

)
gi
(
t,
∣∣xi− zi(t)∣∣)(i∈ I)

(2.26)

is fulfilled on Ω̂= {(t,x) : ϕi(t) < |xi− zi(t)| < ϕi(t) + εi(t), t ∈ ∆(ti,Bi)} for almost
all t ∈ ∆(ti,Bi). Then the Cauchy-Nicoletti boundary value problem (2.1) has at least
two different solutions on [a,A], either of which satisfies |xi(t)− zi(t)| ≤ ϕi(t) for
t ∈ ∆(ti,Bi) and i∈ I .

Proof. Without loss of generality, it can be supposed that I = {1, . . . , l} and Prx = (x1, . . . ,
xl). Put ki = 1 and Vi(t,x(t))=Vi1(t,x)= |xi− zi(t)| for i= 1, . . . , l. Then

sgn
(
Bi− ti

)
V ′
i1

(
t,x(t)

)≥ sgn
(
Bi− ti

)(
fi
(
t,x(t)

)− z′i (t))sgn
(
xi(t)− zi(t)

)
≥ sgn

(
Bi− ti

)
gi
(
t,
∣∣xi(t)− zi(t)∣∣)

= sgn
(
Bi− ti

)
gi
(
t,Vi1

(
t,x(t)

)) (2.27)

holds for any solution x(t) of (2.1) a. e. on any interval (αi1,αi2) ⊆ ∆(ti,Bi) for which
ϕi(t)<Vi(t,x(t))<ϕi(t) + εi(t) on (αi1,αi2). The assumptions of Theorem 2.1 are satisfied.

�

Example 2.3. Let f1, . . . , fn ∈ K0[R̂n0,1,R] be such that

f1
(
t,x1, . . . ,xn

)
sgnx1 ≥ δ(t)

∣∣x1
∣∣γ,

− f j
(
t,x1, . . . ,xn

)
sgnxj ≤

j∑
k=1

λjk(t)
∣∣xk∣∣+µj(t) ( j = 2, . . . ,n)

(2.28)

for (t,x1, . . . ,xn) ∈ R̃n0,1, where γ ∈ (0,1) and δ,λjk,µj ∈ L[[0,1],R+], δ being a positive
function. Consider the boundary value problem

x′1 = f1
(
t,x1, . . . ,xn

)
, x1(0)= 0,

x′2 = f2
(
t,x1, . . . ,xn

)
, x2(1)= 0,

...

x′n = fn
(
t,x1, . . . ,xn

)
, xn(1)= 0.

(2.29)
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Put t1 = 0, t2 = t3 = ··· = tn = 1,

g1(t,u)=
δ(t)uγ for u≥ 0,

0 for u < 0,
(2.30)

λ1k(t)≡ 0 (k = 1, . . . ,n), λjk(t)≡ 0 ( j = 2, . . . ,n;k = j + 1, . . . ,n), and µ1(t)≡ 0. Let B1 = 1.
Then τ1 = τ2 = ··· = τn = 1,

f1
(
t,x1, . . . ,xn

)
sgn

[(
t−B1

)
x1
]≤ 0,

f j
(
t,x1, . . . ,xn

)
sgn

[
(t− 1)xj

]≤ n∑
k=1

λjk(t)
∣∣xk∣∣+µj(t) ( j = 2, . . . ,n),

(2.31)

and the equation u′1 = g1(t,u) has a positive solution

ϕ1(t)=
[

(1− γ)
∫ t

0
δ(s)ds

]1/(1−γ)

(2.32)

in (0,1] such that limt→0ϕ1(t) = 0. The assumptions of Corollary 2.2 are fulfilled with
I = {1}, c1 = 0, and z(t)= z1(t)≡ 0. Therefore, the considered boundary value problem
has at least two different solutions on [a,A]. Moreover, the first component x1(t) of these
solutions satisfies |x1(t)| ≤ ϕ1(t) for t ∈ (0,1].

Corollary 2.4. Suppose that−∞ < a < A <∞, c ∈R, λ∈ L[[a,A],R+], and µ∈ L[[a,A],
R+]. Let B ∈ [a,A] \ {tn,σ1, . . . ,σp} be such that

f̃
(
t,x1, . . . ,xn

)
sgn

[
(t−B)

(
xn− c

)]≤ λ(t)
∣∣xn∣∣+µ(t) (2.33)

for (t,x)∈ R̃na,A. Assume that

(i) there exists a function q ∈ Ka,A,tn,B[R̂1
a,A,R] such that sgn(t− tn)q(t,·) is nondecreas-

ing and there is a solution ϕ(t) of

u′ = q(t,u) (2.34)

satisfying

ϕ(t) > 0 for t ∈ ∆(tn,B
)
, lim

t→tn
ϕ(t)= 0, liminf

t→B
ϕ(t) > 0; (2.35)

(ii) there are z ∈ ÃC[[a,A],R] and ε ∈ C[(a,A),R+] such that z(tn)= x0n and

sgn
(
B− tn

)
sgn

(
xn− z(t)

)(
f̃
(
t,x1, . . . ,xn

)− z′(t))≥ sgn
(
B− tn

)
q
(
t,
∣∣xn− z(t)

∣∣)
(2.36)
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holds on Ω̂= {(t,x1, . . . ,xn) : ϕ(t) < |xn− z(t)| < ϕ(t) + ε(t), t ∈ ∆(tn,B)} for almost
all t ∈ ∆(tn,B). Then the boundary value problem

v(n) = f̃
(
t,v,v′, . . . ,v(n−1)),

v
(
t1
)= x01, v′

(
t2
)= x02, . . . , v(n−1)(tn)= x0n

(2.37)

has at least two different solutions on [a,A].

Proof. Put I = {n}, k1 = 1, Prx = xn, cn = c, gn(t,u) = q(t,u), ϕn(t) = ϕ(t), ci = x0i for
i= 1, . . . ,n− 1, µi(t)= 0 for i= 1, . . . ,n− 1, µn(t)= µ(t), Bn = B, and

λi j(t)=


1 for 1≤ i= j− 1≤ n− 1,

λ(t) for i= j = n,

0 otherwise.

(2.38)

Considering the system

x′1 = x2,

x′2 = x3,

...

x′n−1 = xn,

x′n = f̃
(
t,x1,x2, . . . ,xn

)
,

x1
(
t1
)= x01,

x2
(
t2
)= x02,

...

xn−1
(
tn−1

)= x0n−1,

xn
(
tn
)= x0n,

(2.39)

and applying Corollary 2.2, we get

fn
(
t,x1, . . . ,xn

)
sgn

[(
t−Bn

)(
xn− cn

)]≤ n∑
j=1

λnj(t)
∣∣xj∣∣+µn(t),

fi
(
t,x1, . . . ,xn

)
sgn

[(
t− ti

)(
xi− ci

)]≤ ∣∣xi+1
∣∣≤ λi,i+1

∣∣xi+1
∣∣

=
n∑
j=1

λi j(t)
∣∣xj∣∣+µi(t)

(2.40)

for i= 1, . . . ,n− 1. The result follows from Corollary 2.2. �

Example 2.5. Let γ ∈ (0,1). Consider the boundary value problem

v′′ = p1(t,v)
∣∣v′∣∣γ sgnv′ + p2

(
t,v,v′

)
, v(0)= 0, v′(1)= 0, (2.41)

where p1 ∈ K1[R̂1
0,1,R] and p2 ∈ K1[R̂2

0,1,R] are such that

x2p2
(
t,x1,x2

)≤ 0 for
(
t,x1,x2

)∈ (0,1)×R
2,

p1
(
t,x1

)≤−δ(t) for
(
t,x1

)∈ (0,1)×R,
(2.42)

δ ∈ L[[0,1],R] being a positive function. Since

−p1
(
t,x1

)∣∣x2
∣∣γ − p2

(
t,x1,x2

)
sgnx2 ≥ δ(t)

∣∣x2
∣∣γ, (2.43)
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the assumptions of Corollary 2.4 are fulfilled with n= 2, a= 0,A= 1, t1 = 0, t2 = 1, c = 0,
B = 0, z(t)≡ 0, λ(t)≡ 0, µ(t)≡ 0, and

q(t,u)=
−δ(t)uγ for u≥ 0,

0 for u < 0,
ϕ(t)=

[
(1− γ)

∫ 1

t
δ(s)ds

]1/1−γ
. (2.44)

Therefore, problem (2.41) has at least two different solutions on [0,1].

Corollary 2.6. Let the assumptions of Corollary 2.2 be fulfilled with the exception that the
conditions (i), (ii) are replaced by (i′), (ii′):

(i′) there exist functions hi,qi ∈ Ka,A,ti,Bi[R̂
1
a,A,R] (i ∈ I) such that functions sgn(t −

ti)hi(t,·) and sgn(t− ti)qi(t,·) are nondecreasing for i ∈ I and there are solutions
ϕi(t), ψi(t) of u′i = hi(t,ui) and v′i = qi(t,vi), respectively, satisfying

ϕi(t) > 0 for t ∈ ∆(ti,Bi), lim
t→ti

ϕ(t)= 0, liminf
t→Bi

ϕ(t) > 0,

ψi(t) > 0 for t ∈ ∆(ti,Bi), lim
t→ti

ψ(t)= 0, liminf
t→Bi

ψ(t) > 0
(2.45)

for t ∈ I ;
(ii′) there are zi ∈ ÃC[[a,A],R] and ε = (εi1 , . . . ,εil) ∈ C[(a,A),R+l] such that zi(ti) =

x0i and the inequalities

sgn
(
Bj − t j

)[(
f j(t,x)− z′j(t)

)−hj(t,(xj − zj(t))+

)]≥ 0 ( j ∈ I)
sgn

(
Bj − t j

)[− ( f j(t,x)− z′j(t)
)− qj(t,(xj − zj(t))−)]≥ 0 ( j ∈ I) (2.46)

are fulfilled on Ω̂= {(t,x) : ϕj(t) < xj − zj(t) < ϕj(t) + εj(t), t ∈ ∆(t j ,Bj)} and ˆ̂Ω=
{(t,x) : ψj(t) < zj(t)− xj < ψj(t) + εj(t), t ∈ ∆(t j ,Bj)}, respectively, for almost all
t ∈ ∆(t j ,Bj). Then the Cauchy-Nicoletti boundary value problem (2.1) has at least
two different solutions on [a,A].

Proof. Without loss of generality, it can again be assumed that I = {1, . . . , l} and Prx =
(x1, . . . ,xl). Put ki=2, gi1(t,u) = hi(t,u), gi2(t,v) = qi(t,v), ϕi1(t) = ϕi(t), ϕi2(t) = ψi(t),
Vi1(t,x) = (xi − zi(t))+, Vi2(t,x) = (xi − zi(t))−, and Vi(t,x) = (Vi1(t,x),Vi2(t,x)) for i ∈
I . Then we have

sgn
(
Bi− ti

)
V ′
i1

(
t,x(t)

)≥ sgn
(
Bi− ti

)(
fi
(
t,x(t)

)− z′i (t))
≥ sgn

(
Bi− ti

)
gi1
(
t,Vi1

(
t,x(t)

))
,

sgn
(
Bi− ti

)
V ′
i2

(
t,x(t)

)≥−sgn
(
Bi− ti

)(
fi
(
t,x(t)

)− z′i (t))
≥ sgn

(
Bi− ti

)
gi2
(
t,Vi2

(
t,x(t)

))
(2.47)

for any solution x = x(t) of (2.1) a.e. on any interval (αi1,αi2)⊆ ∆(ti,Bi) for which

Vi1
(
t,x(t)

)
< ϕi(t) + εi(t), Vi2

(
t,x(t)

)
< ψi(t) + εi(t) (2.48)
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on (αi1,αi2), i= 1, . . . , l, and

Vi1
(
t,x(t)

)
> ϕi(t) or Vi2

(
t,x(t)

)
> ψi(t) (2.49)

on (αi1,αi2), respectively. The statement follows from Theorem 2.1. �

Corollary 2.7. Let the assumptions of Corollary 2.4 be fulfilled with the exception that
conditions (i), (ii) are replaced by the following:

(i′) there exist functions h∈ Ka,A,tn,B[R̂1
a,A,R] and q ∈ Ka,A,tn,B[R̂1

a,A,R] such that sgn(t−
tn)h(t,·) and sgn(t− tn)q(t,·) are nondecreasing and there are solutions ϕ(t), ψ(t)
of u′ = h(t,u) and v′ = q(t,v), respectively, satisfying

ϕ(t) > 0, ψ(t) > 0 for t ∈ ∆(tn,B), lim
t→tn

ϕ(t)= lim
t→tn

ψ(t)= 0,

liminf
t→B

ϕ(t) > 0, liminf
t→B

ψ(t) > 0;
(2.50)

(ii′) there are z ∈ ÃC[[a,A],R] and ε ∈ C[(a,A),R+] such that z(tn)= x0n and

sgn
(
B− tn

)[
f̃
(
t,x1, . . . ,xn

)− z′(t)−h(t,(xn− z(t)
)

+

)]≥ 0,

sgn
(
B− tn

)[− f̃
(
t,x1, . . . ,xn

)
+ z′(t)− q(t,(xn− z(t)

)
−
)]≥ 0

(2.51)

hold on Ω̂ = {(t,x1, . . . ,xn) : ϕ(t) < xn − z(t) < ϕ(t) + ε(t), t ∈ ∆(tn,B)} and ˆ̂Ω =
{(t,x1, . . . ,xn) : ψ(t) < z(t)− xn < ψ(t) + ε(t), t ∈ ∆(tn,B)}, respectively, for almost
all t ∈ ∆(tn,B). Then the Cauchy-Nicoletti boundary value problem (2.37) has at
least two different solutions on [a,A].

Proof. Corollary 2.7 follows from Corollary 2.6 in the same way as Corollary 2.4 follows
from Corollary 2.2. �

Example 2.8. Let p1 ∈ K1[R̂2
0,1,R] and p2 ∈ K1[R̂2

0,1,R] be such that

p1
(
t,x1,x2

)≤−δ1(t)ϑ1
(
x2
)

for
(
t,x1,x2

)∈ (0,1)×R× (0,∞),

p1
(
t,x1,x2

)≥ δ2(t)ϑ2
(∣∣x2

∣∣) for
(
t,x1,x2

)∈ (0,1)×R× (−∞,0),

x2p2
(
t,x1,x2

)≤ 0 for
(
t,x1,x2

)∈ (0,1)×R
2,

(2.52)

where δ1, δ2 are positive functions such that δj ∈ L[[0,1],R] and ϑj ∈ C[[0,∞),R+] ( j =
1,2) are nondecreasing and positive on (0,∞) and satisfying ϑ1(0)=ϑ2(0)=0,

∫ 1
0 δ1(s)ds <∫∞

0 1/ϑ1(s)ds <∞, and
∫ 1

0 δ2(s)ds <
∫∞

0 1/ϑ2(s)ds <∞.
Consider the boundary value problem

w′′ = p1
(
t,w,w′

)
+ p2

(
t,w,w′

)
, w(0)= 0, w′(1)= 0. (2.53)
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It holds that

− [p1
(
t,x1,x2

)
+ p2

(
t,x1,x2

)
+ δ1(t)ϑ1

(
x2
)]≥ 0

for
(
t,x1,x2

)∈ (0,1)×R× (0,∞),

− [− p1
(
t,x1,x2

)− p2
(
t,x1,x2

)
+ δ2(t)ϑ2

(− x2
)]≥ 0

for
(
t,x1,x2

)∈ (0,1)×R× (−∞,0).

(2.54)

The problems

u′ = −δ1(t)ϑ1(u), u(1)= 0,

v′ = −δ2(t)ϑ2(v), v(1)= 0
(2.55)

have positive solutions on [0,1) and condition (2.54) implies[
p1
(
t,x1,x2

)
+ p2

(
t,x1,x2

)]
sgnx2 ≤ 0. (2.56)

Therefore, the assumptions of Corollary 2.7 are fulfilled with a= 0, A= 1, c = 0, z(t)≡ 0,
B = 0, t1 = 0, t2 = 1, λ(t)≡ 0, µ(t)≡ 0, and

h(t,u)=
−δ1(t)ϑ1(u) for (t,u)∈ (0,1)× (0,∞),

0 for (t,u)∈ (0,1)× (−∞,0],

q(t,v)=
−δ2(t)ϑ2(v) for (t,v)∈ (0,1)× (0,∞),

0 for (t,v)∈ (0,1)× (−∞,0].

(2.57)

Hence problem (2.53) has at least two solutions on [0,1].
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