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We study the existence of nontrivial solutions for the problem ∆u = u, in a bounded
smooth domain Ω ⊂ RN, with a semilinear boundary condition given by ∂u/∂ν = λu−
W(x)g(u), on the boundary of the domain, where W is a potential changing sign, g has
a superlinear growth condition, and the parameter λ∈ ]0,λ1]; λ1 is the first eigenvalue of
the Steklov problem. The proofs are based on the variational and min-max methods.

1. Introduction

In this paper, we study the existence of nontrivial solutions of the following problem:

(Pλ)

∆u= u in Ω,

∂u

∂ν
= λu−W(x)g(u) on ∂Ω,

(1.1)

whereΩ is a bounded domain set ofRN,N≥ 3 with smooth boundary ∂Ω,∆u=∇· (∇u)
is the Laplacian and ∂/∂ν is the outer normal derivative; the parameter λ∈ ]0,λ1], where
λ1 is the first eigenvalue of the Steklov problem (see [5]), W ∈ C(Ω) different from zero
almost everywhere and changes sign, while g(u) is a continuous and superlinear function
(see (G1), (G2), (G3)) below.

In the case of W ≡ 0, (Pλ) becomes a linear eigenvalue problem and it is known as
the Steklov problem studied in [5], which proved the existence, the simplicity, and the
isolation of the first eigenvalue λ1.

The study of the similar problem when the nonlinear term is placed in the equation,
that is, when one considers problem of the form −∆u = λu+W(x)g(u) with Dirichlet
boundary condition, there is more work; hence, in the case where g behaves as a power
near 0 and infinity, Alama and Tarantello in [2] showed the existence of a positive solu-
tion, provided that f is odd, and found that a necessary and sufficient condition to obtain
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such a solution is ∫
Ω
W(x)e

p
1dx < 0, (1.2)

where e1 denotes a positive eigenfunction of Laplacian related to the first eigenvalue, with
p ∈ ]2,2∗[, 2∗ = 2N/(N− 2) if N > 2, 2∗ = +∞ if N= 2. Also, in [3], it was proved that
(1.2) is a necessary and sufficient condition to obtain a positive solution; recently, Mar-
gone in [14], proved some results of existence in case that 0 < λ ≤ λ1, close to λ1; by
using mountain pass lemma (see [4]) and linking-type theorem (see [15]). Finally, in [1],
Alama and Delpino proved under some restriction on the sign of W(x) the existence of
nontrivial solution, by using two different approach: one involving min-max methods,
the other Morse theory methods.

However, nonlinear boundary conditions have only been considered in recent years,
for the Laplacian with boundary conditions, see, for example [6, 7, 8, 12, 13, 16], where
the authors discussed mountain pass theorem on an order interval with Dirichlet bound-
ary condition. For elliptic systems with nonlinear boundary conditions, see [9, 10].

The main purpose of this work is to study one problem of Neumman boundary value,
in the case λ = λ1 because if λ < λ1, it is easy to prove that the functional Φλ has a con-
dition of mountain pass structure. We show two results of existence obtained as critical
points of the functional related at (Pλ), by using mountain pass lemma introduced in [4]
and linking-type theorem introduced in [15].

The rest of this paper is organized as follows: in Section 2, we cite the main results and
in Section 3, we prove the main results.

2. Main results

In the sequel, we consider the following functional:

G(u)=
∫ u

0
g(t)dt. (2.1)

Then, we show the following existence results for (Pλ).

Theorem 2.1. Let g be a continuous real-valued function on R such that the following
assumptions hold:

(G1) g(u)u≥ 0 for all u∈R,
(G2) |g(u)| ≤ C|u|r−1 for all u∈R, and for some r ∈ ]2,2(N− 1)/(N− 2)[,
(G3) g(u)u≥ (s+ 1)G(u) for u > R, R sufficiently large, and for some s∈ ]1,N/(N− 2)[,
(G4) limu→0(g(u)/|u|r−2u)= a > 0,
(G5) g(u)u≥ c|u|s+1 for |u| > R, and R sufficiently large,
(G6) W−(g(u)u− (s+ 1)G(u))≤ γ|u|2, |u| > R, for some

γ ∈
]

0,
(
s+ 1

2
− 1

)(
λ2− λ1

)[
, (2.2)

where λ2 is the second eigenvalue of the Steklov problem, and W−(x) = −min{W(x),0},
W− =maxx∈∂ΩW−(x); moreover, let
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(W0) W+(x)=max{W(x),0},meas({x ∈ ∂Ω : W(x)= 0})= 0,
(W1)

∫
∂ΩW(x)er1dσ < 0, where e1 is a positive eigenfunction related to λ1,

then (Pλ) has a positive solution uλ for any λ∈ (0,λ1].

Remarks 2.2. (i) Condition (G6) was introduced by Girardi and Matzeu (see [11]) and
plays a crucial role in the proof of Palais-Smale condition.

(ii) Condition (W1) is necessary and sufficient to obtain such a solution and was intro-
duced by Alama and Tarantello, (see [3]), for semilinear elliptic equations with Dirichlet
boundary conditions.

Theorem 2.3. Let g satisfy conditions (G1)–(G3), (G5), (G6), and (W0). If W verifies the
further assumptions,

(W2)
∫
∂ΩW(x)G(te1)dσ > 0, for all t ∈R\{0},

(W3)
∫
DW(x)G(te1)dσ > c, for all t ∈R and for some c ∈R, where D is a nonempty open

subset in ∂Ω such that suppW− ⊂D,

then (Pλ1 ) has a nontrivial solution.

Remark 2.4. Note that the solution found in Theorem 2.3 is surely not always positive
because (W1) does not hold. Moreover, condition (W2), which appears in Theorem 2.3,
is in some sense complementary to (W1) if g is a power.

3. Proof of the main results

It is well known that the solutions of (Pλ) are critical points of the functional

Φλ(u)= 1
2

(
‖∇u‖2

2 +‖u‖2
2− λ

∫
∂Ω
|u|2dσ

)
−
∫
∂Ω

W(x)G(u)dσ , u∈H1(Ω). (3.1)

In order to prove the main results, we apply the mountain pass theorem (see [4]) and a
suitable version of the linking-type theorem (see [15]) to the functional Φλ.

The following lemma is the key for proving our theorems, in which we consider λ= λ1

because if λ < λ1, the argument is the same.

Lemma 3.1. Under assumptions (W0), (G2), (G3), (G5), (G6), the functional Φλ(u) satis-
fies the Palais-Smale condition on H1(Ω). That is, any sequence (un)n in H1(Ω), such that

(
Φλ
(
un
))

n is bounded and Φ′
λ

(
un
)−→ 0 (3.2)

possesses a converging subsequence.

Proof. Let (un)n ⊂H1 (Ω) be a Palais-Smale sequence, namely, there exist c1 and c2 such
that

c1 ≤ 1
2

(∥∥∇un∥∥2
2 +
∥∥un∥∥2

2− λ1

∫
∂Ω

∣∣un∣∣2
dσ
)
−
∫
∂Ω

W(x)G
(
un
)
dσ ≤ c2, (3.3)

sup
{φ∈H1(Ω),‖φ‖1,2=1}

{∫
Ω

(∇un∇φ+unφ
)
dx− λ1

∫
∂Ω

unφdσ

−
∫
∂Ω

W(x)g
(
un
)
φdσ

}
−→ 0 as n−→ +∞.

(3.4)
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We are going to show that (un)n is bounded in H1(Ω). By assumptions (G3) and (G6),
and from (3.3) and (3.4), we get for some constant cR > 0 depending on the number R of
(G3),
∫
Ω

(∣∣∇un∣∣2
+u2

n

)
dx = λ1

∫
∂Ω

u2
ndσ −

∫
∂Ω

W(x)g
(
un
)
undσ + εn

∥∥un∥∥1,2

≥ λ1

∫
∂Ω

u2
ndσ +

∫
∂Ω

W+(x)g
(
un
)
undσ

−
∫
∂Ω

W−(x)g
(
un
)
undσ + εn

∥∥un∥∥1,2

≥ λ1

∫
∂Ω

u2
ndσ + (s+ 1)

∫
∂Ω

W+(x)G
(
un
)
dσ − γ

∫
∂Ω∩{|u|>R}

∣∣un∣∣2
dσ

− (s+ 1)
∫
∂Ω∩{|u|>R}

W−(x)G
(
un
)
dσ + cR + εn

∥∥un∥∥1,2

≥ λ1

∫
∂Ω

u2
ndσ + (s+ 1)

[
1
2

∥∥un∥∥2
1,2−

λ1

2

∫
∂Ω

u2
ndσ − c2

]

− γ
∫
∂Ω

u2
ndσ + cR + εn

∥∥un∥∥1,2.

(3.5)

Set X1 = vect(e1), then, there exist kn ∈R such that un = kne1 + vn, where vn ∈ X⊥1 .
Using the variational characterization of λ2, (3.5) becomes

(
s+ 1

2
− 1

)(
1− λ1

λ2

)∥∥vn∥∥2
1,2 + εn

∥∥vn∥∥1,2 ≤ γ
∫
∂Ω

(
kne1 + vn

)2
dσ + c, (3.6)

where εn is an infinitesimal sequence of positive numbers.
On the other hand, using variational characterization of λ1, it follows that

[(
s+ 1

2
− 1

)(
1− λ1

λ2

)
− γ

λ2

]∥∥vn∥∥2
1,2 + εn

∥∥vn∥∥1,2 ≤ c+ γk2
n

∫
∂Ω

e2
1dσ. (3.7)

On the other side, by (2.2) and taking into acount that εn→ 0, we deduce that

∥∥vn∥∥2
1,2 ≤ const

(
1 + k2

n

)
, (3.8)

hence, it suffices to prove that (|kn|)n is bounded. So, if |kn| → +∞ (at least a subse-
quence), therefore (vn/|kn|)n is bounded in H1(Ω), so a subsequence, also called
(vn/|kn|)n, weakly converges in H1(Ω) at some f and that

f (x) + e1(x) �= 0 a.e. in Ω. (3.9)

Indeed, if (3.9) is false, taking into acount that

∫
Ω

(
∇
(

vn∣∣kn∣∣
)
∇e1 +

vn∣∣kn∣∣e1

)
dx = 0 ∀n∈N (3.10)
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as n→ +∞, we obtain ‖e1‖2
1,2 = λ1

∫
∂Ω e

2
1 = 0, which is an absurdum as we know that e1 is

the principal eigenvector related with λ1.
From (3.4), we obtain

∫
Ω

(∇un∇φ+unφ
)
dx− λ1

∫
∂Ω

unφdσ −
∫
∂Ω

W(x)g
(
un
)
φdσ = ηn (3.11)

with limn→+∞ηn = 0 in R.
Let φn = (kne1 + vn)|kn|−1φ, where φ is a regular function with support compact in Ω

and meas(suppφ∩ ∂Ω) �= 0; then

∫
Ω

(∇(kne1 + vn
)∇φn +

(
kne1 + vn

)
φn
)
dx

− λ1

∫
∂Ω

(
kne1 + vn

)
φndσ −

∫
∂Ω

W(x)g
(
kne1 + vn

)
φndσ = ηn,

(3.12)

hence

1∣∣kn∣∣
∫
Ω

[∇vn∇φn + vnφn
]
dx− λ1∣∣kn∣∣

∫
∂Ω

vnφndσ

= 1∣∣kn∣∣
∫
∂Ω

W(x)g
(
kne1 + vn

)
φndσ + o(1)

(3.13)

for n large enough.
So, Hölder inequality and (3.8) imply that (1/|kn|)

∫
Ω(∇vn∇φn + vnφn)dx and (λ1/

|kn|)
∫
∂Ω vnφndσ are bounded.

On the other side, combining (W0) and (3.9), it follows that either

∫
SuppW+

∣∣h(x) + e1(x)
∣∣s+1

dσ > 0 or
∫

SuppW−

∣∣h(x) + e1(x)
∣∣s+1

dσ > 0. (3.14)

In the first case, we take φ regular nonnegative function with meas(suppφ∩ suppW+) �= 0
such that

∫
SuppW+

W+(x)φ(x)
∣∣h(x) + e1(x)

∣∣s+1
dσ > 0, (3.15)

then, by (G6) and (3.15), we get for some positive constant c,

1∣∣kn∣∣
∫
∂Ω

W(x)g
(
kne1 + vn

)
φndσ ≥ c∣∣kn∣∣2

∫
suppW+

W+(x)
∣∣kne1 + vn

∣∣s+1
φdσ − c

≥ cks−1
n

∫
suppW+

W+(x)
∣∣∣∣e1 +

vn
kn

∣∣∣∣
s+1

φdσ − c −→ +∞.

(3.16)

This and formula (3.13) contradict the bound of (1/|kn|)
∫
Ω(∇vn∇φn + vnφn)dσ and

(λ1/|kn|)
∫
∂Ω vnφndσ .
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For the second case, it suffices to take φ nonnegative function with meas(suppφ∩
suppW−) �= 0 such that

∫
SuppW−

W−(x)φ(x)
∣∣h(x) + e1(x)

∣∣s+1
dσ > 0. (3.17)

Finally, we have proved that (un)n is bounded, this implies the existence of a subsequence
weakly converging in H1(Ω). On the other side, thanks to (G2) and the compact embed-
ding H1(Ω)↩Lr(∂Ω) for r ∈ ]2,2(N − 1)/(N− 2)[, we have the strong convergence. �

Lemma 3.2. The origin is a strict locale minimizer of Φλ.

Proof. First, remark that each u∈H1(Ω) can be written as u= te1 + v, where t ∈R, and
v ∈ X⊥1 , then

∫
Ω

(|∇u|2 + |u|2)dx = t2λ1

∫
∂Ω

e2
1dσ +‖v‖2

1,2. (3.18)

Choosing e1 such that
∫
∂Ω e

2
1dσ = 1/λ1, one gets, for all u satisfying ‖u‖1,2 ≤ 1/2‖e1‖∞,

t2 < ‖u‖2
1,2 <

1

4
∥∥e1
∥∥2
∞
. (3.19)

Hence, by variational characterization of the eigenvalues of the Laplacian with boundary
conditions and for a suitable function F(t,v), we obtain

Φλ1 (u)≥ 1
2

(
1− λ1

λ2

)
‖v‖2

1,2−
∫
∂Ω

W(x)G
(
te1 + v

)
dσ

≥ 1
2

(
1− λ1

λ2

)
‖v‖2

1,2−|t|r
∫
∂Ω

W(x)er1dσ +F(t,v),
(3.20)

where by (G4),

F(t,v)=
∫
∂Ω

W(x)
[∣∣te1

∣∣r −G
(
te1
)]
dσ +

∫
∂Ω

W(x)
[
G
(
te1
)−G

(
te1 + v

)]
dσ

=
∫
∂Ω

W(x)
[
G
(
te1
)−G

(
te1 + v

)]
dσ + o

(|t|r).
(3.21)

On the other hand, using arrangement-finite theorem, there exists a function 0 < θ ≡
θ(x, t,v) < 1 such that

∣∣G(te1 + v
)−G

(
te1
)∣∣= ∣∣g(te1 + θv(x)

)
v(x)

∣∣ (3.22)
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In case that |te1 + θv(x)| ≥ 1, by (3.19), we deduce

∣∣θv(x)
∣∣≥ 2|t|∥∥e1

∥∥∞ − |t|∥∥e1
∥∥∞ ≥ |t|∥∥e1

∥∥∞, (3.23)

so by (G2),

∣∣g(te1 + θv(x)
)
v(x)

∣∣≤ C
∣∣te1 + θv(x)

∣∣r−1∣∣v(x)
∣∣

≤ 2r−2C
∣∣θv(x)

∣∣r−1∣∣v(x)
∣∣≤ 2r−1C

∣∣v(x)
∣∣r , (3.24)

while, if |te1 + θv(x)| ≤ 1, using again (G2), one obtains

∣∣W(x)
∣∣∣∣g(te1 + θv(x)

)
v(x)

∣∣≤ C
∣∣te1 + θv(x)

∣∣r−1
v(x)

≤ C
[∣∣te1

∣∣r−1
+
∣∣v(x)

∣∣r]≤ ε∣∣te1
∣∣r +Cε

∣∣v(x)
∣∣r , (3.25)

where ε, Cε are two positive constants.
Set A = −∫∂ΩW(x)er1dσ > 0. Combining (3.21), (3.24), and (3.25), and using (W1),

(3.20) becomes

Φλ1 (u)≥ 1
2

(
1− λ1

λ2

)
‖v‖2

1,2− tr
∫
∂Ω

W(x)er1−
∣∣F(t,v)

∣∣
≥ 1

2

(
1− λ1

λ2

)
‖v‖2

1,2 + trA− 2r−1C
∫
∂Ω∩{|u|>1}

∣∣W(x)
∣∣∣∣v(x)

∣∣rdσ
−
∫
∂Ω∩{|u|≤1}

[
ε
∣∣te1

∣∣r +Cε
∣∣v(x)

∣∣r]+ θ
(|t|r)

≥ 1
2

(
1− λ1

λ2

)
‖v‖2

1,2 + tr
(
A−C1ε

)−C2‖v‖rr + o
(|t|r),

(3.26)

where C1, C2 are two positive constants.
Hence, using Sobolev trace embedding, for ε < A/C1, we deduce

Φλ1 (u)≥ 1
2

(
1− λ1

λ2

)
‖v‖2

1,2 +C3t
r −C4‖v‖r1,2 + o

(|t|r). (3.27)

For r > 2, the least expression is strictly positive as ‖v‖1,2 is close to 0. �

Proof of Theorem 2.1. We will study only the case λ = λ1 because if λ < λ1, it is easily
proved that the functional Φλ has a condition of mountain pass structure.

Now, it suffices to prove that there exist u∈H1(Ω) such that ‖u‖1,2 > ρ, ρ large enough
satisfying Φλ(u) < 0 which completes the proof of Theorem 2.3.

Let t ∈ R and φ ∈ C∞0 (suppW+), where W+(x) =max(W(x),0) (note that φ is well
defined, thanks to (W0)).

Using (G4), we obtain

Φλ1 (tφ)= t2

2

(
‖φ‖2

1,2− λ1

∫
∂Ω

φ2dσ
)
−
∫
∂Ω

W(x)G(tφ)dσ

≤ t2

2
‖φ‖2

1,2−Ctr
∫

suppW+
W+(x)|φ|rdσ −→−∞ as t −→ +∞.

(3.28)
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Then, there exists t0 > 0 large enough, such that u = t0φ. Hence, using mountain pass
lemma, there exists a critical point u of Φλ1 at the level

c = inf
γ∈Γ

max
v∈γ([0,1])

Φλ1 (v) > 0, (3.29)

where Γ= {γ ∈ C([0,1],H1(Ω)) : γ(0)= 0, γ(u)= 1} is the class of the path joining the
origin to u.

The positivity of u can be checked by a standard argument based on (3.29) (which
yields the nonnegativity of u) and by the strong maximum principle of Vazquez [17]
(which yields the strict positivity of u). �

The proof of Theorem 2.3 is based on Lemma 3.1 and the following version of the
linking theorem, see [15].

Proposition 3.3. Let E be a real Banach space with E = X1⊕X2, where X1 is finite dimen-
sional. Suppose J ∈ C1(E,R) satisfies the Palais-Smale condition and

(J1) there are two constants ρ,α > 0 such that J(u)≥ α, for all u∈ X2: ‖u‖E = ρ,
(J2) there exists x ∈ X2 with ‖x‖ = 1 and R > ρ such that, if

Q = {u∈ E : u=w+ δx with w ∈ X1, ‖w‖ ≤ R, δ ∈ (0,R)
}

, (3.30)

then J|∂Q ≤ 0.

Then J possesses a critical value c ≥ α.

Proof of Theorem 2.3. Set E =H1(Ω) and J =Φλ in Proposition 3.3.
First, thanks to Lemma 3.1, Φλ satisfies Palais-Smale condition.
We take X1={te1/t ∈R}, then X2={v ∈H1(Ω)/

∫
Ω ve1dx = 0} and let v∈X2, ‖v‖1,2=

ρ, then

Φλ1 (v)= 1
2

∫
Ω

(|∇v|2 + |v|2)dx− λ1

2

∫
∂Ω

v2dσ −
∫
∂Ω

W(x)G(u)dσ

≥ 1
2

(
1− λ1

λ2

)
‖v‖2

1,2−C sup
∂Ω

W(x)
∫
∂Ω
|v|rdσ

≥ 1
2

(
1− λ1

λ2

)
ρ2−Cρr.

(3.31)

Then, for ρ small enough, we have Φλ1 (v)≥ α, so (J1) is verified.
As for the proof of (J2), first of all, we note that, as also observed in [15], it is enough

to prove the following two properties:

(a) Φλ1 (te1)≤ 0 for all t ∈R;
(b) there exist v ∈ X2\{0} and ρ0 > ρ such that Φλ1 (u) ≤ 0 for all u ∈ X1 ⊕ [v] and

|u| ≥ ρ0.

For (a), we have

Φλ1

(
te1
)=−

∫
∂Ω

W(x)G
(
te1
)

(3.32)

which is not positive by (W2), and (a) follows.
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On the other side, let v be a sufficiently regular function in X2\{0} such that suppv ⊂
Ω\D and meas(suppv∩ ∂Ω) �= 0, Hence, for u ∈ X1 ⊕ [v] = {te1 + δv, (t,δ) ∈ R2}, we
obtain

Φλ1 (u)= δ2

2

[∫
Ω

(
|∇v|2 + |v|2

)
dx− λ1

∫
∂Ω
|v|2dσ

]
−
∫
∂Ω

W(x)G
(
te1 + δv

)
dσ

≤ δ2

2

∫
Ω

(
|∇v|2 + |v|2

)
dx−

∫
∂Ω\D

W+(x)G
(
te1 + δv

)
dσ −

∫
D
W(x)G

(
te1
)
dσ + c,

(3.33)

therefore, by (W3), one gets

Φλ1

(
te1 + δv

)≤ c
(
t2 + δ2)− c

∫
∂Ω\D

W+(x)
∣∣te1 + δv

∣∣s+1
dσ + c. (3.34)

We observe now that the map

te1 + δv ∈ X1⊕ [v]−→ (t,δ)∈R2 (3.35)

is an isomorphism and that

te1 + δv −→
(∫

∂Ω\D
W+(x)

∣∣te1 + δv
∣∣s+1

dσ
)1/(s+1)

(3.36)

yields a norm from X1⊕ [v] as it easily can be deduced from the fact that−te1(x) �= δv(x)
in Ω\D if δ2 + t2 �= 0 (indeed e1(x) > 0 everywhere on Ω, while v has a compact support
in Ω\D) therefore, as all the norms are equivalents in a finite dimensional space, we get,
for some positive constant c,

Φλ1

(
te1 + δv

)≤ c
(
t2 + δ2)− c

(
ts+1 + δs+1)+ c (3.37)

then,

lim
t2+δ2→+∞

Φλ1

(
te1 + δv

)=−∞, (3.38)

hence, Φλ satisfies the assumptions of Proposition 3.3, which completes the proof of
Theorem 2.3. �
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