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The goal of this paper is to provide an overview of results concerning, roughly speaking,
the following issue: given a (topologized) class of minimum problems, “how many” of
them are well-posed? We will consider several ways to define the concept of “how many,”
and also several types of well-posedness concepts. We will concentrate our attention on
results related to uniform convergence on bounded sets, or similar convergence notions,
as far as the topology on the class of functions under investigation is concerned.

1. Introduction

Given a space X , and an (extended) real-valued function f : X → (−∞,∞], we consider
the abstract minimization problem: find

x ∈ X : f (x)= inf f . (1.1)

Set Min( f )= {x ∈ X : f (x)= inf f } and f a = {x : f (x)≤ a}. Observe that

Min f =
⋂

a>inf f

f a. (1.2)

The most important existence theorem, probably one of the most elegant theorems in
analysis, is the Weierstrass theorem, which can be stated in the following way.

Theorem 1.1. Suppose there are a topology τ on X and ā > inf f such that
(i) f a is τ-closed for all a≤ ā;

(ii) f ā is τ-compact.
Then the minimum problem has a solution, that is, Min f is nonempty.

Its proof is marvellously simple. Min f is the intersection of a nested family of
(nonempty) closed sets, and one of them is compact. Then it is nonempty.

A useful variant of the proof can be given by considering minimizing sequences, that is,
sequences {xn} ⊂ X such that f (xn)→ inf f (of course there are always such sequences).
As xn ⊂ f a eventually, then it must have a converging subsequence. Now closedness of
f a, for all a ≤ ā, implies that every limit point of {xn} minimizes f . The challenge is,
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given a specific problem, to find a suitable topology τ, in order to apply the theorem. As
it is obvious, and also very natural, the two assumptions—having closed level sets, having
one of them compact—go in opposite directions: a topology rich in open (and so closed)
sets usually is poor in compact sets. So, what can be said in general when a topology with
sufficiently many compact sets is not available? Surely, no existence theorem as general
as that provided by Weierstrass a little more than one century ago can be proved. Thus,
it becomes interesting to consider classes of problems, and to prove that inside a certain
class those having solutions are sufficiently many. For instance, they contain a dense set.
From the point of view of applications, this would not be so bad, since the performance
function to be minimized is usually known up to some approximation errors, and thus it
would not be too costly to change it a bit (in a suitable way).

However, it is interesting to go further and to ask for more stringent properties than
just density. Other notions of “sufficiently many” are of interest. In this paper, we will
mainly consider properties related to category, in the sense of Baire, and to the alternative
notion of σ-porosity, which will be discussed in the following. In a finite-dimensional
setting, we will also consider the idea of full measure sets.

Actually, not only do we expect a problem to have a solution, maybe unique, but also
this solution is “easy to find.” This leads to the idea(s) of well-posedness, that will be
considered in the sequel. Thus, our program can be outlined in the following (somewhat
loose) way: to consider several different classes of minimization problems, and inside
them to prove that “very many” problems “have solutions and are easy to solve.” To start
with quoting results in this sense, interesting results about generic convergence of descent
methods can be found in [17, 18].

A first efficient way to tackle this topic is to rely on some variational principles. Prob-
ably the first one, and the most famous, is the Ekeland variational principle, which itself
offers a result of dense existence, and furthermore provides a basis on which to build
up several other results. Thus we will start with an overview of some variational prin-
ciples, especially those by Ekeland, Deville-Godefroy-Zizler, as well as two more recent
ones, from Ioffe-Zaslavski and from Revalski and the authors. The core of the paper will
then be dedicated to a review of well-posedness results for various classes of optimization
problems.

2. Variational principles

We start with the first, and most famous, variational principle: the Ekeland principle.

Theorem 2.1. Let (X ,ρ) be a complete metric space and let f : X → (−∞,∞] be a lower
semicontinuous, lower bounded function. Let ε > 0, r > 0, and x̄ ∈ X be such that f (x̄) ≤
infX f + rε. Then, there exists x̂ ∈ X enjoying the following properties:

(1) ρ(x̂, x̄)≤ r;
(2) f (x̂)≤ f (x̄)− ερ(x̄, x̂);
(3) f (x̂) < f (x) + ερ(x̂,x) for all x �= x̂.

This beautiful result has an enormous number of interesting and sometimes surprising
consequences (e.g., it is possible to derive from it the famous mountain pass theorem
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by Ambrosetti and Rabinowitz), but we immediately focus on one of them which is of
interest to us in the paper.

Condition (3) above implies a density result for problems with a unique solution. We
explain why. Consider, for simplicity, the space � of the real valued, lower semicontinu-
ous positive functions on the complete metric space (X ,ρ). We endow � with a distance
compatible with uniform convergence on bounded sets. For instance, we pick any ele-
ment θ ∈ X , and set, for any two f ,g ∈� and n∈N,

‖ f − g‖n = sup
ρ(x,θ)≤n

∣∣ f (x)− g(x)
∣∣. (2.1)

If ‖ f − g‖n =∞ for some n, then we set d( f ,g)= 1. Otherwise,

d( f ,g)=
∞∑
n=1

2−n
‖ f − g‖n

1 +‖ f − g‖n . (2.2)

It is easy to see that in such a way (�,d) is a complete metric space.
We can now state the following proposition.

Proposition 2.2. In (�,d) the set of functions attaining the minimum value at a unique
point is dense.

Proof. Fix σ > 0, take j so large that, setting g(x)= f (x) + (1/ j)ρ(x,θ), we have d( f ,g) <
(σ/2). Now, observe that limρ(x,θ)→∞ g(x) = ∞, and thus there exists M such that g1 ⊂
B(θ,M). Let s=∑(1/2n)(n+M). Apply the principle with ε = (σ/2s) (r arbitrary) to find
x̂ such that ρ(x̂,θ)≤M and x̂ is the unique minimizer of

h(·)= g(·) + ερ(·, x̂). (2.3)

As |h(x)− g(x)|n ≤ ε(n+M), it follows that d(h,g) ≤ εs = (σ/2). Then d( f ,h) < σ , and
the proof is complete. �

This is just an example of how to use the Ekeland principle to get such a type of results.
It is possible to get similar results for other classes of functions and other topologies: we
will see some examples later.

The requirement of having existence and uniqueness of the minimizer can be strength-
ened. The following definition is widely used in the literature.

Definition 2.3. Let (X ,ρ) be a metric space, let f : X → (−∞,∞] be lower semicontinuous.
Then (X , f ) (or simply f ) is said to be Tykhonov well-posed if

(1) there exists a unique x̄ ∈ X such that f (x̄)≤ f (x) for all x ∈ X ;
(2) every sequence {xn} such that f (xn)→ infX f is such that xn→ x̄.

For some purposes, sometimes the uniqueness of the solution is a too restrictive as-
sumption. Thus a definition of Tykhonov well-posedness in extended sense can be given
by requiring compactness of the solution set, rather than uniqueness of the minimizer,
and, consequently, convergence of minimizing sequences up to subsequences. Thus, if
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there exists a > inf f such that f a is compact, then f is well-posed in the generalized
sense. This means that in the assumption of Weierstrass theorem, the problem is actually
well-posed in extended sense. We will provide later other definitions of well-posedness,
by requiring uniqueness of the minimizer: it is intended that the same adjustments can
be done in all cases, exactly as in the above one.

Just to give some examples of well-posed problems, a convex, lower semicontinuous
extended real-valued function on a Euclidean space, with unique minimizer, gives rise
to a Tykhonov well-posed problem (this is no longer true in infinite dimensions). The
Tykhonov well-posedness of the best approximation problem, minimize ‖x − x̂‖ on a
given closed convex set C ⊂ X , depends on the structure of the underlying Banach space
X : it is well-posed, for every x̂ ∈ X and C ⊂ X if and only if X is a so-called E-space, that
is, it is reflexive, strictly convex (the boundary of the unit ball contains no line segments)
and fulfills the so-called Kadeč-Klee property (xn ⇀ x and ‖xn‖ → ‖x‖ imply xn → x).
The best approximation problem is a very important one in optimization, thus also its
generic well-posedness has been studied, see [6, 19].

The next proposition, due to Furi and Vignoli, provides a useful characterization of
Tykhonov well-posedness, and is largely used in proving genericity results.

Proposition 2.4. Let X be a complete metric space and let f : X → (−∞,∞] be a lower
semicontinuous function. The following are equivalent:

(i) f is well-posed;
(ii) infa>inf f diam f a = 0.

A classical pattern to prove that, in a given class (�,d) of functions such that (�,d) is
a complete metric space, or at least a Baire space, the well-posed problems are a large set,
that is, contain a dense Gδ set, is to define

Vn :=
{
f ∈� : inf

a>inf f
diam f a <

1
n

}
, (2.4)

and to prove that each Vn is an open set (i.e., upper semicontinuity of the map f �→
diam f a), then an ad hoc use of the Ekeland principle and the Furi-Vignoli criterion al-
lows concluding.

But we come back to the variational principles. The following one, due to Deville-
Godefroy-Zizler, has, among its consequences, the possibility to prove genericity results
for Tykhonov well-posed problems. Remember that a bump function on a space X is a
function with bounded support.

Theorem 2.5. Let X be a Banach space admitting a Lipschitz and Fréchet differentiable
bump function. Then for every lower semicontinuous, bounded from below, function f : X →
(−∞,∞], and for every ε > 0, there exists a Lipschitz and Fréchet differentiable function g
such that ‖g‖∞ < ε, ‖g′‖∞ < ε, and f + g is Tykhonov well-posed.

It is not difficult to see that the Ekeland variational principle, as far as the third con-
dition is concerned, can be derived from the previous one, however, it is not possible in
this way to locate the minimum point with the same accuracy (condition (1)), see [12]. It
must be also noticed that it implies the stronger condition of Tykhonov well-posedness.
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Anyway, though rather general, the above principle does not apply to several interest-
ing situations, for instance, when convex functions are involved, it is clear that perturba-
tions made by bump functions can kill convexity. Thus, Ioffe and Zaslavski provided in
[13] a new principle, aimed at getting sharper results and suited to more general classes
of functions. Moreover, they involve a more stringent notion of well-posedness, and so
the results derived from their principle are sharper. The required setting is as follows.

Let (X ,‖ · ‖) be a real Banach space and let (�,d) be a metric space which is a Baire
space. We will call X the domain space. The space � will serve as a data space. Assume
that with each a ∈�, a lower semicontinuous extended real-valued function fa : X →
R∪ {+∞} is associated and consider the problem of minimizing fa on X . Denote by
inf fa the infimum of fa on the space X .

We say that this problem (for a given a) is well-posed, provided
(1) inf fa is finite and attained at a unique point x0 ∈ X ;
(2) for any sequence {an} converging to a, inf fan is finite for large n and any sequence

{zn} ⊂ X such that fan(zn)− inf fan → 0 strongly converges to x0;
(3) if an converges to a, then inf fan → inf fa = fa(x0).

The first two conditions are called “well-posedness by perturbations” in [23, 24], while
the third one is known in the literature as value Hadamard well-posedness (see, e.g., [8]).

Now, consider the following condition:
(�) there is a dense subset �⊂� such that for any a∈�, any ε > 0, and γ > 0, there

exist a nonempty open set �⊂�, x̄ ∈ X , α∈R, and λ > 0 such that for every b ∈� we
have

(i) d(a,b) < ε and inf fb >−∞;
(ii) if z ∈ X is such that fb(z) < inf fb + λ, then ‖z− x̄‖ ≤ γ and | fb(z)−α| ≤ γ.

The variational principle from [13] can now be stated as follows.

Theorem 2.6 [13]. Let X be a real Banach space and let (�,d) be a Baire space. Suppose
(�) holds. Then there exists a dense Gδ-subset �1 of (�,d) such that for every a∈�1, the
corresponding minimization problem is well-posed.

In the following section, we will mention several results that can be derived from
the above principle. We only notice here that the Deville-Godefroy-Zizler principle is
a straightforward consequence of the previous one.

The Ioffe-Zaslavski principle is suited to prove generic well-posedness (in the sense
of Baire category), for a broad variety of topologies. But very often, and typically in the
well-posedness context, a genericity result is not fully satisfactory.

The reason is, intuitively, that the idea of “smallness” has quantitative connotation and
is naturally associated with concepts similar to “measure zero” or “probability zero” (see,
e.g., [20]), while a meager set in the sense of Baire already in R can have a positive (even
infinite) measure.

The idea of porosity offers a perfect way out of the measure-category dichotomy,
since σ-porous sets are always sets of the first Baire category and, in Euclidean spaces,
of Lebesgue measure zero.

Definition 2.7. Let (X ,d) be a metric space and A⊂ X . The set A is called porous in X if
there are λ∈ (0,1) and r0 > 0 such that for any x ∈ A and r ∈ (0,r0), there is y ∈ X such
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that B(y,λr) ⊂ B(x,r)\A. A is called σ-porous in X if it is a countable union of porous
sets in X .

In fact, the above definition is stronger than the original (local) definition given in
[21], where a set as above is called “uniformly very porous.”

We can now state the new principle as follows (see [11]).

Theorem 2.8. Let � be as above and let �⊂�. Suppose the following condition holds: (�)
for any k ∈N, there are λ = λ(k) ∈ (0,1) and ε0 = ε0(k) > 0 such that for each a ∈� and
each ε ∈ (0,ε0), there exist ā= ā(k,a,ε)∈� and η > 0 with the following properties:

(i) B(ā,λε)⊂ B(a,ε);
(ii) b ∈ B(ā,λε)⇒ inf fb >−∞ & diam(

⋃
b∈B(ā,λε) f

η
b ) < 1/k.

Then the set {a∈� : a is not well-posed} is σ-porous in �.

Actually, we find it convenient to use, in our applications, the following corollary.

Corollary 2.9. Suppose � =⋃∞m=0 �m, where �0 is a σ-porous set in �, and that, for
each m≥ 1, condition (�) holds for �=�m. Then the set of well-posed problems inside �
has a σ-porous complement in �.

To end this section, we will mention, without going in further details, other varia-
tional principles: first of all, that one provided by Borwein-Preiss, suited to deal also
with smooth perturbations, then that one provided by Revalski and the authors [10]. The
latter is suited to give a unified approach to get results for problems with functional con-
straints, which will be described in the next section. Finally, an extension of the Deville-
Godefroy-Zizler principle, involving σ-porosity rather than Baire category, has been
proved by Deville-Revalski in [7].

3. Genericity results

In this section, we collect several genericity results for well-posed problems. We remind
that we will be concerned with the topology of the uniform convergence on bounded sets,
or similar ones. In particular, we will not pay attention to results dealing with uniform
convergence on the entire space, or finer. When the results are consequence of the prin-
ciples described in the previous section, we will mention this explicitly. Otherwise, it is
intended that the results are obtained with direct proofs.

We will start with a short and quick survey of older results. Later, we will describe in
more details more recent results.

Probably the first genericity result can be found in [14]. Denote by Γ(X) the set of
the extended real-valued convex, lower semicontinuous functions on the Banach space
X , and by Γ̃(X) its subset consisting of the real-valued functions. The first result reads as.

Theorem 3.1. Let X be a reflexive Banach space, and endow Γ̃(X) with the uniform con-
vergence on bounded sets. Then the Tykhonov well-posed problems are a dense Gδ subset of
Γ̃(X).

The proof relies on the above-mentioned characterization by Furi and Vignoli of
Tykhonov well-posed problems (see Proposition 2.4).
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It should be noticed that for many purposes in Γ(X), it is more natural to consider
the well-known Mosco convergence. A negative result however holds in this case: if X is
infinite dimensional, then the family of the functions which are unbounded from below
is a dense Gδ set (see [4]). A positive result in this class was proved instead, in the same
paper, with another important set convergence notion. Endow Γ(X) with the bounded
Hausdorff topology (thus making it a completely metrizable space). Then the family of
the well-posed functions is a dense Gδ subset of Γ(X) (see Theorem 4.8).

For the reader not acquainted with the bounded Hausdorff metric topology, we just
mention that on a space of closed convex sets, bounded Hausdorff convergence of a se-
quence of sets is equivalent to Hausdorff convergence when intersecting all sets with all
(large) balls, and when applied to functions, it is intended that we look at the convergence
of the epigraphs. In the general case, the definition looks a bit more complicated (see, e.g.,
[2]).

A similar result has been obtained by Ioffe-Zaslavski, which also proves the same
genericity statement for the class of the quasiconvex lower semicontinuous functions
(thus extending to infinite dimensions a previous result by Beer and Lucchetti, see [3])
and for the class of the lower semicontinuous functions minorized by a fixed coercive
function (see [13, Section 4]). The principle is used in the same paper in order to obtain
an interesting result in the calculus of variations. Namely, it is shown that, for a suit-
able topology, in the space of the normal integrands, without either convexity or growth
conditions, the majority of the problems are well-posed. It should be noticed that the the-
orem fails as far as only autonomous integrands are considered, as it can be shown that,
around the classical Bolza functional, for which there is no minimizer, all (autonomous)
problems either do not have solutions, or else have more than one solution (see [9, The-
orem 5]).

We now switch to constrained problems. A typical one is to minimize a given function
f over a constraint set A, problem denoted by (A, f ). The first result in this direction
is as follows: denote by (C(X),τ) the family of the closed convex subsets of a Banach
space X , endowed with the bounded Hausdorff topology, and consider the space Γ(X)
defined above, endowed always with the bounded Hausdorff topology. ThenC(X)×Γ(X)
becomes a complete metric space. Inside this space, the Tykhonov well-posed problems
are a dense Gδ set (see [5, Theorem 5.4]). Again, the density part is derived from the
Ekeland variational principle, while the Furi-Vignoli characterization provides the rest
of the proof. It should be noticed that a notion stronger than Tykhonov well-posedness
is actually proved, though this result is still weaker than Ioffe and Zavslaski’s one. They
prove the same theorem (in [13]) as well as one applying the nonconvex case. Their main
condition is that the functions in the considered family have to be minorized by the same
coercive function.

We now turn our attention to other more recent results.
First of all, we mention some of those derived in [9] from the Ioffe-Zaslavski prin-

ciple. Let �c denote the set of the convex functions defined on a Banach space X , real-
valued and continuous, and let Aqc denote the set of the quasiconvex functions defined
on a Banach space X , real-valued, continuous, and lower bounded on the bounded sets.
We topologize both sets with the topology of the uniform convergence on bounded sets,
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and consider the following programming problem:
(P)

minimize f0(x) subject to fi(x)≤ 0, i= 1, . . . ,k. (3.1)

A typical element of the data space then will be a = ( f0, . . . , fk), where a ∈ Ak+1
c (resp.,

a ∈ Ak+1
qc ). We denote by �(a) the feasible set of the problem. Clearly, we cannot expect

�(a) to be generically nonempty, so we will assume that our data space � will be the
closure of {a : �(a) �= ∅} (a Baire space). We then have the following theorem.

Theorem 3.2. The problem (P) is generically well-posed in � for every Banach space X , as
far as the convex case is concerned, and the same is true for the quasiconvex case, provided
the space X is reflexive.

Coming back to the Ioffe-Zaslavski principle, we see that, in order to apply property
(�), we first require a suitable dense subset � such that, for any element a∈� and ε > 0,
it is possible to find an open set U such that U is contained in the ε ball around a and
all elements of U have all their level sets of some prescribed height close to a given point.
Then one has to specify both the set � and, for each element a in B, the open set U ,
usually a small ball around a. In the convex case, � is given as the set of those problems
for which the objective function f0 is coercive and, for each element in B, the center
of the close-by ball corresponds to the perturbation of the objective function and the
constraints, made by adding a term of the form τ‖x− x̄‖ to the objective and of the form
τ‖x− x̄‖− (τ/2) to the constraints, with x̄ and τ suitably chosen. It is clear that, as far as
the objective function is concerned, the term τ‖x− x̄‖ creates a “narrow well” that allows
getting the required conditions on the level sets of nearby functions. The perturbations
on the constraint functions are suited to ensure that the point x̄ is feasible for nearby
problems, and this allows making some estimates on the values of the close-by problems.
More or less the same idea is used in the quasiconvex case, but then the construction is
much more intricate, as perturbations like those used in the convex case are not allowed
with quasiconvexity. So we do not describe them here, and instead refer the interested
reader to the original paper [9].

Generalizations to other problems with functional constraints are contained in [10].
We describe them in the next examples, where the conclusion is always the same: in the
specified class, the majority of problems are well-posed.

LetX , Y , Z be Banach spaces, letC be a closed convex pointed cone with some element
e ∈ intC. Let f : X → R be a given continuous function, let F : X → Y and G : X → Z be
continuous maps, and consider the following (abstract) minimization problem:
((P)a)

minimize f (x) subject to F(x)∈ C; G(x)= 0, (3.2)

where a is a data element generating f ,F,G. To make this clear, we see how this theoretical
setting applies to some examples.
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Example 3.3. Consider the following quadratic programming problem with linear equal-
ity constraints:

minimize (Qx | x) + (c | x) subject to Ax = b, (3.3)

where (· | ·) is the scalar product in Rn, Q is an n× n symmetric matrix, A is an m× n
matrix, c ∈Rn, and b ∈Rm.

It is then natural to set a = (Q,A,c,b) and take f (x) = (Qx | x) + (c | x) and G(x) =
Ax− b.

Thus every problem ((P)a) can be equivalently represented as an unconstrained min-
imization of the extended real-valued function

fa(x)=

 f (x), if F(x)∈ C, G(x)= 0;

∞, otherwise.
(3.4)

The feasible set (MP)a coincides with the domain of fa:

dom fa =
{
x ∈ X : F(x)∈ C,G(x)= 0

}
. (3.5)

The subset of the data space we will consider in all cases is the set of the meaningful
problems, that is,

� = {a :
∣∣ inf fa

∣∣ <∞}. (3.6)

This means that we consider feasible and lower bounded problems.
Once we have proved that �, endowed with an appropriate metric, is a Baire space,

we are then in the framework of the Ioffe-Zaslavski principle, from which we derive ours,
suited to problems of this kind. We will not detail here our principle, which is a bit techni-
cal. We instead set forth a few examples in which this principle does apply, thus providing
generic well-posedness inside �.

Our first example concerns the standard mathematical programming problem.

Example 3.4. Consider the following problem:

minimize f (x) subject to f1(x)≤ 0, . . . , fm(x)≤ 0, g1(x)= 0, . . . ,gl(x)= 0, (3.7)

where f ∈ Ck(X), F(·) = ( f1(·), . . . , fm(·)) ∈ Ck(X ,Y) and G(·) = (g1(·), . . . ,gl(·)) ∈
Ck(X ,Z).

Suppose we are given a function ψ : X →R, continuous and coercive, that is, ψ(x)→∞
as ‖x‖→∞, and consider the set

Ckψ(X)= { f ∈ Ck(X) : f ≥ ψ}, (3.8)

with the distance

dkb( f ,g)=
∞∑
j=0

1
2 j
ρ jk( f ,g), (3.9)



352 Generic well-posedness in minimization problems

where the pseudometric ρjk( f ,g) is defined as

ρjk( f ,g)=
k∑
i=0

sup
{ ∣∣ f (i)(x)− g(i)(x)

∣∣
1 +
∣∣ f (i)(x)− g(i)(x)

∣∣ : ‖x‖ ≤ j
}
. (3.10)

This distance defines the topology of the uniform convergence of functions and their
derivatives up to the order k on the bounded subsets of X .

Thus the data space now is

Ckψ(X)×Ck(X)×···×Ck(X), (3.11)

with some product metric obtained by the metrics dkb in the component spaces.

In the previous example, the domain space X can be infinite dimensional, provided
there exists a positive Ck-bump function q(·) with minimum at zero and greater than the
one outside the unit ball. This is certainly the case in any Banach space if k = 0, while if
k = 1, a sufficient condition for the existence of such q is that X has an equivalent Fréchet
differentiable norm.

Our second example is a generalization of the quadratic programming in Hilbert
space, according to Example 3.3.

Example 3.5. Let X be a real Hilbert space with inner product (·|·). The class of problems
to be considered is described by the following scheme:

minimize (Qx | x) + (c | x) subject to (Qix | x) + (ci | x)≤ αi, i= 1, . . . ,k; Ax = u.
(3.12)

Here Q,Qi are symmetric bounded linear operators in X , A is a bounded linear operator
in X , c,c1, . . . ,ck, and u are elements of X , and αi are real numbers. Thus a typical a on the
data space is a (3k+ 4)-uple of the form

a= (Q,Q1, . . . ,Qk,A,c,c1, . . . ,ck,u,α1, . . . ,αk
)

(3.13)

which we will consider with the natural product topology corresponding to the norm
convergence of operators and vectors of X and the usual convergence of numbers. We as-
sume thatQ,Qi are positive semidefinite matrices (an unintentionally missed assumption
in the paper) and the operator A maps the Hilbert space X onto itself: A(X) = X . Such
operators form an open set in the space of bounded operators with the usual operator
norm.

The next example concerns semiinfinite programming.

Example 3.6. Let X =Rn, let T be a Hausdorff compact space, and consider the following
problem:

minimize (Ax | x) + (c | x) subject to
(
B(t)

∣∣x)+ b(t)≤ 0, (3.14)

where A is a real, symmetric n× n matrix, while B : T → Rn, b : T → R are continuous
functions on X . With the previous notations, the Banach space Y is the space C(T) of
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the real-valued continuous functions onT (with the usual max norm),C is the cone of the
functions which are nonpositive everywhere, and e is the constant function-valued −1.
The data space is the set of 4-uples a = (A,B,c,b), equipped with some product metric
generated by the usual metrics on matrices A and vectors c and by the sup-norms for B
in C(T ,Rn) and for b in C(T).

The last example concerns optimal control problems with quadratic costs.

Example 3.7. This is the class of problems covered by the following scheme:

minimize
∫ 1

0

[(
Pu(t) | u(t)

)
+
(
Qx(t) | x(t)

)
+
(
c0(t) | u(t)

)
+
(
b(t) | x(t)

)]
dt

subject to ẋ(t)=Ax(t) +Bu(t); x(0)= x0, x(1)= x1.
(3.15)

Here P andQ are symmetric matrices of ordersm and n, respectively, with P positively
semidefinite, A is a square matrix of order n, B is a matrix n×m, x0, x1 ∈ Rn, and c0(t)
and b(t) are square integrable mappings from [0,1] intoRm andRn, respectively. Thus the
data space of the problem consists of 8-uples a= (P,Q,c0(·),b(·),A,B,x0,x1), and may be
identified with the product SL+(m)× SL(n)×Lm2 (0,1)×Ln2(0,1)×L(n)×L(m,n)×Rn×
Rn endowed with a natural product metric.

We refer to [22] for other genericity results concerning optimal control problems.
To conclude this section, we remark that some of the previous examples can be given a

generic result, using the same principle, but different topologies in the data space (usually,
the topology of uniform convergence in the whole space, whenever it makes sense).

4. Porosity results

We now switch to porosity results, as obtained in [11]. Observe that in the case of porosity
the distance on the data space must be carefully specified, as porosity requires quantitative
estimates. As in the previous section, we will always deal with distances inducing uniform
convergence on bounded sets.

So, let (X ,ρ) be a metric space and � a linear space of real-valued functions on X ,
endowed with the metric described after Theorem 2.1.

Here is the first result.
Let (X ,‖ · ‖) be a real Banach space, and � one of the following two spaces of functions

on X :
(a) QC(X) =: the space of all real-valued quasiconvex continuous functions in X

bounded from below on bounded sets;
(b) Conv(X)=: the space of all convex continuous functions on X .

Theorem 4.1. Let X be a Banach space, and let � be one of the two spaces defined above.
Then the set of the well-posed problems in � has a σ-porous complement in (�,d).

Now we have a result concerning continuous/lower semicontinuous coercive func-
tions.
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Let (X ,ρ) be a complete metric space, ψ a coercive function on X , and � one of the
following two spaces of functions on X :

(c) LSC(X ,ψ), the collection of lower semicontinuous functions satisfying f (x) ≥
ψ(x) for any x ∈ X ;

(d) C(X ,ψ), the collection of continuous functions on X satisfying f (x) ≥ ψ(x) for
any x ∈ X .

Observe that the two classes above consist of bounded from below functions f for
which the sets f r are bounded for every r > 0. Both classes are complete metric spaces.

We then have the following theorem.

Theorem 4.2. Let � be one of the two spaces defined above. Then the set of the well-posed
problems in � has a σ-porous complement in (�,d).

We remark that the uniform growth condition f (x)≥ ψ(x) in the above result cannot
be dropped. Consider, for example, the space of all continuous functions f ≥ 0, on a
normed space X , endowed with the above metric d (obviously a complete metric space).
Set

Un =
{
f : inf

‖x‖>n
f < inf

‖x‖≤n
f +

1
n

}
, U =

∞⋂
n=1

Un. (4.1)

Clearly, f is ill-posed if f ∈U . Moreover, it is easy to see that each Un is open and dense
in the class; thus, no porosity (not even genericity) result holds in this case.

We now turn to constrained problems, and start with the usual convex programming
problem:

minimize f0(x) subject to f1(x)≤ 0, . . . , fl(x)≤ 0, x ∈ X , (4.2)

where fi, i= 0, . . . , l, l ≥ 1, are real-valued convex continuous functions defined on a Ba-
nach space X . (We have already provided a genericity result in this setting, see Theorem
3.2.)

The data space � will be a subspace of the Cartesian product of (l + 1) copies of
Conv(X), endowed with the box metric:

d
[(
f0, . . . , fl

)
,
(
g0, . . . ,gl

)]= max
i=0,...,l

d
(
fi,gi

)
, (4.3)

where d on the right-hand side stands for the same metric as earlier.
Let a= ( f0, f1, . . . , fl)∈ [Conv(X)]l+1. The feasible set of the problem determined by a

is, as usual, the set

�(a)= {x ∈ X : fi(x)≤ 0, ∀i= 1, . . . , l
}
. (4.4)

We define the data space as the collection of all a∈ [Conv(X)]l+1 for which �(a) �= ∅.
It is easy to see that the space (�,d) contains an open (in [Conv(X)]l+1) set which is dense
in �. Since ([Conv(X)]l+1,d) is a complete metric space, this implies that (�,d) is a Baire
space.
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The function fa associated with a∈� is then defined in a standard way:

fa(x)= f0(x) if x ∈ F(a), fa(x)=∞ otherwise. (4.5)

Theorem 4.3. Let � be the space of constrained convex problems described above. Then the
set of the well-posed problems in � has a σ-porous complement in (�,d).

The proof of these results (and of the following) relies on Corollary 2.9 to our varia-
tional principle. It is then necessary to single out at first what are the sets �m, m≥ 0.

The set �0, usually, is specific for the class under consideration and, inside it, we put
“pathological” situations. For instance, for the convex/quasiconvex cases, we consider in
�0 all the functions which are either lower unbounded or with unbounded level sets.

Instead, the sets �m, m ≥ 1, are in general more or less the same in all cases, as well
as the techniques to prove the condition of the principle relatively to �m. Just to give an
example, we consider the convex case. Here the data space A is identified with the family
of convex continuous functions defined on a Banach space X . The set �m is

�m =
{
f ∈�\�0 : f r

⋂
B(0,m) �= ∅, ∀r > 0

}
. (4.6)

Having an element f ∈�m, we consider x̄ such that

‖x̄‖ ≤m, f (x̄)≤ inf f + r, (4.7)

with suitable r > 0. We next define a perturbation of the function f :

f̄ (x)= f (x) + δ‖x− x̄‖, x ∈ X , (4.8)

with suitable δ. Inasmuch as x̄ almost minimizes f , the term δ‖x − x̄‖ creates a kind
of well in such a way that the level sets (at small height) of the functions around f̄ all
remain in a small ball, and this is exactly what the principle requires. This happens as,
roughly speaking, in one case, convexity/quasiconvexity, in the other cases, the coercivity
assumption, guarantees that the level sets of close by functions all remain in a ball (a little
larger than B(0,m)). Inside this ball the convergence is uniform, and this allows to con-
trol the behavior of close-by functions. Of course, in the constrained cases the situation
is complicated by the fact that there are constraints to be fulfilled, but the basic idea re-
mains the same. Thus, the ideas for the proof mimic those explained when commenting
Theorem 3.2: the key point however is that porosity requires a form of “uniformity” in
the estimations that makes necessary to cut the space � in the slices �m.

Our next result deals with a much more specific class of problems, namely quadratic
programming problems in the N-dimensional Euclidean space RN , that is problems of
the form

minimize
〈
Q0x,x

〉
+
〈
c0,x

〉
subject to

〈
Q1x,x

〉
+
〈
c1,x

〉≤ α1, . . . ,
〈
Qlx,x

〉
+
〈
cl,x

〉≤ αl, x ∈RN ,
(4.9)

where Qi are N ×N symmetric matrices, ci ∈RN , 〈·,·〉 is the usual scalar product in RN ,
and αi ∈R.
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Every such problem is determined by the 3l+ 2-uple

a= (Q0, . . . ,Ql,c0, . . . ,cl,α1, . . . ,αl
)
. (4.10)

The distance between two uples, a = (Q0, . . . ,Ql,c0, . . . ,cl,α1, . . . ,αl) and b = (R0, . . . ,Rl,
d0, . . . ,dl,β1, . . . ,βl), is defined by

d(a,b)=max
0≤i≤l

{∥∥Qi−Ri
∥∥,
∥∥ci−di∥∥,

∣∣αi−βi∣∣}, (4.11)

where α0 = β0 = 0. The metric d is then compatible with the uniform convergence on
bounded sets of the functions

fi(x)= 〈Qix,x
〉

+
〈
ci,x

〉−αi. (4.12)

As a data space, we take

�= {a= (Q0, . . . ,Ql,c0, . . . ,cl,α1, . . . ,αl
)

:

�(a) �= ∅, max
i=0,...,l

〈
Qix,x

〉≥ 0∀x ∈RN
}
.

(4.13)

The requirement that the maximum of the quadratic forms be nonnegative is manda-
tory: if for some data a, there exists x̃ ∈ RN such that maxi=0,...,l〈Qix̃, x̃〉 < 0, then tx̃ ∈
�(a) for t > 0 large enough and hence, for all problems nearly a, the corresponding ob-
jective function is unbounded below on the feasible set. Therefore, even generic well-
posedness is not possible outside the above fixed class.

Theorem 4.4. Let (�,d) be the class of the quadratic mathematical programming prob-
lems described above. Then the set of well-posed problems in � has σ-porous complement in
(�,d).

Corollary 4.5. Let � be the class of the quadratic mathematical programming problems
introduced above. Then the set of ill-posed problems in � is a set of Lebesgue measure zero
in R(l+1)(N2+N)+l.

The proof of this result (in particular, the problem of singling out the set �0 of the
“pathological problems”) is technically much more complicated than the others. This
depends not only on the fact that we are dealing with a special (finite-dimensional) family
of problems, but also that we must take into account problems for which no convexity or
coercivity property holds.

The final results we will mention here are our most recent ones, still unpublished. Car-
rying on our program to deal with specific families of problems, we consider now again
the convex programming problems, but allowing this time very special perturbations.
The setting is as follows.

We are given Banach spaces X , Y , Z such that X is separable and reflexive, Y and
Z are Banach spaces with separable duals. A closed convex cone C ⊂ Y with nonempty
interior is also given. Moreover, f : X →R is a continuous convex function, g : X → Y is
continuous and C-convex, and L is a linear continuous operator with L(X) = Z. Given



A. Ioffe and R. E. Lucchetti 357

(p,a,b)∈ X∗ ×Y ×Z, the problem (P(p,a,b)) is the following:
(P(p,a,b))

minimize f (x)−〈p,x〉 subject to g(x)≤ a, Lx = b. (4.14)

The inequality constraint g(x)≤ a here refers to the ordering induced by the cone C.
Set

V(p,a,b)= inf
{
f (x)−〈p,x〉 : g(x)≤ a, Lx = b}, (4.15)

Fa,b(x)=

 f (x), if g(x)≤ a, Lx = b,

∞, otherwise.
(4.16)

Thus the initial (constrained) minimum problem (P(p,a,b)) is equivalent to the (un-
constrained) problem of minimizing Fa,b(·)−〈p,·〉. We have that

F∗a,b(p)= sup
x

(〈p,x〉−Fa,b(x)
)=−V(p,a,b), (4.17)

so that the value function V is concave in p, for every (a,b)∈ Y ×Z, and convex in (a,b),
for every p ∈ X∗. Denoting by S(p,a,b) the multifunction that to the given triple (p,a,b)
associates the solution set of (P(p,a,b)), we then have that S(p,a,b)= ∂F∗a,b(p). Moreover,
the Lagrange multiplier multifunction Λ(p,a,b) is such that Λ(p,a,b) = ∂F∗(·,·)(p)(a,b).
Thus we have the fundamental formula

S(p,a,b)×Λ(p,a,b)= ∂V(p,a,b). (4.18)

(We remind that the subdifferential of a concave/convex function h is defined as follows:

∂h(x, y)= {(p,q) : p ∈ ∂(−h)(·, y)(x), q ∈ ∂h(x,·)(y)
}

, (4.19)

and it is a maximal monotone operator.)
The set of the meaningful problems is defined by

� = {(p,a,b)∈ X∗ ×Y ×Z :
∣∣V(p,a,b)

∣∣ <∞}. (4.20)

We need some assumption in order to assure that the set of the meaningful problems is
big enough, that is, it contains an open set.

So, let C+ = {y∗ ∈ Y∗ : 〈y∗, y〉 ≥ 0, for all y ∈ C} be the dual cone to C, and set

γ(x)=max
{
f (x), sup

y∗∈C+∩B

〈
y∗,g(x)

〉}
(4.21)

(B denotes the unit ball in Y∗). Then we assume that
(G)

lim
‖x‖→∞,x∈kerL

γ(x)=∞. (4.22)
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We now provide two definitions, the first one of σ-porosity, the other one of well-
posedness, suited to this special setting. Observe that here we need to use a weaker con-
cept of σ-porosity than that previously introduced, however, the nice properties of the
σ-porous sets we described before are also enjoyed by the sets fulfilling this weaker form.
On the other hand, we use here a very strong concept of well-posedness.

Definition 4.6. Let M be a metric space, and let A ⊂M. Let x ∈M, R > 0 and denote
by σ(x,A,R) the supremum of all r > 0 such that there exists z ∈M such that B(z,r) ⊂
B(x,R) \A. The number limsupR→0(σ(x,A,R)/R) is called the porosity of A at x. A set A
is said to be porous if the porosity at x is positive for every x ∈ A. A set is called σ-porous
if it is a countable union of porous sets.

Finally, we introduce the new well-posedness idea, making sense in the context of
mathematical programming, as it involves also the Lagrange multipliers, that carry useful
information on the problem.

Definition 4.7. The problem (P(p,a,b)) is said to be very well-posed if
(1) (P(p,a,b)) is well-posed;
(2) there is a unique Lagrange multiplier for (P(p,a,b));
(3) if (pn,an,bn)→ (p,a,b) if λn ∈Λ(pn,an,bn), then λn→ λ.

In the language of multifunctions, the last condition amounts to saying that the La-
grange multiplier multifunction is upper semicontinuous, as easily seen.

We now set our first result.

Theorem 4.8. Let X be a reflexive, separable Banach space, let Y , Z be Banach spaces with
separable duals. Assume the coercivity condition (G) and that L is onto. Then the collection
of (p,a,b)∈� such that (P(p,a,b)) is not very well-posed is σ-porous in �.

In the finite-dimensional case, we can obtain another interesting result, that is, not
only the majority of the problems are very well-posed, but also the (solution, Lagrange
multiplier) multifunction enjoys, for most problems, a sort of Lipschitz stability property.
To see this, we provide some further definition. Assuming X and Y are Banach spaces and
G : X → Y is a multivalued function.

Definition 4.9. G is said to be Lipschitz stable at x ∈ X if G(x) is a singleton and if there
are a neighborhood � of x and k > 0 such that, for u ∈� and y ∈ G(u), the following
holds:

∥∥y−G(x)
∥∥≤ k‖u− x‖. (4.23)

Theorem 4.10. LetX ,Y be Euclidean spaces and let (G) hold. Then the set of the parameters
(p,a,b) ∈ X ×Y × ImL such that the problem (P(p,a,b)) is meaningful but either is not
very well-posed, or the (solution, Lagrange multiplier) multifunction S(·,·,·)×Λ(·,·,·) is
not Lipschitz stable at (p,a,b) is a set of Lebesgue measure zero in X ×Y × ImL.

These results are very nontrivial even in the finite-dimensional case.
Proofs of these results are based on three fundamental theorems of convex analy-

sis: the Asplund-Rockafellar theorem [1] about duality between rotundity and Fréchet
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differentiability, the Preiss-Zajı́ček [16] theorem on Fréchet differentiability, up to a σ-
porous set, of a convex continuous function on a space with separable dual (which we
extend to concave/convex functions), and the theorem of Mignot [15] about almost ev-
erywhere differentiability of a finite-dimensional maximal monotone operator.
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