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We investigate here the properties of extremal solutions for semilinear elliptic equation
−∆u= λ f (u) posed on a bounded smooth domain of Rn with Dirichlet boundary con-
dition and with f exploding at a finite positive value a.

1. Introduction

We consider the following semilinear elliptic problem:

(Pλ)

−∆u= λ f (u) in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(1.1)

where λ > 0, Ω ⊂ Rn is a bounded smooth domain and f satisfies the following
condition:
(H) f is a C2 positive nondecreasing convex function on [0,∞) such that

lim
t→+∞

f (t)
t
= +∞. (1.2)

It is well known that under this condition (H), there exists a critical positive value λ∗ ∈
(0,∞) for the parameter λ such that the following holds.

(C1) For any λ∈ (0,λ∗), there exists a positive, minimal, classical solution uλ ∈ C2(Ω̄).
The function uλ is minimal in the following sense: for every solution u of (Pλ), we have
uλ ≤ u on Ω. In addition, the function λ �→ uλ is increasing and λ1(−∆− λ f ′(uλ)) > 0, for
example, for any ϕ∈H1

0 (Ω)\{0},

λ
∫
Ω
f ′
(
uλ
)
ϕ2dx <

∫
Ω
|∇ϕ|2dx. (1.3)

(C2) For any λ > λ∗, there exists no classical solution for (Pλ).
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When λ tends to λ∗,

u∗ = lim
λ→λ∗

uλ (1.4)

always exists by the monotonicity of uλ. In [3], Brezis et al. have introduced a notion
of weak solution as follows: we say u is a weak solution for (Pλ) if u ∈ L1(Ω), u ≥ 0,
f (u)δ ∈ L1(Ω) with δ(x)= dist(x,∂Ω), and

∫
Ω
u(−∆ξ)dx = λ

∫
Ω
f (u)ξ dx, (1.5)

for all ξ ∈ C2(Ω̄), ξ|∂Ω = 0. They then proved the following.
(C3) u∗ is always a weak solution of the problem (Pλ∗), and for λ > λ∗ no solution

exists even in the weak sense.
Later, Martel proved in [6] that u∗ is the unique weak solution of (Pλ∗), the so called

extremal solution.
The typical examples are when the nonlinearity of f is either exponential f (u) = eu

or power-like f (u) = (1 + u)p, p > 1 (see [4, 5, 7]). For f (u) = eu, u∗ is smooth when
n≤ 9, if n≥ 10, u∗ = −2ln|x| is the extremal solution on B1(0). When f (u)= (1 +u)p, if

n < np = 6 + 4(1 +
√
p(p− 1))/(p− 1), u∗ is regular, and for n ≥ np, u∗ = |x|−2/(p−1)− 1

is the extremal solution on B1(0). An immediate consequence is that with any p > 1 and
n ≤ 10, u∗ is a smooth solution. It is natural to ask the following question: for small
dimension n, is u∗ always a classical solution for any function f satisfying (H) and any
domain Ω ⊂ Rn? Nedev in [9] and Ye and Zhou in [10] had given some partial answers
to this question.

Theorem 1.1 [9]. Suppose that f satisfies (H), then for n= 2 or 3, u∗ is always a classical
solution. Moreover, when n≥ 4, u∗ ∈ Lq(Ω), for any q < n/(n− 4) and f (u∗)∈ Lq(Ω), for
any q < n/(n− 2).

Theorem 1.2 [10]. Let f verify (H), rewrite f (t)= f (0) + teg(t). Assume that there exists
t0 positive such that t2g′(t) is nondecreasing in [t0,∞), then for any Ω⊂Rn with n≤ 9, u∗

is a classical solution.

On the other hand, Brezis and Vazquez have given a characterization of unbounded
extremal solutions in H1

0 (Ω) as follows: if v ∈H1
0 (Ω) is an unbounded weak solution of

(Pλ) with λ > 0 and satisfying the stability condition

λ
∫
Ω
f ′(v)ϕ2dx ≤

∫
Ω
|∇ϕ|2dx, ∀ϕ∈ C1

(
Ω̄
)
, ϕ|∂Ω = 0; (1.6)

then λ= λ∗ and v = u∗. They remarked also that there exist unbounded weak solutions
which satisfy (1.6), but do not belong to H1

0 (Ω), and which are not extremal solutions.
In this paper, we investigate some similar problems with f exploding at a finite positive

value a. More precisely, let f satisfy the following condition:

(H′) f is a C1 positive, nondecreasing, convex function on [0,a) with a∈ (0,∞) and

lim
t→a−

f (t)= +∞. (1.7)
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We consider the following problem:

(Eλ)

−∆u= λ f (u) in Ω,

u∈ (0,a] in Ω,

u= 0 on ∂Ω.

(1.8)

By the work of Mignot and Puel (see [7]), we have always a critical value λ∗ ∈ (0,∞) such
that for any λ ∈ (0,λ∗), there exists a positive, minimal, classical solution uλ ∈ C2(Ω̄),
that is, uλ < a in (Ω̄) and for λ > λ∗, no classical solution exists. The aim of this work is to
study the propriety of the solution of (Eλ) at the extremal value λ= λ∗ and to prove the
nonexistence of weak solution when λ > λ∗. We define that ω is a weak solution of (Eλ),
if ω ∈ L1(Ω, [0,a]) such that f (ω)δ ∈ L1(Ω), and for all ζ ∈ C2(Ω̄), with ζ = 0 on ∂Ω,

−
∫
Ω
ω∆ζ = λ

∫
Ω
f (ω)ζ. (1.9)

Similarly, we say that ω is a weak supersolution of (Eλ), if ω ∈ L1(Ω, [0,a]), such that
(∆ω)δ ∈ L1(Ω), and for all ζ ∈ C2(Ω̄), ζ ≥ 0 with ζ = 0 on ∂Ω,

−
∫
Ω
ω∆ζ ≥ λ

∫
Ω
f (ω)ζ. (1.10)

Our main results are the following.

Theorem 1.3. Given f satisfying (H′), if λ > λ∗, then there is no weak solution of (Eλ).

Theorem 1.4. The function u∗ = limλ→λ∗ uλ is the unique weak solution of (Eλ∗). Moreover,
for any ϕ∈ C1(Ω̄) with ϕ= 0 on ∂Ω,

λ∗
∫
Ω
f ′
(
u∗
)
ϕ2dx ≤

∫
Ω
|∇ϕ|2dx. (1.11)

Theorem 1.5. Assume that v ∈ H1
0 (Ω) is a weak solution of (Eλ) for some λ > 0, assume

also that supΩ(v)= a and

λ
∫
Ω
f ′(v)ϕ2dx ≤

∫
Ω
|∇ϕ|2dx, (1.12)

for all ϕ∈ C1(Ω̄), ϕ= 0 on ∂Ω, then λ= λ∗ and v = u∗.

2. Proof of Theorem 1.3

In fact, Theorem 1.3 is deduced from a general result, which is the following proposition.

Proposition 2.1. Given g satisfying (H′), if there exists a weak solution ω of

−∆ω = g(ω) in Ω,

ω = 0 on ∂Ω,
(2.1)
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then, for any ε ∈ (0,1), there exists a classical solution ωε of

−∆ωε = (1− ε)g
(
ωε
)

in Ω,

ωε = 0 on ∂Ω.
(2.2)

For the proof of this result, we need the following lemmas which are proved in [3].

Lemma 2.2. Given g ∈ L1(Ω,δ(x)dx), there exists a unique v ∈ L1(Ω) which is a weak
solution of

−∆v = g in Ω,

v = 0 on ∂Ω,
(2.3)

where ‖v‖L1 ≤ C‖g‖L1(Ω,δ(x)dx), for some C constant independent of g. In addition, if g ≥ 0
a.e. in Ω, then v ≥ 0 a.e. in Ω.

Lemma 2.3. Assume g(0) > 0 and set

h(u)=
∫ u

0

ds

g(s)
, (2.4)

for all 0≤ u≤ a. Let g̃ be a C1 positive function on [0,a) such that g̃ ≤ g and g̃′ ≤ g′. Set

h̃(u)=
∫ u

0

ds

g̃(s)
, Φ(u)= h̃−1(h(u)

)
, (2.5)

for all u∈ [0,a]. Then,

(i) Φ(0)= 0 and 0≤Φ(u)≤ u for all 0≤ u≤ a,
(ii) Φ is increasing, concave, and Φ′(u)≤ 1 for all 0≤ u≤ a,

(iii) h(a) <∞ and Φ(a) < a, if g̃ 
≡ g in [0,a].

Proof. It is easy to see that (i) and (iii) hold. We prove (ii), in fact Φ′(u)= g̃(Φ(u))/g(u) >
0, and

Φ′′(u)= g(u)g̃′
(
Φ(u)

)
Φ′(u)− g̃

(
Φ(u)

)
g′(u)

g(u)2
= g̃

(
Φ(u)

)(
g̃′
(
Φ(u)

)− g′(u)
)

g(u)2
. (2.6)

Since g̃′(Φ(u)) ≤ g′(Φ(u)) ≤ g′(u), it follows that Φ is concave, which completes the
proof. �

Proof of Proposition 2.1 and Theorem 1.3. Choosing g̃ = (1− ε)g in Lemma 2.3 and de-
note by v = Φ(ω), where ω is the weak solution of (2.1) and using an approximating
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argument for ω, we get

−
∫
Ω
v∆ζ =−

∫
Ω
Φ(ω)∆ζ =−

∫
Ω
∆Φ(ω)ζ =−

∫
Ω

[
Φ′(ω)∆ω+Φ′′(ω)|∇ω|2]ζ

≥
∫
Ω
Φ′(ω)g(ω)ζ =

∫
Ω
g̃
(
Φ(ω)

)
ζ =

∫
Ω

(1− ε)g(v)ζ
(2.7)

for any ζ ∈ C1(Ω̄), ζ ≥ 0 with ζ = 0 on ∂Ω. Hence, v is a weak supersolution of (2.2).
The result of Proposition 2.1 follows by standard barrier method as follows. We define a
sequence (ωk)k≥0 by

−∆ωk+1 = (1− ε)g
(
ωk
)

in Ω,

ωk+1 = 0 on ∂Ω,
(2.8)

for k ∈ N, with ω0 = v. Using Lemma 2.2, it is easy to check that ωk ≥ ωk+1 ≥ 0, for all
k ∈N, so the sequence ωk is nonincreasing and converges in L1(Ω) to a weak solution u
of (2.2). Since supΩ(u)≤ supΩ(v) < a, u is a classical solution, Proposition 2.1 is proved.
Theorem 1.3 is deduced by taking g = λ f in Proposition 2.1. For any λ > λ∗, let ε ∈ (0,1)
such that λ∗ < (1− ε)λ < λ, since there is no classical solution of

−∆ωε = (1− ε)λ f
(
ωε
)

in Ω,

ωε = 0 on ∂Ω,
(2.9)

it follows by Proposition 1.3 that there is no weak solution of (Eλ). �

3. Proof of Theorem 1.4

We know that u∗ is the increasing limit of classical solution uλ with positive first eigen-
value, that is, for any ϕ∈ C1(Ω̄) with ϕ= 0 on ∂Ω,

λ
∫
Ω
f ′
(
uλ
)
ϕ2dx ≤

∫
Ω
|∇ϕ|2dx. (3.1)

Passing to the limit, the inequality (1.11) holds. To prove the uniqueness, we will in fact
also prove a slightly stronger result.

Proposition 3.1. Let v ∈ L1(Ω, [0,a]) be a weak supersolution of (Eλ∗), then v = u∗.

Proof. We proceed in two steps. First, we show that v is a weak solution of (Eλ∗). Next,
we prove that if v 
≡ u∗, then we obtain a contradiction.

Step 1. Suppose that v is not a weak solution of (Eλ∗), then we can assume that there
exists β > 0 and ξ0 ∈ C2(Ω̄), ξ0 ≥ 0, with ξ0|∂Ω = 0 such that

−
∫
Ω
v∆ξ0 = λ∗

∫
Ω
f (v)ξ0 +β, (3.2)

it follows that there exists a nonnegative measure µ 
≡ 0, with µδ bounded on Ω, such that

−
∫
Ω
v∆ξ =

∫
Ω

(
λ∗ f (v) +µ

)
ξ, (3.3)
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for all ξ ∈ C2(Ω̄) with ξ|∂Ω = 0. Consider ϕ and χ, the solutions of

−∆ϕ= µ in Ω, ϕ= 0 on ∂Ω,

−∆χ = 1 in Ω, χ = 0 on ∂Ω.
(3.4)

By µ 
≡ 0, it follows from the properties of the Laplacian that there exists ε > 0 such that
εχ ≤ ϕ. Set z = v+ εχ−ϕ≤ v. Then, since f is nondecreasing,

−
∫
Ω
z∆ξ =

∫
Ω

(
λ∗ f (v) + ε

)
ξ ≥

∫
Ω

(
λ∗ f (z) + ε

)
ξ, (3.5)

for all ξ ∈ C2(Ω̄), ξ ≥ 0, with ξ|∂Ω = 0. This means that z is a weak supersolution for
−∆ω = g(ω), where g(v)= λ∗ f (v) + ε. Using the proof of Proposition 2.1 and Lemma 2.3
with g̃(v)= λ∗ f (v) + ε/2, we can get a classical solution v1 of

−∆v1 = λ∗ f
(
v1
)

+
(
ε

2

)
in Ω,

v1 = 0 on ∂Ω.
(3.6)

Moreover, there exists α > 0, such that 2αv1 ≤ εχ. Set z = v1 +αv1− (ε/2)χ. It is clear that
0 < z ≤ v1 and z satisfies −∆z ≥ (1 +α)λ∗ f (v1)≥ (1 +α)λ∗ f (z) in Ω. Thus, the classical
barrier method gives a solution of (E(1+α)λ∗), which contradicts then the definition of λ∗,
so v is a solution of (Eλ∗).

Step 2. Clearly, v ≥ uλ for any λ < λ∗, hence v ≥ u∗. Suppose that v 
≡ u∗, take Ψ= f (v)−
f (u∗) ≥ 0, it is clear that Ψδ ∈ L1(Ω). We have then Ψ 
≡ 0, because otherwise f (v) =
f (u∗) a.e. on Ω, and Lemma 2.2 will give v = u∗ a.e. on Ω. Let g be the weak solution of

−∆g =Ψ in Ω,

g = 0 on ∂Ω.
(3.7)

By the maximum principle, we have g ≥ cδ on Ω for some c > 0. Hence,

−
∫
Ω

(
v−u∗ − λ∗g

)
∆ξ = 0, (3.8)

for all ξ ∈ C2(Ω̄), with ξ|∂Ω = 0. We obtain by Lemma 2.2 that v−u∗ = λ∗g ≥ λ∗cδ a.e.
on Ω, set Z = (v+u∗)/2, then

−
∫
Ω
Z∆ξ = λ∗

2

∫
Ω

(
f (v) + f

(
u∗
))
ξ = λ∗

∫
Ω

(
f (Z) +h

)
ξ > λ∗

∫
Ω
f (Z)ξ (3.9)

for all ξ ∈ C2(Ω̄), ξ ≥ 0, with ξ|∂Ω = 0, where h is given by

h= 1
2

(
f (v) + f

(
u∗
))− f

(
v+u∗

2

)
= 1

2

∫ v

u∗
ds
∫ s

(s+u∗)/2
f ′′(σ)dσ. (3.10)
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Clearly, hδ ∈ L1(Ω). Suppose first that h≡ 0, then f ′′(σ)= 0 if σ ∈ [u∗,v], hence f (σ)=
f (0) + f ′(0)σ on ∪x∈Ω[u∗(x),v(x)]= [0,supΩ v], since v > u∗ in Ω. Then, if supΩ v = a,
we obtain a contradiction by (1.7), and if supΩ v < a, both u∗ and v are classical solutions
of a linear problem with f (t) = A+Bt for which the uniqueness is known (see, for in-
stance, [8]). If h 
≡ 0, it follows that Z is a strict supersolution of (Eλ∗) and we obtain also
a contradiction by Step 1. �

4. Proof of Theorem 1.5

Suppose that λ < λ∗. We observe that by a density argument, the inequality (1.12) holds
for every Φ∈H1

0 (Ω). Taking Φ= v−uλ in (1.12), we get

λ
∫
Ω
f ′(v)

(
v−uλ

)2
dx ≤

∫
Ω

∣∣∇(v−uλ
)∣∣2

dx = λ
∫
Ω

[
f (v)− f

(
uλ
)](

v−uλ
)
dx, (4.1)

that is,

λ
∫
Ω

[
f (v)− f

(
uλ
)− f ′(v)

(
v−uλ

)](
v−uλ

)
dx ≥ 0. (4.2)

Since f is convex and v ≥ uλ, we get f (v) = f (uλ) + f ′(v)(v− uλ) a.e. on Ω. Hence, f
must be linear in the interval [uλ(x),v(x)] for a.e. x ∈Ω. If v > uλ, we get that f is linear
in ∪x[u(x),v(x)] = [0,supΩ v) = [0,a), which contradicts (1.7). So, v = uλ, as v is not a
classical solution, we get a contradiction, so λ = λ∗. The similar argument with (1.11)
shows that v = u∗.

5. Application

Now, we consider a special case f (u)= 1/(1−u)p with p > 0 and Ω= B1(0), this problem
was studied by Brauner and Nicolaenko in [1, 2]. When p = 1, this equation appears as
a limit of some problem of disruption in biochemistry; it allows then to justify some
phenomenon in kinetic enzymatic and the kinetic of reactors associated to some limit
coat. For n≥ 2, we know an explicit weak solution

U(x)= 1−|x|2/(p+1), (5.1)

which is obviously in H1
0 (Ω), it corresponds to the parameter value

λ�(n, p)= 2
p+ 1

(
n− 2p

p+ 1

)
> 0. (5.2)

The linearized operator is

L�Φ=−∆Φ− 2p
p+ 1

(
n− 2p

p+ 1

)
Φ

r2
, (5.3)
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where r = |x|. By Theorem 1.5, U is the extremal solution if and only if for any Φ ∈
H1

0 (Ω),

2p
p+ 1

(
n− 2p

p+ 1

)∫
B

Φ2

r2
≤
∫
B
|∇Φ|2dx. (5.4)

Thanks to Hardy’s inequality, this holds if and only if (see [4])

2p
p+ 1

(
n− 2p

p+ 1

)
≤H = (n− 2)2

4
. (5.5)

Thus, we have the following proposition.

Proposition 5.1. For any p > 0, let

n0(p)= 2
p+ 1

[
(3p+ 1) + 2

√
p(p+ 1)

]
. (5.6)

Then,

(i) if n≥ n0(p), u∗(x)= 1−|x|2/(p+1), and λ∗ = λ�;
(ii) if n < n0(p), λ∗ > λ� and u∗ is smooth.

Proof. By an easy computation, we have that n ≥ n0(p) is equivalent to (5.5), so (i) is
proved by Theorem 1.5. The proof of (ii) is given in [7]. �

We remark that when p tends to 0, n0(p) tends to 2. So, for any n ≥ 3, we can meet
some nonlinearities f (by choosing appropriate p) such that the extremal solution is no
longer classical, this fact is different from the situation for a=∞, if we compare with the
results in [9, 10]. Thus, a natural question is raised, for f satisfying (H′) and Ω bounded
smooth domain in R2, do we have always that u∗ is a classical solution?
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