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We are concerned with the multiplicity of solutions of the following singularly perturbed
semilinear elliptic equations in bounded domains Ω:−ε2∆u+ a(·)u= u|u|p−2 in Ω, u > 0
in Ω, u= 0 on ∂Ω. The main purpose of this paper is to discuss the relationship between
the multiplicity of solutions and the profile of a(·) from the variational point of view. It
is shown that if a has a “peak” in Ω, then (P) has at least three solutions for sufficiently
small ε.

1. Main theorem

We are concerned with the multiplicity of solutions for the following singularly perturbed
semilinear elliptic equations:

(P)ε

−ε2∆u+ a(·)u= u|u|p−2 in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(1.1)

where ε ∈R+, Ω⊂RN (N ≥ 1) is a bounded domain, p ∈ (2,2∗) (2∗ denotes the critical
exponent of the Sobolev embedding H1(Ω)↩Lp(Ω) given by 2∗ = 2N/(N − 2) if N ≥ 3
and 2∗ = +∞ if N = 1,2). The main purpose of this paper is to discuss the relationship
between the multiplicity of solutions of (P)ε and the shape of the profile of a(x) when ε is
small. In order to characterize the topological feature of a(x), we introduce the following
condition (A)K ,r,c,c,δ,ρ for positive numbers r, c, c, δ, ρ, and a closed subset K of Ω.

(A)K ,r,c,c,δ,ρ : a(x) ∈ C(Ω)∩ LN/2(Ω) and the following conditions (i), (ii), (iii), and
(iv) are satisfied:

(i) ∂K is homotopically equivalent to SN−1, B(0,ρ) = {x ∈ RN ;|x| < ρ} ⊂ K and
(∂K)r = {x ∈RN | dist(x,∂K)≤ r} ⊂Ω,

(ii) infΩ a(x)≥ c,
(iii) maxB(0,ρ) a(x) > c,
(iv) max(∂K)r a(x)≤ c+ δ < c.
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186 Singularly perturbed elliptic equations

Roughly speaking, the condition above implies that a(x) has a “peak” in K (condition
(iii)), the value of a(x) on ∂K is uniformly less than the level of the peak (condition (iv)),
and ∂K forms a set which surrounds the peak and is homotopically equivalent to SN−1

(condition (i)).
Then our main result reads as follows.

Theorem 1.1. For any positive numbers ρ, c, c with c < c, there exists a (sufficiently small)
positive number δ depending on ρ, c, c, and Ω such that if a satisfies (A)K ,r,c,c,δ,ρ for some
r > 0 and a closed subset K of Ω, then there exists a positive number ε0 so that (P)ε admits
at least three solutions for all ε ∈ (0,ε0].

We give some examples of the function a(·) satisfying the assumption of Theorem 1.1.

Example 1.2. Let Ω be a bounded domain which contains the closure of B(0,R). Let
a ∈ C(Ω) and assume that there exist some positive numbers ρ, c, c with c < c and a
closed subset L of B(0,R) such that

B(0,ρ)⊂ L,

a(·)= c in Ω \L,

c =min
L
a(·) < c < min

B(0,ρ)
a(·).

(1.2)

Take R1 (< R) and r > 0 such that

L⊂ B(0,R1
)
,

(
∂B
(
0,R1

))
r ⊂ B(0,R) \L. (1.3)

Then a(·) satisfies (A)K ,r,c,c,δ,ρ for K = B(0,R1), δ ∈ (0,c− c), and r, c, c, ρ above.

Example 1.3. Let Ω be a bounded domain containing B(0,ρ) for some ρ > 0 with smooth
boundary ∂Ω which is homeomorphic to SN−1. Let a∈ C(Ω) and assume that there exist
some positive numbers c, c with c < c such that

c = inf
Ω
a(·) < c < max

B(0,ρ)
a(·),

c = a(x) ∀x ∈ ∂Ω.
(1.4)

Then it is easy to see that for any small δ > 0, there exists a number r > 0 such that

∂(Ω)−2r is homeomorphic to SN−1,

B(0,ρ)⊂ (Ω)−2r ,

max
(∂(Ω)−2r )r

a(x)≤ c+ δ (< c),
(1.5)

where (Ω)−2r = {x ∈ Ω;dist(x,∂Ω) ≥ 2r}. Hence a(·) satisfies (A)K ,r,c,c,δ,ρ for K = (Ω)−2r
and r, c, c, δ, ρ above.

Note that in this case, a(·) may not possess any global (local) minimum in Ω.
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Remark 1.4. (1) It would be a routine work to prove that (P)ε admits at least one solution
u0 (the “ground state solution”) for all ε ∈ (0,∞) with the aid of the well-known Moun-
tain Pass lemma and the compactness of the Sobolev embedding H1↩Lp. However, one
cannot expect in general the existence of multiple solutions. Indeed, for example, when
a(x) ≡ 1 and Ω = ball, the uniqueness result for sufficiently small ε is known (Dancer
[6]). Theorem 1.1 says that immediately after a(x) is perturbed to have a “peak”, other
solutions u1, u2 should appear even if the perturbation is very small (in the radial case,
u0 and one of the u1 and u2, say u1, may be geometrically equivalent to each other, i.e.,
they may coincide via rotation in RN , so one gets at least two geometrically distinct so-
lutions, u0 ∼ u1 and u2). This “generation of higher energy solution” is a consequence of
the change of topology of some level sets of the functional associated to (P)ε caused by
the nontrivial shape of a(x). It is the purpose of this paper to discuss the effect of this
change of topology on the multiplicity of solutions.

(2) It is already known that if a ∈ C(Ω) and the global minimum set of a(x), amin =
{x ∈Ω;a(x)=miny∈Ω a(y)}, is homotopically equivalent to SN−1, then there exist at least
catamin = catSN−1 = 2 solutions for small ε (here cat means the Ljsternik-Schnirelman
category, see Definition 3.3 below). It should be noted that our assumption (A)K ,r,c,c,δ

does not require that a(x) should have a global minimum set in Ω as is stated in Example
1.3, but requires that “nearly” global minimum set of a(x) should contain the set ∂K
which is homotopically equivalent to SN−1.

(3) Another type of multiplicity result for −∆u+u= a(x)u+ f (x) in RN , based on an
argument similar to ours, is discussed in Adachi and Tanaka [1].

2. Known results and notation

2.1. Known results. The interest in (P)ε arises from several physical and mathematical
backgrounds.

In the physical context, (P)ε can be regarded as a (reduced) nonlinear Schrödinger
equation and small parameter ε corresponds to the Dirac constant �.

It is well known that when � can be well-approximated by 0 (this approximation is
called “semiclassical approximation”), quantum mechanical equation may have a solu-
tion corresponding to a “semiclassical” state, concentrating around a classical mechanical
equilibrium. It is also well known that the classical equilibrium is often given as the point
which minimizes the potential energy.

So it is reasonable to expect that for small ε, (P)ε has a semiclassical solution concen-
trating around a point which attains the minimum of the energy potential a(x). Hence
the structure of amin = {x ∈Ω | a(x)=miny∈Ω a(y)}, the minimum set of a(x), may play
a significant role for the existence and the multiplicity of solutions of (P)ε.

In the mathematical context, (P)ε can be regarded as a typical model exemplifying
the following feature. In many semilinear elliptic problems including small parameters
(e.g., semilinear elliptic equations involving the critical exponent [10], stationary Cahn-
Hilliard equation [2], Ginzburg-Landau equation [3]), it is commonly observed that if
the parameter is small enough, then the existence and multiplicity of solutions are con-
trolled by the finite-dimensional object. As for singularly perturbed equations, del-Pino
and Felmer [7, 8] and Cingolani and Lazzo [5] obtain the following result.
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Proposition 2.1 (effect of weight function, del Pino and Felmer [7]). Assume that a(x) is
a locally Hölder continuous function and Λ is a bounded set compactly contained in Ω. Also
assume that there exists a positive constant α such that infx∈Ω a(x) ≥ α and, min∂Λ a(x) >
infΛ a(x). Then for sufficiently small ε, (P)ε admits a solution uε, which concentrates to a
point in Λ where the minimum of a(x) is attained as ε→ 0.

Proposition 2.2 (effect of weight function, del Pino and Felmer [8]). Assume that a(x)∈
C1(Ω) and there exists a positive constant α such that infx∈Ω a(x) ≥ α. Let x0 ∈ Ω be a
“topologically nontrivial critical point” of a(x) (this class of critical points includes the local
minimum, the local maximum, and the saddle point of a(x). For the precise definition, see
[8, page 249]). Then for sufficiently small ε, (P)ε admits a solution uε, which concentrates to
x0 as ε→ 0.

Proposition 2.3 (effect of the topology of amin, Cingolani and Lazzo [5]). Assume that
a(x)∈ C(RN ) and lim|x|→∞ a(x)= a0 >minx∈RN a(x) > 0. Then for sufficiently small ε, (P)ε
admits at least catamin solutions. Here catamin denotes the Ljsternik-Schnirelman category
of amin (see Definition 3.3 below).

The finite-dimensional objects referred to above in Propositions 2.1, 2.2, and 2.3 are
the local minimum set (point) of a(x), the “topologically nontrivial” critical set (point)
of a(x), and the global minimum set of a(x), respectively.

Our problem (P)ε also bears some interesting aspect in the context of the so-called
“variational problem with lack of compactness”. As stated in Section 1, for problem (P)ε
with bounded Ω, one can easily find that there exists at least one solution of (P)ε, the
ground state solution, with the aid of the compactness of the Sobolev embedding
H1(Ω)↩ Lp(Ω). On the other hand, in the case of unbounded Ω, the situation changes
drastically. That is, (P)ε may not have a ground state solution. From the point of view
of the variational analysis, this nonexistence is caused by the breakdown of the Palais-
Smale condition for the functional associated with (P)ε due to the fact that the Sobolev
embedding H1(Ω)↩Lp(Ω) is no longer compact for unbounded Ω.

Even though we are concerned with (P)ε in bounded domains (the original problem),
the analysis of (P)ε in RN with some weight function determined by a(x) (the limit-
ing problem) plays a crucial role in investigating the multiple existence of solutions of
(P)ε. That is, the lack of compactness of the variational problem associated with (P)ε in
unbounded domains with (suitably chosen) weight functions causes the multiplicity of so-
lutions of (P)ε in bounded domains. In other words, for small ε, (P)ε can be treated as a
problem on “almost unbounded domains” with Palais-Smale condition.

Applying propositions above to our problem, we find that the following facts hold
true.

(1) If amin = ∂K(� SN−1) ⊂ Ω, then Proposition 2.3 assures the existence of at least
catamin = cat∂K = catSN−1 = 2 solutions of (P)ε for small ε.

(2) Suppose that a(x) has a global maximum point in Ω and a(x) ∈ C1(Ω). Then
Proposition 2.2 implies that there exists at least one solution of (P)ε for small ε, which
concentrates to the global maximum point of a(x) as ε→ 0.

As is pointed out in Section 1 (Example 1.3 and Remark 1.4), in our Theorem 1.1, we
need not assume amin = ∂K nor a(x)∈ C1(Ω).
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Moreover, our argument here relies on the comparison of variational structures of the
original and the limiting problem with nontrivial weight function and, seems somewhat
different from those in [5, 7, 8].

2.2. Notation. We here fix the notation frequently used in this paper.
Let ω be a domain of RN , and we use the following notation.

(i) Mp(ω) := {u∈H1
0 (ω);‖u+‖Lp(ω) = 1} where u+(x) :=max(0,u(x)).

(ii) Iε,a,ω(u) := ∫ω(ε2|∇u|2 + au2)dx.
(iii) Sp(ε,a,ω) := infu∈Mp(ω)\{0} Iε,a,ω(u).
(iv) Let η ∈ C(R) be a cut-off function such that

η(t) :=



1 if |t| < R,

R

t
if |t| ≥ R,

βR(u) :=
∫
RN
xη
(|x|)∣∣u+

∣∣pdx ∀u∈Mp
(
RN

)
.

(2.1)

(v) When a(x)≡ α > 0, we denote by vε,α,ω the minimizer of Sp(ε,α,ω) which is ra-
dially symmetric with respect to the origin, and v1,α,RN is simply denoted by vα.

(vi) ϕr ∈ C∞0 (RN ) stands for a cut-off function such that ϕr is radially symmetric with
respect to the origin and

ϕr(x)= 1 if |x| < r

2
,

0≤ ϕr(x)≤ 1 if
r

2
≤ |x| < r,

ϕr(x)= 0 if |x| ≥ r.

(2.2)

We also denote ϕε,r(x) := ϕr(εx).
For any yε ∈ ∂K/ε, we put

vε,α,yε(x) := ϕε,r
(
x− yε

)
v1,α,RN

(
x− yε

)
∥∥ϕε,rv1,α,RN

∥∥
Lp

, (2.3)

and Φε,α(yε) := vε,α,yε for all yε ∈ ∂K/ε. Here K and r are a compact set and a
positive constant which appear in the condition (A)K ,r,c,c,δ,ρ in Section 1.

We occasionally suppress the subscript α when no confusion occurs.
(vii) We denote aε(x) := a(εx).

(viii) Let X be a Banach manifold and a∈R. Then for I ∈ C1(X ;R), we put

[I ≤ a]X := {u∈ X ; I(u)≤ a},

[I = a]X := {u∈ X ; I(u)= a},

Cr(I ;X) := {u∈ X ; (dI)u = 0
}

,

(2.4)

where (dI)u represents the Fréchet derivative of I at u∈ X .
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3. Variational tools and preliminary facts

3.1. Variational tools. Our main tool relies on the variational approach. We here prepare
some terminology frequently used later on.

Definition 3.1 (Palais-Smale condition). Let M be a C1 Banach-Finsler manifold and J ∈
C1(M;R).

(a) (un)⊂M is called a (PS)c-sequence (Palais-Smale sequence at level c) if

∥∥(dJ)un
∥∥

(TunM)∗ −→ 0, J
(
un
)−→ c as n−→∞. (3.1)

(b) J is said to satisfy the (PS)c-condition if
(PS)c every (PS)c-sequence of J contains a strongly convergent subsequence.

(In the above TuM denotes the tangent space of M at u.)

Our approach is based on the following fundamental principle.

Fundamental principle in Morse theory. Suppose thatM is a Banach-Finsler manifold and
I ∈ C1(M) satisfies the following assumptions:

(1) I satisfies (PS)c-condition for all c ∈ [a,b];
(2) [I ≤ a]M and [I ≤ b]M have a “difference in topology.”

Then there exists a critical value c ∈ [a,b].
In order to compare the topology of sets, various kinds of topological invariants are

known. We will here use the notion of the “category” of sets. We use the following
notation.

Definition 3.2. Let M be a topological space, and let A and x be a closed subset and a
point of M, respectively.

Denote “A � {x} by η in M” if η ∈ C([0,1]×A;M), η(0,x) = x for all x ∈ A, and
η(1,x)= x for all x ∈ A.

Definition 3.3 (notion of category). Let X be a topological space and let M, A be two
closed subsets of X with A ⊂M. Then the category of A relative to M, denoted by n =
catM[A], is defined as the smallest number among m such that (Aj)mj=1 is a closed con-
tractible covering of A in M, that is, there exists a closed covering (Aj)mj=1 of A in M,
xj ∈M, and ηj ∈ C([0,1]×Aj ;M) such that Aj � {xj} by ηj in M for all j = 1,2, . . . ,m.

We simply denote catΩ[Ω] by catΩ.
In terms of this notion, Ljusternik-Schnirelman theorem (category version) reads as

follows.

Proposition 3.4 (Ljusternik-Schnirelman theorem, category version [12, Theorem
5.19]). Suppose that M is a C1,1 Banach-Finsler manifold, I ∈ C1(M), and a = infM I >
−∞. Suppose also that for some b′ > b > a, I satisfies (PS)c for all c ∈ [a,b′] and Cr(I ;M)∩
[I = b]M =∅.

Then [I ≤ b]M contains at least cat[I ≤ b]M critical points.
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In this paper, we use the variational method on the constraint manifold. In order to
guarantee that the critical point on the manifold gives the critical point in the original
space, we need the following version of Lagrange multiplier rule.

Proposition 3.5 (Lagrange multiplier rule, [12, Proposition 5.12]). Let X be a Banach
space, ψ ∈ C2(X ;R), and J ∈ C1(X ;R). Let M = {u∈ X | ψ(u)= 1}. Assume that (dψ)u �=
0 in X∗ for any u∈M.

Then ‖(dJ)‖(TuM)∗ =minC∈R‖(dJ)u−C(dψ)u‖ holds. In particular, u∈M is a critical
point of J restricted in M if and only if there exists C ∈R such that (dJ)u = C(dψ)u in X∗.

In the proof of Theorem 1.1, we have to compare the category of two sets. For this
purpose we use the following comparison theorem of category.

Proposition 3.6 (comparison theorem for category). Let a and b be closed subsets of
topological spacesA and B, respectively. Suppose that there existΦ∈ C(a;b) and β ∈ C(B;A)
such that β ◦Φ is homotopically equivalent to the natural injection from a to A. Then,
catB[b]≥ catA[a].

Proof. Let m= catB[b]. Since β ◦Φ is homotopically equivalent to the injection from a to
A, there exists f ∈ C([0,1]× a;A) such that for all x ∈ a,

f (0,x)= x, f (1,x)= β ◦Φ(x). (3.2)

Since m = catB[b], there exist a family of closed subsets bj ⊂ B, a family of mappings
ηj ∈ C([0,1]× bj ;B), and uj ∈ B for j = 1,2, . . . ,m such that

bj �
{
uj
}

by ηj in B ∀ j = 1,2, . . . ,m. (3.3)

Let aj =Φ−1(bj)⊂ a. Then it is easy to see that a=⋃m
j=1 aj and aj is closed in A.

Set

gj(t,x)=



f (2t,x) ∀(t,x)∈

[
0,

1
2

]
× aj ,

β ◦ηj
(
2t− 1,Φ(x)

) ∀(t,x)∈
[

1
2

,1
]
× aj .

(3.4)

Then it is easy to see that

lim
t↑1/2

gj(t,x)= f (1,x)= β ◦Φ(x),

lim
t↓1/2

gj(t,x)= β ◦ηj
(
0,Φ(x)

)= β ◦Φ(x)
(3.5)

holds for all x ∈ aj . Hence gj ∈ C([0,1]× aj ;A).
It is also obvious that for all x ∈ aj , gj(0,x) = f (0,x) = x and gj(1,x) = β ◦ ηj(1,

Φ(x))= β(uj)∈A.
Therefore it holds that a =⋃m

j=1 aj , aj is a closed subset of A, and aj � {β(uj)} by gj
in A. Hence, by the definition of the category catA[a], we have m≤ catA[a]. �

In order to prove the existence of the critical point which has the higher energy, we use
the following version of minimax principle.
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Proposition 3.7 (minimax principle). Let M be a C1,1 Banach-Finsler manifold and let A
be a metric space. Suppose A0 ⊂ A is a compact subset, ϕ∈ C(∂A0;M), and I ∈ C1(M;R).
Also let Γ= {γ ∈ C(A0;M);γ|∂A0 = ϕ} �=∅ and let c = infγ∈Γ maxy∈A0 I ◦ γ(y) >−∞.

If I satisfies (PS)c and supy∈∂A0
I ◦ϕ(y) < c, then c gives a critical value of I .

Proof. Suppose the conclusion is false. Then the standard deformation lemma (see, e.g.,
[11, Theorem II.3.11]) implies that for ε = (c− supy∈∂A0

I ◦ϕ(y))/2, there exist ε ∈ (0,ε)
and f ∈ C([0,1]×M;M) such that

f
(
1,[I ≤ c+ ε]M

)⊂ [I ≤ c− ε]M , (3.6)

f (t,u)= u ∀u∈ [I ≤ c− ε]M. (3.7)

Take any γε ∈ Γ such that maxy∈A0 I ◦ γε(y) < c + ε. Let γ′(·) = f (1,γε(·)) ∈ C(A0;M).
Then by the choice of ε, we have γε(y) ∈ [I ≤ c− ε]M for all y ∈ ∂A0. Hence, in view of
(3.7), it is obvious that for all y ∈ ∂A0,

γ′(y)= f
(
1,γε(y)

)= γε(y)= ϕ(y). (3.8)

Therefore γ′ ∈ Γ and, in view of (3.6), we have

c = inf
γ∈Γ

max
y∈A0

I ◦ γ(y)≤max
y∈A0

I ◦ γ′(y)≤ c− ε < c, (3.9)

a contradiction. �

3.2. Preliminary facts. Setting v(x) = u(εx), (the weak form of) problem (P)ε can be
rewritten as

(P′)ε

−∆v+ a(εx)v = |v|p−2v, v ≥ 0, v ∈H1
0

(
Ω

ε

)
. (3.10)

As for (P′)ε, the following fact is well known. For the convenience, we briefly give the
sketch of proof.

Proposition 3.8 (variational formulation of (P′)ε). To find nontrivial solutions of (P′)ε is
equivalent to

(V) find critical points of I1,aε ,Ω/ε on Mp(Ω/ε).

Proof. Sufficiency of (V). Assume that (V) has a solution, that is, there exists u∈Mp(Ω/ε)
which is a critical point of I1,aε ,Ω/ε. Let ψ(u) = ∫Ω/ε |u+|p. Since u ∈Mp(Ω/ε), it is ob-
vious that (dψ)u(u) = p

∫
Ω/ε |u+|p = p �= 0 and (dψ)u �= 0 in (H1

0 (Ω/ε))∗. Therefore, by
Proposition 3.5, there exists C ∈R such that

(
dI1,aε ,Ω/ε

)
u(h)= C(dψ)u(h) ∀h∈H1

0

(
Ω

ε

)
. (3.11)
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Testing (3.11) with h= u, we get

I1,aε ,Ω/ε(u)=
∫
Ω/ε

(|∇u|2 + aε(x)|u|2)= Cp
∫
Ω/ε

∣∣u+
∣∣p = Cp, (3.12)

since u∈Mp(Ω/ε).
Then, by virtue of the fact that u �= 0 and aε > 0, we have

C = I1,aε ,Ω/ε(u)
p

> 0. (3.13)

Testing also (3.11) with h= u− =min(0,u), we obtain

∫
Ω/ε

(∣∣∇u−∣∣2
+ aε(x)

∣∣u−∣∣2
)
= Cp

∫
Ω/ε

∣∣u+
∣∣p−2

u+u− = 0, (3.14)

whence follows u− = 0 and u= u+ ≥ 0.
Then it is easy to check that v = (I1,aε ,Ω/ε(u)/p)1/(p−2)u gives a (nontrivial) solution of

(P′)ε.
Necessity of (V) also follows from arguments similar to those above. �

For Sp(ε,α,ω), it is well known that the following result holds.

Proposition 3.9 (existence and uniqueness for ground state in RN [9]). For any ε >
0 and α > 0, there exists a positive minimizer vε,α,RN for Sp(ε,α,RN ) which is unique (up
to translation) and radially symmetric with respect to the origin. Especially, the map α �→
Sp(ε,α,RN ) is continuous.

As we will see, the nontriviality of the topology of some level sets of I1,aε ,Ω/ε is the conse-
quence of the nontriviality of that of ∂K . In order to discuss this relationship between the
level set of I1,aε ,Ω/ε (in function space) and ∂K/ε (in RN ), we use the “truncated barycen-
ter” βR(u) and a family of comparison function vε,α,yε where yε ∈ ∂K/ε (see Section 2.2
for definitions).

It is obvious that |βR(u)| ≤ R holds for all u ∈Mp(RN ). Moreover, if the (intuitive)
barycenter of u∈Mp is near “infinity”, then βR(u) is located near ∂BR = {x ∈RN | |x| =
R}. Namely, the following holds.

Lemma 3.10 (the range of truncated barycenter). (a) For any α > 0, |βR ◦Φε,α(yε)−
Ryε/|yε|| = o(1) as ε→ 0 uniformly in y ∈ ∂K , where yε = y/ε.

(b) Suppose that u ∈ Mp(RN ) and (yn) ⊂ RN satisfies |yn| → ∞ as n → ∞. Then
|βR(u(·− yn))| → R as n→∞.

Proof. (a) Take any α > 0, ε > 0, y ∈ ∂K and set yε = y/ε. Since we will consider the limit
ε→ 0, without loss of generality we can assume that

B

(
yε,

√∣∣yε∣∣
2

)
⊂ B

(
0,

∣∣yε∣∣
2

)c
⊂ B(0,R)c. (3.15)
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Then it follows that

∣∣∣∣∣βR(vε,α,yε

)−R yε∣∣yε∣∣
∣∣∣∣∣

=
∣∣∣∣∣
∫
RN
xη
(|x|)∣∣vε,α,yε(x)

∣∣pdx−R yε∣∣yε∣∣
∫
RN

∣∣vε,α,yε(x)
∣∣pdx

∣∣∣∣∣
≤
∣∣∣∣∣
∫
B(yε ,

√|yε|/2)
R

(
x

|x| −
yε∣∣yε∣∣

)∣∣vε,α,yε(x)
∣∣pdx

∣∣∣∣∣
+

∣∣∣∣∣
∫
B(yε ,

√|yε|/2)c

(
xη
(|x|)−R yε∣∣yε∣∣

)∣∣vε,α,yε(x)
∣∣pdx

∣∣∣∣∣
= (A) + (B).

(3.16)

As for (A), we find that, in view of (3.15),

∣∣∣∣∣ x

|x| −
yε∣∣yε∣∣

∣∣∣∣∣≤
∣∣yε∣∣
|x|∣∣yε∣∣

∣∣x− yε
∣∣+

∣∣yε∣∣∣∣|x|−∣∣yε∣∣∣∣
|x|∣∣yε∣∣

≤ 2

∣∣x− yε
∣∣

|x| ≤ 2

√∣∣yε∣∣/2∣∣yε∣∣/2
= 2

1√∣∣yε∣∣

(3.17)

for all x ∈ B(yε,
√
|yε|/2).

Then, since ‖ϕε,rvα‖Lp(RN ) →‖vα‖Lp(RN ) as ε→ 0, for suitable positive constant C1 and
C2, we have

(A) + (B)≤
((

2R/
√∣∣yε∣∣)∫RN ∣∣vα∣∣p + 2R

∫
B(0,
√|yε|/2)c

∣∣vα∣∣p)∥∥ϕε,rvα∥∥pLp(RN )

≤
√
ε

miny∈∂K
√
|y|

C2 +C1

∫
B(0,miny∈∂K

√|y|/(2
√
ε))c

∣∣vα∣∣p −→ 0

(3.18)

as ε→ 0, uniformly in y ∈ ∂K (recall that miny∈∂K
√
|y| > 0 since 0∈ intK).

(b) The argument is essentially the same as in [4, proof of Lemma 3.4]. �

In view of the principle of Morse theory, in order to establish the existence of critical
points of I1,aε ,Ω/ε, it is enough to verify the existence of a pair of level sets of I1,aε ,Ω/ε which
have a difference in topology. The existence of such a pair of level sets of I1,aε ,Ω/ε is the
consequence of the existence of that of I1,bc,c,ρ ,RN , the “limiting functional” associated to
I1,aε ,Ω/ε with suitable weight function bc,c,ρ(x).

Let bc,c,ρ(x)∈ C(RN ) be a function which satisfies the following condition (B)c,c,ρ for
some positive number c ∈ [c,c).
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(B)c,c,ρ : bc,c,ρ(x)= χ(|x|) where

χ(t)=




c for t ≤ ρ

2
,

−2(c− c)
ρ

t+ 2c− c for
ρ

2
< t ≤ ρ,

c for ρ < t.

(3.19)

Note that by the assumption (ii) of (A)K ,r,c,c,δ,ρ and the definition above, for any ε ∈
(0,1),

aε(x)= a(εx)≥ bc,c,ρ(x)− (c− c) ∀x ∈ Ω

ε
,

bc,c,ρ(x)≥ c ∀x ∈RN .
(3.20)

We next investigate the topology of the level set of I1,bc,c,ρ ,RN near its infimum level.

3.3. Limiting problem. Hereafter we fix positive constants c, c, ρ. Let bc,c,ρ(x) be the
function satisfying (B)c,c,ρ in the previous subsection. Throughout this subsection, we
denote the limiting functional I1,bc,c,ρ ,RN as Ic,∞.

In view of Proposition 3.9, we have the following.

Lemma 3.11 (inf is not achieved in the limiting problem). (a) Sp(1,c,RN )=Sp(1,bc,c,ρ(·),
RN ).

(b) Sp(1,bc,c,ρ(·),RN ) is not achieved.

Proof. Suppose that the following claim holds true.

Claim 3.12. Let b∈ LN/2(RN ) satisfy the following condition for some c > 0:

inf
x∈RN

b(x)≥ c, lim
|x|→∞

b(x)= c, b(x) �≡ c. (3.21)

Then we have the following:

(a) Sp(1,c,RN )= Sp(1,b(·),RN ),
(b) Sp(1,b(·),RN ) is not achieved.

Then it is easy to see that Lemma 3.11 follows from the claim above with b(x) =
bc,c,ρ(x).

Proof of Claim 3.12. (a) It is clear that for all u∈Mp(RN ), we have

∫
RN

(|∇u|2 + c|u|2)≤
∫
RN

(|∇u|2 + b(·)|u|2), (3.22)

whence follows

Sp
(
1,c,RN

)≤ Sp(1,b(·),RN
)
. (3.23)

To get the converse inequality, we will use some special sequence (vn). Let vc ∈Mp(RN )
be a positive minimizer of Sp(1,c,RN ) whose existence is guaranteed by Proposition 3.9.
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Let (yn)⊂RN be any sequence which satisfies |yn| →∞ as n→∞. Set vn(·)= vc(·− yn).
Now we will show that∣∣∣∣

∫
RN

(∣∣∇vn∣∣2
+ b(·)∣∣vn∣∣2

)
−
∫
RN

(∣∣∇vn∣∣2
+ c
∣∣vn∣∣2

)∣∣∣∣−→ 0 as n−→∞. (3.24)

Take any ε > 0. The fact lim|x|→∞ b(x)= c allows us to take R1 such that

∣∣b(x)− c∣∣ < ε(
2
∥∥vc∥∥2

2

) (3.25)

holds for any |x| > R1.
Moreover, by virtue of vc ∈H1(RN )↩L2∗(RN ), we can choose R2 so large that

∫
B(0,R2)c

∣∣vc(·)∣∣2∗
<

(
ε(

2‖b‖N/2
)
)N/(N−2)

. (3.26)

Since |yn| →∞ as n→∞, it is also easy to see that, for R1 and R2 above,

B
(
yn,R2

)⊂ B(0,R1
)c

(3.27)

holds for large n.
Then we have∣∣∣∣

∫
RN

(∣∣∇vn∣∣2
+ b(·)∣∣vn∣∣2

)
−
∫
RN

(∣∣∇vn∣∣2
+ c
∣∣vn∣∣2

)∣∣∣∣
≤
∣∣∣∣∣
∫
B(yn,R2)

∣∣b(·)− c∣∣∣∣vn∣∣2

∣∣∣∣∣+

∣∣∣∣∣
∫
B(yn,R2)c

∣∣b(·)− c∣∣∣∣vn∣∣2

∣∣∣∣∣
=: (A) + (B).

(3.28)

Using (3.25) and (3.27), we have

∣∣(A)
∣∣≤

∫
B(0,R1)c

∣∣b(·)− c∣∣∣∣vn∣∣2 ≤ ε

2
. (3.29)

Moreover (3.26) and the fact that |b(·)− c| = b(·)− c ≤ b(·) yield that

∣∣(B)
∣∣≤

∫
B(yn,R2)c

b(·)∣∣vn(·)∣∣2

≤
(∫

B(yn,R2)c

∣∣b(·)∣∣N/2
)2/N(∫

B(0,R2)c

∣∣vc(·)∣∣2∗
)(N−2)/N

≤ ε

2
.

(3.30)

Thus (3.24) follows from (3.28), (3.29), and (3.30).
Combining (3.24) with∫

RN

(∣∣∇vn∣∣2
+ c
∣∣vn∣∣2

)
=
∫
Rn

(∣∣∇vc∣∣2
+ c
∣∣vc∣∣2

)
= Sp

(
1,c,RN

)
, (3.31)



Michinori Ishiwata 197

we have

Sp
(
1,c,RN

)≥ Sp(1,b(·),RN
)
. (3.32)

(b) As in (a), let vc be a positive minimizer for Sp(1,c,RN ). Suppose that the claim is
false, that is, there exists w ∈Mp(RN ) such that∫

RN

(|∇w|2 + b(·)|w|2)dx = Sp(1,b(·),RN
)
. (3.33)

Then, by virtue of b(x)≥ c and Sp(1,c,RN )= Sp(1,b(·),RN ), we get

Sp
(
1,c,RN

)≤
∫
RN

(|∇w|2 + c|w|2)

≤
∫
RN

(|∇w|2 + b(·)|w|2)
= Sp

(
1,b(·),RN

)
= Sp

(
1,c,RN

)
,

(3.34)

that is, Sp(1,c,RN )= ∫RN (|∇w|2 + c|w|2). Then from Proposition 3.9, we find that w > 0
in RN . Therefore, in view of b(x)≥ c and b(x) �≡ c, we have

Sp
(
1,c,RN

)=
∫
RN

(|∇w|2 + c|w|2)

<
∫
RN

(|∇w|2 + b(·)|w|2)
= Sp

(
1,b(·),RN

)
= Sp

(
1,c,RN

)
,

(3.35)

which leads to a contradiction. �

This result implies that all the minimizing sequences possess no convergent subse-
quence. Combining this fact with the compactness of embedding H1↩ L

p
loc, we find the

following. �

Lemma 3.13 (behavior of minimizing sequences of the limiting problem [4, Lemma 2.2]).
For any minimizing sequence (vn)⊂Mp(RN ) of Ic,∞, there exists (yn)⊂RN such that |yn| →
∞ and vn(·)= vc(·− yn) + o(1) inH1(RN ) as n→∞, where vc(x)= v1,c,RN (x) is a (unique)
minimizer of Sp(1,c,RN ).

Lemma 3.13 says that, for any v ∈Mp(RN ) such that Ic,∞(v) is very close to its infimum
Sp(1,bc,c,ρ(·),RN ), v is almost concentrated at infinity. So by Lemma 3.10(b), we find that
|βR(v)| � R. Thus we get the following first key result stating the nontriviality of some
level set of Ic,∞ near its minimum level.

Proposition 3.14 (concentration lemma at infinity for the limiting functional). For all
s ∈ (0,R) and positive numbers ρ, c , c with c < c, there exists α > 0 which satisfies the fol-
lowing. If v ∈Mp(RN ) satisfies Ic,∞(v) ≤ Sp(1,bc,c,ρ(·),RN ) + α for bc,c,ρ(x) satisfying the
condition (B)c,c,ρ with some c ∈ [c, (c+ c)/2], then βR(v) �∈ B(0,s) holds.
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Proof. Suppose that the claim is not true. Then we find that for some ρ > 0, s ∈ (0,R),
c, c with c < c, there exist (cn) ⊂ [c, (c + c)/2], (bcn,c,ρ(x)) ⊂ C(RN ) defined by (B)cn,c,ρ,
(vn)⊂Mp(RN ) such that

Icn,∞
(
vn
)= Sp(1,bcn,c,ρ(·),RN

)
+ o(1), (3.36)

βR
(
vn
)∈ B(0,s) (3.37)

as n→∞, passing to subsequence if necessary.
Since (cn) ⊂ [c, (c + c)/2], taking further subsequence if necessary, there exists c ∈

[c, (c+ c)/2] such that

cn = c+ o(1). (3.38)

Let bc,c,ρ(x)∈ C(Ω) be a function defined by (B)c,c,ρ.
Then, by virtue of the condition (B)cn,c,ρ and (3.38), we have

∣∣bcn,c,ρ(x)− bc,c,ρ(x)
∣∣≤ ∣∣cn− c∣∣= o(1) uniformly in x ∈RN . (3.39)

Also it is easy to see that (3.36) yields the boundedness of (vn) ⊂H1(RN ). Therefore, it
follows that

∣∣Icn,∞
(
vn
)− Ic,∞(vn)∣∣≤

∫
RN

∣∣bcn,c,ρ(·)− bc,c,ρ(·)∣∣∣∣vn∣∣2 = o(1) (3.40)

as n→∞.
Furthermore, by Proposition 3.9 and (3.38), it holds that

Sp
(
1,cn,RN

)= Sp(1,c,RN
)

+ o(1) (3.41)

as n→∞.
Therefore, by virtue of (3.36), (3.40), and (3.41), we find that

(
vn
) ⊂Mp

(
RN

)
is a

minimizing sequence of Ic,∞. Hence, together with Lemma 3.13, we have

vn(·)= v1,c,RN
( ·−yn)+ o(1) in H1(RN

)
(3.42)

for some (yn)⊂ RN with |yn| →∞ as n→∞. Consequently, Lemma 3.10(b) combining
with the continuity of βR implies that

∣∣βR(vn)∣∣= ∣∣βR(v1,c,RN
( ·−yn))∣∣+ o(1)= R+ o(1) (3.43)

as n→∞. But this is impossible in view of (3.37). �

This proposition says that [Ic,∞ ≤ Sp + α] (⊂Mp(RN )), the infinite-dimensional ob-
ject, can be compared with the B(0,s)c (⊂RN ), the finite-dimensional object, with the aid
of βR(v). We will see in the next subsection that this correspondence between the finite-
dimensional object and the infinite-dimensional object is also observed in the “original”
problem.
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3.4. Original problem. Now we proceed to the analysis of the original problem.
Throughout this subsection, we assume that a(x) is a function satisfying the condition
(A)K ,r,c,c,δ,ρ for some positive numbers ρ, c, c, δ with c < c and δ ∈ (0,c− c). We also
assume that bc+δ,c(x) is a function defined by the condition (B)c+δ,c,ρ in the last part of
Section 3.2.

As in the previous subsection, we denote the limiting functional I1,bc,c,ρ ,RN as Ic,∞ and
the original functional I1,aε ,Ω/ε as Iε.

We regard the original functional Iε(v) = ∫Ω/ε |∇v|2 + a(εx)|v|2 as a perturbed func-
tional of the limiting functional Ic+δ,∞ for suitable δ > 0. Furthermore with the aid of
Φε,c+δ (see Section 2.2 for definition), we can embed the topology of ∂K/ε into the level
set of Iε near its infimum level when ε is small enough.

Proposition 3.15 (construction of an embedding mapping from RN to the function
space). For any δ > 0, Iε ◦Φε,c+δ(yε) ≤ Sp(1,bc+δ,c,ρ(·),RN ) + o(1) as ε→ 0 uniformly in
y ∈ ∂K where yε = y/ε.

Proof. First we are going to show the following fact.

Claim 3.16. Let α > 0. Then

lim
ε→0

∫
RN

(∣∣∇vε,α,yε

∣∣2
+α
∣∣vε,α,yε

∣∣2
)
= Sp

(
1,α,RN

)
(3.44)

uniformly in y ∈RN (see Section 2.2 for the definition of vε,α,yε).

Proof of Claim 3.16. In view of
∫
RN

(∣∣∇vε,α,yε

∣∣2
+α|vε,α,yε

∣∣2
)
=
∫
RN

(∣∣∇vε,α,0
∣∣2

+α
∣∣vε,α,0

∣∣2
)

,

Sp
(
1,α,RN

)=
∫
RN

(∣∣∇vα∣∣2
+α
∣∣vα∣∣2

)
,

(3.45)

we have only to verify that

lim
ε→0

∫
RN

(∣∣∇vε,α,0
∣∣2

+α
∣∣vε,α,0

∣∣2
)
=
∫
RN

(∣∣∇vα∣∣2
+α
∣∣vα∣∣2

)
. (3.46)

Note that∣∣∣∣
∫
RN

(∣∣∇vε,α,0
∣∣2

+α
∣∣vε,α,0

∣∣2
)
−
∫
RN

(∣∣∇vα|2 +α
∣∣vα∣∣2

)∣∣∣∣
=
∣∣∣∣∣∣∣
∫
RN

(∣∣∇(ϕε,rvα)∣∣2
+α
∣∣ϕε,rvα∣∣2

)
(∫
RN
∣∣ϕε,rvα∣∣p)2/p −

∫
RN

(∣∣∇vα∣∣2
+α
∣∣vα∣∣2

)∣∣∣∣∣∣∣ .
(3.47)

Here it is easy to see that

∣∣∣∣
∫
RN

∣∣ϕε,rvα∣∣p− 1
∣∣∣∣=

∣∣∣∣
∫
RN

∣∣ϕε,rvα∣∣p−
∫
RN

∣∣vα∣∣p
∣∣∣∣≤ C

∫
B(0,r/2ε)c

∣∣vα∣∣p −→ 0 (3.48)

as ε→ 0.
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Since |∇ϕε,r| = ε|∇ϕr| ≤ εC3, we also find that

∣∣∣∣
∫
RN

(∣∣∇(ϕε,rvα)∣∣2
+α
∣∣ϕε,rvα∣∣2

)
−
∫
RN

(∣∣∇vα∣∣2
+α
∣∣vα∣∣2

)∣∣∣∣
≤
∫
B(0,r/2ε)c

∣∣∇vα∣∣2
∣∣∣∣∣ϕε,r∣∣2− 1

∣∣∣+α
∫
B(0,r/2ε)c

∣∣vα∣∣2
∣∣∣∣∣ϕε,r∣∣2− 1

∣∣∣
+ 2

∫
B(0,r/2ε)c

∣∣∇ϕε,r∣∣∣∣∇vα∣∣∣∣ϕε,r∣∣∣∣vα∣∣+
∫
B(0,r/2ε)c

∣∣∇ϕε,r∣∣2∣∣vα∣∣2

≤ C1

∫
B(0,r/2ε)c

(∣∣∇vα∣∣2
+α
∣∣vα∣∣2

)
+ εC2

(∫
B(0,r/2ε)c

∣∣∇vα∣∣2
)1/2

×
(∫

B(0,r/2ε)c

∣∣vα∣∣2
)1/2

+ ε2C2
3

∫
B(0,r/2ε)c

∣∣vα∣∣2 −→ 0

(3.49)

as ε→ 0.
Thus (3.47), (3.48), and (3.49) imply the claim. �

Note that for all y ∈ ∂K ,

suppvε,c+δ,yε = B
(
yε,

r

ε

)
⊂
(
∂K

ε

)
r/ε
=
{
x ∈RN | d

(
x,
∂K

ε

)
≤ r

ε

}
. (3.50)

Here (i) of (A)K ,r,c,c,δ,ρ assures that (∂K/ε)r/ε ⊂ Ω/ε. Hence we find that vε,c+δ,yε =
Φε,c+δ(yε)∈Mp(Ω/ε).

Also note that by virtue of (iv) of (A)K ,r,c,c,δ,ρ, we have

sup
(∂K/ε)r/ε

aε(x)= sup
(∂K)r

a(x)≤ c+ δ. (3.51)

Then, in view of Claim 3.16 and Lemma 3.11(a), we obtain

Iε ◦Φε,c+δ
(
yε
)=

∫
Ω/ε

(∣∣∇vε,c+δ,yε

∣∣2
+ aε(·)

∣∣vε,c+δ,yε

∣∣2
)

≤
∫
B(yε ,r/ε)

(∣∣∇vε,c+δ,yε

∣∣2
+

{
sup

(∂K/ε)r/ε

aε(·)
}∣∣vε,c+δ,yε

∣∣2
)

≤
∫
B(yε ,r/ε)

(∣∣∇vε,c+δ,yε

∣∣2
+ (c+ δ)

∣∣vε,c+δ,yε

∣∣2
)

−→ Sp
(
1,c+ δ,RN

)= Sp(1,bc+δ,c,ρ(x),RN
)

(3.52)

as ε→ 0 uniformly in y ∈ ∂K . �

We next prove that under the condition (A)K ,r,c,c,δ,ρ, the relation between the level set
of functional Ic,∞ and B(0,s)c described in Proposition 3.14 still holds for the perturbed
functional Iε.

Proposition 3.17 (concentration lemma at infinity for original functional). For any pos-
itive numbers ρ, s, c, and c with c < c, there exist δ > 0, η > 0 such that for any a(x) satisfying
(A)K ,r,c,c,δ,ρ with some r > 0 and some closed subset K of Ω, the following holds: there exists
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ε ∈ (0,1) such that for all ε ∈ (0,ε],

[
Iε ≤ Sp

(
1,c+ δ,RN

)
+η
]
Mp(Ω/ε) �= ∅, (3.53)

and if v ∈Mp(Ω/ε) satisfies Iε(v)≤ Sp(1,c+ δ,RN ) +η, then βR(v) �∈ B(0,s) holds.

Proof. Take any positive numbers ρ, s < R, c, c with c < c.
Then by Proposition 3.14, there exists α such that for all c ∈ [c, (c+ c)/2], bc,c,ρ(x) sat-

isfying the condition (B)c,c,ρ and v ∈Mp(RN ),

Ic,∞(v)≤ Sp
(
1,bc,c,ρ(·),RN

)
+α=⇒βR(v) �∈ B(0,s). (3.54)

Let

η = α

2
, δ =min

(
cη

Sp
(
1,c,RN

)
+η

,
c− c

2

)
. (3.55)

Take any function a(x) which satisfies the condition (A)K ,r,c,c,δ,ρ for some r > 0.
Then by Proposition 3.15, for δ above, we see that there exists ε′ > 0 such that for all

ε ∈ (0,ε′],

Iε ◦Φε,c+δ
(
yε
)≤ Sp(1,bc+δ,c,ρ(·),RN

)
+η (3.56)

for all y ∈ ∂K .
Hence by Lemma 3.11(a), [Iε ≤ Sp(1,c+ δ,RN ) +η]Mp(Ω/ε) �= ∅ for such ε.
Set ε =min(ε′,1) and take any ε ∈ (0,ε], v ∈Mp(Ω/ε) such that

Iε(v)≤ Sp
(
1,bc+δ,c,ρ(·),RN

)
+η. (3.57)

Then, by virtue of the condition (ii) of (A)K ,r,c,c,δ,ρ, we find that

c
∫
RN
|v|2 ≤

∫
RN
aε(·)|v|2 ≤ Iε(v), (3.58)

whence follows

∫
RN
|v|2 ≤ Iε(v)

c
. (3.59)

Also note that, in view of (3.20) and ε < 1, we have

bc+δ,c,ρ(x)− aε(x)≤ δ ∀x ∈ Ω

ε
. (3.60)
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Hence, from (3.59) and (3.60), we deduce that

Ic+δ,∞(v)=
∫
RN

(|∇v|2 + aε(·)|v|2
)

+
∫
RN

(
bc+δ,c,ρ(·)− aε(·)

)|v|2
≤ Iε(v) + δ

∫
|v|2

≤ Iε(v) +
δIε(v)
c

≤ (Sp(1,bc+δ,c,ρ(·),RN
)

+η
)

+
cη

Sp(1,c,RN ) +η

Sp
(
1,bc+δ,c,ρ(x),RN

)
+η

c

≤ Sp
(
1,bc+δ,c,ρ(·),RN

)
+α.

(3.61)

Therefore (3.54) with c = c+ δ yields βR(v) �∈ B(0,s) (note that by the definition of δ, we
have c = c+ δ ∈ [c, (c+ c)/2]).

Thus we have the conclusion. �

4. Proof of Theorem 1.1

Now we are in the position to give a proof of Theorem 1.1. In this section, we denote
the original functional I1,aε ,Ω/ε by Iε. Take any positive numbers ρ, c, c with c < c and R,
s with R > s. Then Proposition 3.17 implies that there exist δ > 0, η > 0 such that for any
a(x) satisfying (A)K ,r,c,c,δ,ρ with some r > 0 and some closed subset K of Ω, the following
holds: there exists ε1 ∈ (0,1) such that for all ε ∈ (0,ε1],

[
Iε ≤ Sp

(
1,c+ δ,RN

)
+η
]
Mp(Ω/ε) �= ∅, (4.1)

βR
([
Iε ≤ Sp

(
1,c+ δ,RN

)
+η
]
Mp(Ω/ε)

)
⊂ B(0,s)c. (4.2)

Take any a(x) which satisfies (A)K ,r,c,c,δ,ρ.
Then, by Proposition 3.15 (with δ, η above) and Lemma 3.11(a), we see that there

exists ε2 > 0 such that for all ε∈ (0,ε2],

Iε ◦Φε,c+δ
(
yε
)≤ Sp(1,c+ δ,RN

)
+
η

4
(4.3)

for all yε ∈ ∂K/ε.
Note that since s < R, we can take ρ0 so small that

(
∂B(0,R)

)
ρ0

:= {x ∈RN ; dist
(
∂B(0,R),x

)≤ ρ0
}⊂ B(0,s)c. (4.4)

Then, by Lemma 3.10(a), we find that there exists ε3 > 0 such that

βR ◦Φε,c+δ
(
yε
)∈ B

(
yε∣∣yε∣∣R,ρ0

)
(4.5)

for all ε ∈ (0,ε3] and yε ∈ ∂K/ε.
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It is also obvious that we can take ε4 > 0 such that for all ε ∈ (0,ε4],

∂K/ε⊂ B(0,R)c. (4.6)

Let ε =min(ε1,ε2,ε3,ε4) and take any ε∈ (0,ε).
We are going to verify the following claim which assures the assertion of Theorem 1.1.

Claim 4.1. There exist c1, c2 such that

(a) c1 is not a critical value of Iε and

m1 ≥ cat
[
SN−1]= 2, (4.7)

where m1 is the number of critical points in [Iε ≤ c1]Mp(Ω/ε),
(b) c2 is a critical value of Iε and c1 < c2.

Proof of Claim 4.1. (a) Without loss of generality, we can assume that there exists c1 which
satisfies

c1 ∈
[
Sp
(
1,c+ δ,RN

)
+
η

4
,Sp
(
1,c+ δ,RN

)
+

2η
4

]
, (4.8)

and c1 is not a critical value of Iε, otherwise we already have infinitely many critical values
and the proof is finished.

Then, by (4.3),

Φε,c+δ

(
∂K

ε

)
⊂
[
Iε ≤ Sp

(
1,c+ δ,RN

)
+
η

4

]
Mp(Ω/ε)

⊂ [Iε ≤ c1
]
Mp(Ω/ε). (4.9)

Let

g
(
t, yε

)=



(1− 2t)βR ◦Φε,c+δ
(
yε
)

+
2tRyε∣∣yε∣∣ ∀(t, yε)∈

[
0,

1
2

]
× ∂K

ε
,

2(1− t)Ryε∣∣yε∣∣ + (2t− 1)yε ∀(t, yε)∈
[

1
2

,1
]
× ∂K

ε
.

(4.10)

Then it is easy to see that

g ∈ C
(

[0,1]× ∂K

ε
;RN

)
, g

(
0, yε

)= βR ◦Φε,c+δ
(
yε
)
, g

(
1, yε

)= yε. (4.11)

Moreover, because of (4.4), (4.5), and (4.6), we have g([0,1], yε) ⊂ B(0,s)c. Hence g is a
homotopy between βR ◦Φε,c+δ and the natural injection from ∂K/ε into B(0,s)c, that is,

(I) βR ◦Φε,c+δ is homotopically equivalent to the natural injection from ∂K/ε into
B(0,s)c.

Let A= B(0,s)c, a= ∂K/ε, B = b = [Iε ≤ c1], Φ=Φε,c+δ , and β = βR. Then (4.2), (4.9),
and (I) assure that all the hypothesis of Proposition 3.6 is fulfilled. Hence

cat
[
Iε ≤ c1

]≥ catB(0,s)c

[
∂K

ε

]
= cat

[
SN−1]= 2. (4.12)
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It is standard to check that Iε satisfies the (PS)-condition in Mp. Hence Proposition 3.4
together with (4.12) implies that (4.7) holds.

(b) We will rely on the minimax principle, see Proposition 3.7.
Let Γ = {γ ∈ C(K/ε;Mp);γ|∂K/ε = Φε,c+δ} and c2 = infγ∈Γ maxy∈K/ε Iε ◦ γ. Since obvi-

ously Φε,c+δ can be extended to K/ε and Iε(·)≥ 0, it is clear that Γ �= ∅ and c2 ≥ 0. More-
over, by virtue of (4.3), we have

sup
y∈∂K/ε

Iε ◦ γ ≤ Sp
(
1,c+ δ,RN

)
+
η

4
∀γ ∈ Γ. (4.13)

Here we claim the following fact.

Claim 4.2.

∀γ ∈ Γ, ∃yε,γ ∈ K

ε
: βR ◦ γ

(
yε,γ
)= 0. (4.14)

Proof of Claim 4.2. For all γ ∈ Γ, there exists yε,γ ∈ K/ε such that βR ◦ γ(yε,γ)= 0.

F
(
t, yε

) �= 0 ∀(t, yε)∈ [0,1]× ∂K

ε
. (4.15)

Suppose on the contrary there exists (t, yε)∈ [0,1]× ∂K/ε such that F(t, yε)= 0. Then by
(4.6) we have yε �= 0 and, in view of (4.2) and (4.3), βR ◦Φε,c+δ(yε)∈ B(0,s)c. Hence we
deduce that t �= 0,1 and βR ◦Φε,c+δ(yε)=−tyε/(1− t).

But this is impossible because of (4.4) and (4.5). Therefore (4.14) holds.
Property (4.15) and the homotopy invariance of the topological degree imply that

1= deg

(
id,

K

ε
,0

)
= deg

(
βR ◦ γ(·),

K

ε
,0

)
. (4.16)

Therefore there exists yε,γ ∈ K/ε such that βR ◦ γ(yε,γ)= 0. �

Now we go back to the proof of the second part of Claim 4.1.
By virtue of (4.14) and (4.2), it follows that

max
y∈K/ε

Iε ◦ γ(y)≥ Iε ◦ γ
(
yε,γ
)= Iε ◦Φε,c+δ

(
yε,γ
)≥ Sp(1,c+ δ,RN

)
+η ∀γ ∈ Γ, (4.17)

which means

c2 = inf
γ∈Γ

max
y∈K/ε

Iε ◦ γ(y)≥ Sp
(
1,c+ δ,RN

)
+η. (4.18)

Then (4.13) and (4.18) imply that

c2 = Sp
(
1,c+ δ,RN

)
+η > Sp

(
1,c+ δ,RN

)
+
η

4
≥ sup

y∈∂K/ε
Iε ◦ γ(y). (4.19)
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Hence all the hypothesis of Proposition 3.7 with M =Mp(Ω/ε), ϕ=Φε,c+δ , A=RN , A0 =
K/ε, and c = c2 is satisfied. Therefore

c2 ≥ Sp
(
1,c+ δ,RN

)
+η > c1, (4.20)

and c2 is a critical value. �
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