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We define classes of mappings of monotone type with respect to a given direct sum de-
composition of the underlying Hilbert space H . The new classes are extensions of classes
of mappings of monotone type familiar in the study of partial differential equations, for
example, the class (S+) and the class of pseudomonotone mappings. We then construct
an extension of the Leray-Schauder degree for mappings involving the above classes. As
shown by (semi-abstract) examples, this extension of the degree should be useful in the
study of semilinear equations, when the linear part has an infinite-dimensional kernel.

1. Introduction

We will introduce classes of mappings of monotone type with respect to a given projec-
tion P : H → E, where E is a closed linear subspace of a real Hilbert space H . We give a
systematic classification and show how the new classes are related to each other, how they
are related to the corresponding traditional classes and how they stand perturbations.
The main result of this note is the construction of a topological degree for mappings of
the form

F =Q(I −C) +PN :G−→H , (1.1)

where G is an open bounded set in H , C is compact, N is a bounded demicontinu-
ous mapping satisfying a generalized condition (S+) with respect to P, and Q = I − P.
The degree defined in this note is a unique extension of the Leray-Schauder degree. It is
single-valued and has the usual properties of degree, such as additivity of domains and in-
variance under homotopies. The present construction extends and completes the results
obtained in [3].

Some classes of mappings we consider here have appeared earlier in the literature.
For instance, Mawhin and Willem [11, 12, 13, 14] have introduced similar monotonicity
conditions in the study of semilinear wave equations, using Galerkin’s method together
with Leray-Schauder and coincidence degrees. In the present note, we concentrate on
the definition of a degree for mappings involving functions satisfying the monotonicity
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conditions; we will not pursue for concrete applications, but will give indications on the
kind of context in which the degree theory could be effectively used.

The paper is organized as follows. In Section 2, we introduce classes of mappings of
monotone type with respect to any bounded linear operator T : H →H . We will mainly
deal with the special choice T = P, an orthogonal projection onto a closed linear sub-
space E. We will give the main properties of the new classes of mappings of monotone
type: (S+)T , T-pseudomonotone, T-quasimonotone and (M)T . We show their relations
to each other and to the traditional classes as well. Most of results are direct consequences
of the definitions, but are included here for the sake of completeness. In Section 3, we
will construct a topological degree for a class of mappings related to the composition
E⊕ E⊥ of H . The degree is a unique extension of the Leray-Schauder degree in Hilbert
space. The construction completes the extension of degree theory given in [3], (see also
[4]). Section 4 is devoted to the basic properties and to the uniqueness of the degree.
In Section 5, we consider, on a general level, the use of the topological degree to obtain
existence results. In Section 6, we will consider systems of semilinear equations, which
motivate our definition of degree. It allows indeed to limit the monotonicity hypothe-
sis to some components only of the system. We close this note by a short discussion of
semilinear equations with non-symmetric linear part. It turns out that in certain cases we
can apply the degree theory, provided the nonlinearity is of class (S+)T with respect to a
suitable operator T .

2. On the mappings of monotone type

Throughout, H will denote a real separable Hilbert space, with inner product 〈·,·〉 and
corresponding norm ‖ · ‖. We recall some basic definitions. A mapping F :H →H is

(i) bounded, if it takes any bounded set into a bounded set;
(ii) demicontinuous, if uj → u (norm convergence) implies F(uj)⇀ F(u) (weak con-

vergence);
(iii) compact, if it is continuous and the image of any bounded set is relatively com-

pact;
(iv) Leray-Schauder type, if it is of the form I −C, where C is compact;

Let T : H → H be a bounded linear operator. We will define classes of mappings of
monotone type with respect to T . A mapping F :H →H is said

(i) T-monotone, if 〈F(u)−F(v),T(u− v)〉 ≥ 0 for all u,v ∈H ;
(ii) of class (S+)T , if for any sequence (uj), uj = vj + zj , vj ∈ KerT , zj ∈ (KerT)⊥ with

uj ⇀ u and vj → v such that limsup〈F(uj),T(uj −u)〉 ≤ 0, it follows that uj → u;
(iii) T-pseudomonotone (F ∈ (PM)T), if for any sequence (uj), uj = vj + zj , vj ∈ KerT ,

zj ∈ (KerT)⊥ with uj ⇀ u and vj → v such that limsup〈F(uj),T(uj − u)〉 ≤ 0, it
follows that F(uj)⇀ F(u) and 〈F(uj),T(uj −u)〉 → 0;

(iv) T-quasimonotone (F ∈ (QM)T), if for any sequence (uj), uj = vj + zj , vj ∈ KerT ,
zj ∈ (KerT)⊥ with uj ⇀ u and vj → v such that limsup〈F(uj),T(uj − u)〉 ≤ 0, it
follows that 〈F(uj),T(uj −u)〉 → 0;

(v) of class (M)T , if for any sequence (uj), uj = vj + zj , vj ∈ KerT , zj ∈ (KerT)⊥

with uj ⇀ u and vj → v such that limsup〈F(uj), T(uj − u)〉 ≤ 0, it follows that
F(uj)⇀ F(u).
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With T = I , we denote briefly (S+)I=(S+), (PM)I=(PM), (QM)I=(QM) and (M)I=
(M). Thus, with T = I , we get the standard definitions for classes (S+), (PM), (QM) and
(M) widely used in the literature.

In this note we will mainly deal with the special case where T = P, an orthogonal
projection onto a closed subspace E ⊂H . Define Q = I −P : H → E⊥. We consider more
closely bounded demicontinuous mappings of monotone type with respect to P. For in-
stance, according to the previous definitions, F : H → H is of class (S+)P , if for any se-
quence (un) such that

un⇀ u, Qun −→Qu, limsup
n→∞

〈
F
(
un
)
,P
(
un−u

)〉≤ 0, (2.1)

it follows that uj → u.
The structural properties of the classes (S+)P , (PM)P , (QM)P and (M)P , respectively,

as well as their mutual relations follow easily from the definitions. The first result is a
direct consequence of the definitions.

Lemma 2.1. (PM)E = (QM)E∩ (M)E.

The following comments may clarify the situation for a reader familiar with the general
theory of mappings of monotone type:

(i) F is P-pseudomonotone if and only if, for any sequence (un) such that (2.1) holds,
it follows that

liminf
n→∞

〈
F
(
un
)
,P
(
un−u

)〉≥ 〈F(u),P(u− v)
〉 ∀v ∈H. (2.2)

This equivalent definition is in the line of the original definition of pseudomono-
tone mappings due to H. Brezis; see [5], for instance.

(ii) It is easy to see that F is P-quasimonotone, if and only if, for any sequence (un)
in H such that un⇀ u and Qun→Qu, we have

liminf
n→∞

〈
F
(
un
)
,P
(
un−u

)〉≥ 0. (2.3)

(iii) A direct generalization of the condition (M) used in the study of elliptic problems
would be:
F ∈ (M)′P if, for any sequence (un) such that (2.1) holds and F(un)⇀ w, it

follows that F(u)=w.

It is easy to see that, for bounded demicontinuous mappings, (M)′P = (M)P .
Our main emphasis lies on the classes (S+)P , (PM)P and (QM)P , which have useful

properties as will be seen from the following lemmas. Most proofs are omitted.

Lemma 2.2. Let all the mappings considered be bounded and demicontinuous. Then

(1) (S+)P ⊂ (PM)P ⊂ (QM)P .
(2) (S+)⊂ (S+)P , (PM)⊂ (PM)P , (QM)⊂ (QM)P .
(3) (S+)= (S+)P ⇔ (PM)= (PM)P ⇔ (QM)= (QM)P ⇔ dimE⊥ <∞.
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Proof. The first two items follow directly from the definitions. If dimE⊥ <∞, then Q =
I − P : H → E⊥ is compact and condition un ⇀ u is equivalent to Pun ⇀ Pu. Hence it
is clear that the class (S+)P coincide with (S+) with similar conclusion for other classes.
On the other hand, the reverse follows from the following simple observation. Assume
dimE⊥ =∞ and consider the mapping F = P−Q. It is easy to see that P−Q ∈ (S+)P ⊂
(PM)P ⊂ (QM)P , but P−Q /∈ (QM). �

In view of applications, it is useful to notice that any compact mapping is quasimono-
tone and thus also P-quasimonotone. An important property of the classes (S+)P , (PM)P
and (QM)P is that they have conical structure in the following sense.

Lemma 2.3. Let F : H → H and T : H → H be given bounded demicontinuous mappings.
Then we have:

(1) If F,T ∈ (S+)P , then F +T ∈ (S+)P and αF ∈ (S+)P for all α > 0.
(2) If F,T ∈ (PM)P , then F +T ∈ (PM)P and αF ∈ (PM)P for all α≥ 0.
(3) If F,T ∈ (QM)P , then F +T ∈ (QM)P and αF ∈ (QM)P for all α≥ 0.

The conical structure of the classes (S+)P , (PM)P and (QM)P is one of the features that
make the classes useful and “nice” to deal with. For the class (M)P the sum of two maps
is not necessarily in the same class as we will see.

Another important fact is that the class (S+)P is stable under quasimonotone pertur-
bations and moreover, the class (QM)P is, in a sense, a maximal set of such perturbations.
Indeed, we have the following lemma.

Lemma 2.4. Let T :H →H be a given bounded demicontinuous mapping. Then T ∈ (QM)P
if and only if F +T ∈ (S+)P for all F ∈ (S+)P .

Proof. If T ∈ (QM)P and F ∈ (S+)P , it is not hard to see that F +T ∈ (S+)P . On the other
hand, assume F +T ∈ (S+)P for all F ∈ (S+)P . Clearly P ∈ (S+)P and thus T + εP ∈ (S+)P
for all ε > 0. A contradiction argument shows that necessarily T ∈ (QM)P . �

In view of the degree theory, the conical structure of classes will play a crucial role.
Indeed, it is needed to ensure that the family of admissible homotopies will be extensive
enough.

The main default of class (M)P is that the sum of two mappings F1,F2 ∈ (M)P does
not necessarily remain in the same class. Similarly, if F1 ∈ (M)P and F2 ∈ (S+)P , then it is
possible that F1 +F2 /∈ (S+)P . Thus the class (S+)P does not in general stand perturbation
satisfying the condition (M)P . These facts can be seen from the next example.

Example 2.5. LetH be a real separable infinite-dimensional Hilbert, E ⊂H a closed linear
subspace such that dimE⊥ = dimE =∞. Let P :H → E be the orthogonal projection and
denote Q = I −P :H → E⊥. Take F1 =−P and

F2(u)= Pu

‖u‖+ 1
∀u∈H. (2.4)

The map F1 = −P is weakly continuous and hence F1 ∈ (M)P . The map F2 is bounded
and continuous. We will show that F2 ∈ (S+)P . Assume that Pun⇀ Pu, Qun → Qu and
limsup〈F2(un),P(un−u)〉 ≤ 0. Then limsup〈Pun,P(un−u)〉 ≤ 0 implying Pun→ Pu and
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consequently F2 ∈ (S+)P and also F2 ∈ (M)P . However, the sum F1 +F2 /∈ (M)P and thus
F1 +F2 /∈ (S+)P . To see this, let {en} be an orthonormal basis of E and un = e1 + en. Then,
un⇀ e1 := u and

(
F1 +F2

)(
un)=−(e1 + en

)
+

e1 + en∥∥e1 + en
∥∥+ 1

=−
√

2
1 +
√

2

(
e1 + en

)
. (2.5)

Thus (F1 +F2)(un)⇀−(
√

2/(1 +
√

2))e1 :=w and

limsup
〈(
F1 +F2

)(
un
)
,un−u

〉= lim

(
−

√
2

1 +
√

2

〈
e1 + en,en

〉)=−
√

2
1 +
√

2
< 0. (2.6)

But, (F1 + F2)(u) = (F1 + F2)(e1) = −e1/2 �= w = −(
√

2/(1 +
√

2))e1 and, consequently,
F1 +F2 /∈ (M)P .

3. Construction of the degree

Let H be a real separable Hilbert space, E a closed subspace of H and P :H → E the corre-
sponding orthogonal projection. As before, we denote Q = I −P : H → E⊥. We consider
a family of mappings

�G =
{
F =Q(I −C) +PN :G−→H

}
, (3.1)

where G is an open bounded set in H , C is compact and N is a bounded demicontinuous
mapping of class (S+)P . Let

�= {F ∈�G |G is open and bounded
}
. (3.2)

Since any Leray-Schauder type map is of class (S+) ⊂ (S+)P , we have I −C = Q(I −C) +
P(I −C) ∈�, that is, � contains the Leray-Schauder type maps. We will construct the
degree theory for the class �, which will be a unique extension of the classical Leray-
Schauder degree in Hilbert space. Note that in case E is finite dimensional, the projection
P is compact, and we can write

F =Q(I −C) +PN = I − (P +QC−PN), (3.3)

which is of the Leray-Schauder type. Hence, � reduces to the class of Leray-Schauder
type maps whenever dimE <∞. If dimE⊥ <∞, then Q is compact and any F ∈� can be
written in the form

F =Q(I −C) +PN =N +Q(I −C−N), (3.4)

which is of class (S+) by Lemmas 2.2 and 2.4 (recall that compact maps are quasimono-
tone). Hence � consists of (S+)-type maps, only, whenever dimE⊥ <∞. Conversely, if F :
G→H is a bounded, demicontinuous map of class (S+)P and dimE⊥ <∞, then (S+)P =
(S+), Q is compact and

F =Q(I −Q(I −F)
)

+PF ∈�. (3.5)

The degree for mappings of class (S+) can be found in [7] in a more general setting.
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Hereafter, we are mainly interested in the case where both E and E⊥ are infinite di-
mensional. The construction of the new degree can be done by using the Galerkin ap-
proximation with respect to the space E (cf. [3]). Note that the Q-component, which
is of the Leray-Schauder type, needs no approximation. However, we will give here an-
other, shorter, construction which is based on linear compact mappings. The method is
a simplified version of the so called “elliptic super-regularization” used in a more general
context elsewhere (see [4]).

Following that approach, let ψ : E→ E be some fixed compact linear selfadjoint injec-
tion. To any F =Q(I −C) +PN ∈�G, we associate a family of mappings defined by

Fλ = I −QC+ λψ2PN , where λ > 0. (3.6)

Clearly Fλ : G→ H is a Leray-Schauder type map. We denote by dLS(Fλ,G,0) the corre-
sponding Leray-Schauder degree (which is well-defined only if 0 /∈ Fλ(∂G)). We start with
the following basic result.

Lemma 3.1. Assume that F =Q(I −C) +PN ∈�G, G⊂H being open and bounded, and
that 0 /∈ F(∂G). Then, there exists λ0 ≥ 0 such that 0 /∈ Fλ(∂G), and dLS(Fλ,G,0) is constant
in λ, for all λ > λ0.

Proof. We will argue by contradiction. Assume that the first assertion is not valid. Then
we can find sequences (λn), λn →∞, (un)⊂ ∂G such that Fλn(un)= 0. At least for subse-
quences, we can write un⇀ u, N(un)⇀ w and C(un)→ z. The equation Fλn(un) = 0 is
equivalent to

Qun−QC
(
un
)= 0

Pun + λnψ2PN
(
un
)= 0

(3.7)

and thus Qun→Qu=Qz and ψ2PN(un)→ 0= ψ2Pw implying Pw = 0. Hence,

limsup
〈
N
(
un
)
,P
(
un−u

)〉= limsup
〈
PN

(
un
)
,Pun−Pu

〉
= limsup

〈
PN

(
un
)
,−λnψ2PN

(
un
)〉

= limsup
{
− λn

∥∥ψPN(un)∥∥2
}
≤ 0,

(3.8)

which implies un→u∈∂G, since N∈(S+)P . Consequently, we have F(u)=Q(u−C(u))+
PN(u) = 0 giving a contradiction. The second assertion follows from the homotopy in-
variance property of dLS. Indeed, let λ2 > λ1 > λ0. Then Fλ,λ1 ≤ λ ≤ λ2, defines a Leray-
Schauder type homotopy such that Fλ(u) �= 0 for all λ1 ≤ λ≤ λ2 and u∈ ∂G. Hence

dLS
(
Fλ1 ,G,0

)= dLS
(
Fλ2 ,G,0

)
(3.9)

and since λ1 > λ0 and λ2 > λ0 were arbitrary, the second assertion is proved. �

It is relevant to define a new integer-valued function d by setting

d(F,G,0)= lim
λ→∞

dLS
(
Fλ,G,0

)
, if 0 /∈ F(∂G),

d(F,G,h)= d(F −h,G,0) for any h /∈ F(∂G).
(3.10)
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We will show in our next section that the integer-valued function d satisfies the conditions
of the classical topological degree.

4. Properties and uniqueness of the degree

Throughout the next steps we assume that F ∈�G, where G⊂H is an open bounded set
and h /∈ F(∂G). We will verify four conditions (a) to (d) – existence of solutions, additivity
of domains, normalization, and invariance under homotopies. In fact, it is easy to see that
(a) is a consequence of (b). The main argument used to establish the properties of the
degree will be the following: for any closed set A ⊂ G with h /∈ F(A) there exists λ0 > 0
such that

0 /∈ (F −h)λ(A) ∀λ > λ0. (4.1)

The proof of (4.1) is an obvious variant of the first part of the proof of Lemma 3.1; it
suffices to replace the boundary ∂G by the closed set A.

(a) If d(F,G,h) �= 0, then there exists a solution for the equation F(u)= h in G.
(b) (Additivity of domains) LetG1 andG2 be a pair of disjoint open subsets ofG such

that h /∈ F(G\(G1∪G2)). Then,

d(F,G,h)= d
(
F,G1,h

)
+ d
(
F,G2,h

)
. (4.2)

(c) (Normalizing map) The normalizing map is the identity I = Q + P. If h ∈ G,
where G⊂H is an open bounded set, we have d(I ,G,h)= +1.

The above properties of the degree d are easily deduced from the correspond-
ing properties of the Leray-Schauder degree, using (4.1). We give more details for
the property of invariance under a homotopy.

(d) (Invariance under homotopy) We say that a mapping N : [0,1]× G → H is a
bounded homotopy of class (S+)P , if it is bounded, demicontinuous, and the con-
ditions

un⇀ u, Qun −→Qu, tn −→ t, limsup
n→∞

〈
N
(
tn,un

)
,P
(
un−u

)〉≤ 0 (4.3)

imply un→ u and N(tn,un)⇀N(t,u). Let C : [0,1]×G→H be compact and let

F(t,u)=Q(u−C(t,u)
)

+PN(t,u), 0≤ t ≤ 1, u∈G, (4.4)

where N is a bounded homotopy of class (S+)P . The family of admissible homo-
topies is

�G =
{
F : [0,1]×G−→H | F is given by (4.4)

}
. (4.5)

Denote

�= {F ∈�G |G is open and bounded
}
. (4.6)



588 An extension of the topological degree in Hilbert space

Let {ht : 0 ≤ t ≤ 1} be a continuous curve in H such that ht /∈ F(t,∂G) for all t ∈ [0,1],
where F ∈�G. Then

d
(
F(t,·),G,ht

)
is constant in t on [0,1]. (4.7)

We will prove (4.7). Without loss of generality we can assume that ht ≡ 0 by absorbing
ht into F(t,x). We omit the proof of the following lemma, which is a straightforward
generalization of the proof of Lemma 3.1.

Lemma 4.1. Assume that F =Q(I −C) +PN ∈�G, G⊂H is open and bounded and 0 /∈
F(t,∂G) for all 0 ≤ t ≤ 1. Then there exists λ0 > 0 such that 0 /∈ Fλ(t,∂G) for all 0 ≤ t ≤ 1
and λ > λ0.

Clearly, for a fixed λ > λ0, Fλ(t,·), 0≤ t ≤ 1, defines a Leray-Schauder type homotopy
(recall that Fλ(t,u)= u−QC(t,u) + λψ2PN(t,u)). Hence, according to Lemma 3.1,

d
(
F(t,·),G,0

)= dLS
(
Fλ(t,·),G,0

)
is constant ∀0≤ t ≤ 1, λ > λ0, (4.8)

which proves (4.7). In view of applications it is essential to notice the following

Lemma 4.2. Let F,T ∈�G, where G is an open bounded set. Then the affine homotopy

F(t,·)= (1− t)F + tT , 0≤ t ≤ 1, (4.9)

is admissible, that is, it belongs to �G.

The uniqueness of the degree d will be a consequence of the uniqueness of the Leray-
Schauder degree.

Theorem 4.3. There exists one and only one degree function for the class � satisfying prop-
erties (a), (b) and (d), which is invariant under the homotopy class �.

Proof. The existence of the degree is already established. Let d be given by (3.10). Assume
that d1 is another degree function satisfying conditions (a)–(d) above. Let G⊂ X be any
open bounded set and F = Q(I −C) + PN any mapping in �G. It is sufficient to prove
that

d1(F,G,0)= d(F,G,0), (4.10)

assuming 0 /∈ F(∂G). By definition there exists λ0 > 0 such that

d(F,G,0)= dLS
(
Fλ,G,0

) ∀λ > λ0, (4.11)

where Fλ = I −QC + λψ2PN and ψ : E→ E is a (arbitrary but fixed) linear self-adjoint
compact injection.

We know that the Leray-Schauder degree is unique and any Leray-Schauder type map
I −C is of class (S+)P . It is easy to see that defining

d̂LS(I −C,D, y)= d1(I −C,D, y) (4.12)
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for any y ∈H\(I −C)(∂D), where D ⊂H is an open bounded set, gives a degree function
for the Leray-Schauder type mappings in H . By the uniqueness of the Leray-Schauder
degree d̂LS = dLS and thus

dLS(I −C,D, y)= d1(I −C,D, y). (4.13)

In particular,

dLS
(
Fλ,G,0

)= d1
(
Fλ,G,0

) ∀λ > λ0. (4.14)

The proof will be completed by showing that there exists λ1 ≥ λ0 such that

(1− t)F(u) + tFλ(u) �= 0 ∀u∈ ∂G, 0≤ t ≤ 1, λ≥ λ1 (4.15)

implying

d1
(
Fλ,G,0

)= d1(F,G,0) ∀λ≥ λ1. (4.16)

This is done by the same arguments as in Lemma 3.1 �

5. On the continuation method

The standard application of the topological degree theory in order to obtain existence
results is through the use of the homotopy invariance property. Hence a typical, and in
fact the most useful, form of the continuation method based on affine homotopy can be
stated as follows.

Theorem 5.1. Let F,T ∈ �G, where G is an open bounded set. Assume that (1− t)h /∈
[(1− t)F + tT](∂G) for all 0≤ t ≤ 1. Then,

d(F,G,h)= d(T ,G,0). (5.1)

Moreover, if d(T ,G,0) �= 0, the equation F(u)= h admits at least one solution u∈G.

The underlying idea is to replace the equation F(u) = h which is “hard to solve” by
some equation T(u)= 0 which is “easy to solve”. Note that in practice F and T are some-
how connected, the easy problem T(u) = 0 being a simplification (e.g. linearization) of
the hard one.

To illuminate the general argumentation, we consider the semilinear equation

Lu−N(u)= 0, u∈D(L), (5.2)

where L :D(L)⊂H →H is a linear, densely defined, closed operator with ImL= (KerL)⊥

andN :H →H a nonlinearity. The inverseK : ImL→ ImL of the restriction of L to ImL∩
D(L) is assumed to be compact. It is easy to see that (5.2) can be written equivalently as

Q(u−KQN(u)) +PN(u)= 0, u∈H , (5.3)

where P :H → KerL and Q = I −P :H → ImL are orthogonal projections. Above we have
used the fact that KQ− P is the right inverse of L− P. In case N ∈ (S+)P the mapping
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F =Q(I −KQN) +PN ∈� and the degree theoretic approach is possible. As an example,
we present the following generalization of a continuation theorem of Mawhin [9, 10].

Theorem 5.2. Let L,N and G be as indicated above. Assume that

(i) 0 �∈ (L− tN)(∂G∩D(L)) for all t ∈ (0,1],
(ii) PNu �= 0, for all u∈ KerL∩ ∂G.

Then,

d(F,G,0)= d
(
PN|KerL,G∩KerL,0

)
. (5.4)

Notice that, since N is of class (S+)P , PN|KerL : KerL→ KerL is of class (S+); hence,
d(PN|KerL,G∩KerL,0) is well-defined, although KerL can be infinite dimensional.

Proof. Now E = KerL. Let ψ : E→ E be a fixed linear self-adjoint compact injection. By
definition,

d(F,G,0)= lim
λ→∞

dLS
(
I −KQN + λψ2PN ,G,0

)
. (5.5)

Arguing as in Lemma 3.1, we can show that there exists λ0 > 0 such that, for λ ≥ λ0, t ∈
[0,1], u∈ ∂G,

u− tKQNu+ λψ2PN(u) �= 0. (5.6)

Consequently, by Theorem 5.1, limλ→∞dLS(I − tKQN + λψ2PN ,G,0) is independent of
t ∈ [0,1]. Therefore, by Leray’s product theorem,

d(F,G,0)= lim
λ→∞

dLS
(
I + λψ2PN ,G,0

)
= lim

λ→∞
dLS
(
I|KerL + λψ2PN|KerL,G∩KerL,0

)
= d

(
PN|KerL,G∩KerL,0

)
.

(5.7)

�

The next lemma is an immediate generalization of a classical result about linear op-
erators. Let L be as above. Assume that B : H →H is linear bounded operator such that
B ∈ (S+)P and L−B is injective. Then T =Q(I −KQB) +PB ∈� is linear and injective.

Lemma 5.3. Let B : H →H be a linear bounded operator such that B ∈ (S+)P and L−B is
injective. Then for any open bounded set G,

d(T ,G, y) �= 0 for any y ∈ T(G). (5.8)

Proof. For y ∈ T(G) we have y = Tv for some unique v ∈ H . To prove (5.8) we notice
first, by the injectivity of T and the additivity of degree, that

d(T ,G, y)= d
(
T ,B(0,R), y

)
for any R > ‖v‖. (5.9)

It is clear that Tu �= ty for all ‖u‖ = R and 0≤ t ≤ 1. Hence d(T ,B(0,R), ty) is constant in
t ∈ [0,1] and consequently

d
(
T ,B(0,R), y

)= d
(
T ,B(0,R),0

)
. (5.10)
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Since B is linear, the mapping T is linear and thus odd. The same is true for the approxi-
mation Tλ = I −QKQB+ λψ2PB used in the construction of the degree. By the standard
property of the Leray-Schauder degree we then obtain

d
(
T ,B(0,R),0

)= lim
λ→∞

dLS
(
Tλ,B(0,R),0

)
, an odd integer, (5.11)

completing the proof. �

The next lemma may be helpful for the verification of one of the conditions about the
linear map B in Lemma 5.3.

Lemma 5.4. Let B : H → H be a linear bounded operator. Then B ∈ (S+)P if and only if
PB|KerL : KerL→ KerL is of class (S+).

Proof. Assume that PB|KerL : KerL→ KerL is of class (S+). Let un⇀ u, Qun→Qu and

limsup
〈
Bun,P

(
un−u

)〉≤ 0. (5.12)

Since BQun→ BQu we have

limsup
〈
PBPun,Pun−Pu

〉≤ 0 (5.13)

implying Pun → Pu, which completes the first part of the proof. On the other hand, if
B ∈ (S+)P , then clearly PB|KerL ∈ (S+). �

6. Semilinear systems of equations

In this section we will provide abstract examples, which will show that the degree theory
constructed in this paper has practical value in view of applications. The aim is to consider
the nature of mappings which are of class (S+)P , but not necessarily of class (S+). For the
general treatment of semilinear problems we refer to [6, 8].

Let V be a real separable Hilbert space and denote H =Vn with n≥ 2. For k = 1,2, . . . ,
n, let Lk : D(Lk) ⊂ V → V be a linear, densely defined, closed operator with ImLk =
(KerLk)⊥. The inverse Kk : ImLk → ImLk of the restriction of each Lk to ImLk ∩D(Lk)
is assumed to be a compact linear operator. We define the diagonal operator L : D(L) ⊂
Vn→Vn by setting

Lu= (L1u1,L2u2, . . . ,Lnun
)
, u= (u1,u2, . . . ,un

)∈D(L), (6.1)

where D(L) = D(L1)×D(L2)× ···×D(Ln). The inverse K = L−1 : ImL→ ImL is com-
pact, with Ku= (K1u1, . . . ,Knun) for u= (u1,u2, . . . ,un)∈ ImL. We denote by P andQ the
orthogonal projections onto KerL and ImL, respectively. Thus, with obvious notations,
we can write

Pu= (P1u1,P2u2, . . . ,Pnun
)
, Qu= (Q1u1,Q2u2, . . . ,Qnun

)
(6.2)
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for any u = (u1,u2, . . . ,un) ∈ Vn. Let N : Vn → Vn be a (possibly nonlinear) bounded
demicontinuous map. Then the equation

Lu−N(u)= h, u∈D(L), (6.3)

can be written equivalently as

Q(u−KQN(u)) +PN(u)= ĥ, u∈Vn, (6.4)

where ĥ= (KQ−P)h. If N is bounded, demicontinuous and of class (S+)P , we can apply
the degree theory constructed in Section 3.

Assume that dimKerLk =∞ for k = 1,2, . . . , p for some p ∈ {1, . . . ,n}, and that dim
KerLk <∞ for k = p+ 1, . . . ,n. For a mapping N :Vn→Vn, where

N(u)= (N1(u),N2(u), . . . ,Nn(u)
)
, (6.5)

we use the notation u= (v,z)∈V p×Vn−p and

�p(v,z)= (N1(v,z),N2(v,z), . . . ,Np(v,z)
)
. (6.6)

The following lemma provides conditions under which N is of class (S+)P giving the
possibility to use the degree defined in Section 3 to solve (6.3).

Lemma 6.1. let N :Vn→Vn be bounded and demicontinuous. Assume that

(i) for each z ∈Vn−p the mapping �p(·,z) :V p →V p is of class (S+).
(ii) �p(v,·) :Vn−p →V p is continuous, uniformly for v in any bounded set B ⊂V p.

Then N ∈ (S+)P .

Proof. Let (u( j))⊂Vn be a sequence such that

u( j) ⇀ u, Qu( j) −→Qu, limsup
j→∞

〈
N
(
u( j)),P(u( j)−u)〉≤ 0. (6.7)

Denote u( j) = (v( j),z( j)), where v( j) = (u
( j)
1 ,u

( j)
2 , . . . ,u

( j)
p ) and z( j) = (u

( j)
p+1,u

( j)
p+2, . . . ,u

( j)
n ).

Similarly, let u = (v,z) = (u1,u2, . . . ,un). By our assumptions on L, we have z( j) → z in
Vn−p. Since N is bounded, we thus have

lim
j→∞

〈
Nk
(
v( j),z( j)),Pk(u( j)

k −uk
)〉
= 0 ∀k = p+ 1, p+ 2, . . . ,n. (6.8)

Consequently,

limsup
j→∞

〈
N
(
v( j),z( j)),P(u( j)−u)〉= limsup

j→∞

〈
�p
(
v( j),z( j)),v( j)− v〉. (6.9)

Since by (ii)

limsup
j→∞

〈
�p
(
v( j),z( j)),v( j)− v〉= limsup

j→∞

〈
�p
(
v( j),z

)
,v( j)− v〉, (6.10)
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we finally get

limsup
j→∞

〈
�p
(
v( j),z

)
,v( j)− v〉= limsup

j→∞

〈
�
(
v( j),z( j)),P(u( j)−u)〉≤ 0. (6.11)

By assumption (i), we obtain v( j) → v in V p and hence u( j) → u. �

The main point in the previous lemma is that there is no monotonicity-type hypoth-
esis on the components Np+1, . . . ,Nn. Recall also that �p(·,z) :V p →V p is of class (S+) if
it is strongly monotone. Therefore, Lemma 6.1 can be applied for instance to the system

L1v−N1,1(v)−N1,2(z)= h1,

L2z−N2(v,z)= h2,
(6.12)

with dimKerL1 =∞ and dimKerL2 <∞. Assuming that N1,1, N1,2 and N2 are bounded
and demicontinuous, that N1,1 is strongly monotone and N1,2 continuous, it is easy to
show that N : V 2 → V 2 : u = (v,z) �→ (N1,1(v) +N1,2(z),N2(v,z)) satisfies the conditions
of Lemma 6.1. Hence, the mapping N : V 2 → V 2 is of class (S+)P . It is not hard to see
however that N is not necessarily of class (S+), due to the liberality of the hypotheses
imposed on N2.

In the next lemma, we use slightly different hypotheses.

Lemma 6.2. Let N : Vn → Vn be bounded and demicontinuous. Let �p : Vn → V p be de-
fined as before. Assume that �p(v,·) :Vn−p →V p is continuous for all v ∈V p, and that, for
each z′ ∈Vn−p, there exist δ = δ(z′) > 0 and a constant c = c(z′) > 0 such that

〈
�p(v,z)−�p(v′,z),v− v′〉≥ c∥∥v− v′∥∥2 ∀v,v′ ∈V p, z ∈ B(z′,δ). (6.13)

Then, N ∈ (S+)P .

Proof. Let (u( j))⊂Vn be a sequence such that

u( j) ⇀ u, Qu( j) −→Qu, limsup
j→∞

〈
N
(
u( j)),P(u( j)−u)〉≤ 0. (6.14)

As in the proof of Lemma 6.1 (and with same notations), we get z( j) → z in Vn−p and

limsup
j→∞

〈
�p
(
v( j),z( j)),v( j)− v〉= limsup

j→∞

〈
N
(
v( j),z( j)),P(u( j)−u)〉≤ 0. (6.15)

Hence,

limsup
j→∞

〈
�p
(
v( j),z( j))−�p

(
v,z( j)),v( j)− v〉≤ 0. (6.16)

By condition (6.13), v( j) → v in V p and consequently u( j) → u. �
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The previous lemma suggests different types of application.

Example 6.3. With V = L2(Ω), Ω⊂ RN , let n= 2, p = 1. Consider a system (6.3) in V 2.
LetN :V 2 →V 2 be a Nemytski operator generated by a function g : Ω×R2 →R2, satisfy-
ing the usual Carathéodory conditions, together with a linear growth condition. Assume
that g(x,s, t)= (g1(x,s, t),g2(x,s, t)), where g1 is of the form

g1(x,s, t)= q(x, t)r(x,s) ∀(x,s, t)∈Ω×R2, (6.17)

and that there exist constants b > a > 0 and c > 0 such that

(i) 0 < a≤ q(x, t)≤ b for a. a. x ∈Ω and all t ∈R,
(ii) (r(x,s)− r(x,s′))(s− s′)≥ c|s− s′|2 for a. a. x ∈Ω and all s,s′ ∈R.

No further restrictions are imposed on g2. Then, it is easy to see that the conditions of
Lemma 6.2 are satisfied and N ∈ (S+)P .

Example 6.4. As before, assume that dimKerLk = ∞ for k = 1,2, . . . , p for some p ∈
{1, . . . ,n}, and that dimKerLk <∞ for k = p+ 1, . . . ,n. Consider (6.3) with N being now a
linear map, denoted by �, of the following type. Let A = (alk) be a real n× n-matrix
and � : Vn → Vn the constant multiplication operator induced by A, that is, for any
u= (u1,u2, . . . ,un)∈Vn

�u=w = (w1,w2, . . . ,wn
)
, (6.18)

with wl =
∑n

k=1 alkuk, l = 1,2, . . . ,n. Under the mild positivity condition, that the matrix
(alk)

p
l,k=1 is positive definite, it is easy to show, using Lemma 6.2, that � ∈ (S+)P (cf. [1]

for a different treatment). Note that for p = 1 we assume only a11 > 0.

7. Semilinear problems with a non-symmetric linear part

So far we have considered only the class (S+)T , where T = P. We close this note by an
observation, which shows that also different choices of T may be relevant. Let T = �P,
where � : H → H is a linear homeomorphism and P an orthogonal projection. Then
KerT = KerP andN ∈ (S+)�P if and only if �∗N ∈ (S+)P . A similar observation holds for
�P-pseudomonotone and �P-quasimonotone mappings. Such an operator T has been
used in [2] to obtain existence results for semilinear equations with a non-symmetric
linear part.

Let L : D(L) ⊂ H → H be a densely defined closed linear operator with closed range
ImL. Then the adjoint L∗ :D(L∗)⊂H →H of L inherits these properties, that is, also L∗

is a densely defined closed linear operator having closed range. Since

ImL∗ = (KerL)⊥, ImL= (KerL∗
)⊥

, (7.1)

the space H has the orthogonal direct sum decompositions

H = KerL⊕ ImL∗ = KerL∗ ⊕ ImL. (7.2)

Denote the corresponding orthogonal projections by P :H→KerL, P̃=I−P :H→ImL∗,
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Q :H → KerL∗ and Q̃ = I −Q :H → ImL. Let L0 stand for the restriction of L to ImL∗ ∩
D(L). Hence L0 is injective and by the assumptions, its inverse K = L−1

0 : ImL→ ImL∗ ∩
D(L) is bounded. Let N : H →H be a given mapping and h∈H . We consider the semi-
linear equation

Lu−N(u)= h, u∈D(L), (7.3)

which can be reformulated as follows (see [2]).

Lemma 7.1. With L, P, P̃, Q, Q̃ as above, let � : H →H be a linear homeomorphism such
that

�(KerL)= KerL∗. (7.4)

Then u∈D(L) satisfies the equation

Lu−N(u)= h (7.5)

if and only if

P̃
(
u−KQ̃N(u)

)
+P�∗N(u)= ĥ, (7.6)

where ĥ= KQ̃h−P�∗h.

Define F :H →H by

F(u)= P̃(u−KQ̃N(u)
)

+P�∗N(u), u∈H. (7.7)

Assume that K is compact and N : H → H is bounded, demicontinuous and of class
(S+)�P . Then �∗N ∈ (S+)P and F ∈�, that is, the degree

d
(
F,G, ĥ

)= d
(
P̃
(
I −KQ̃N)+P�∗N ,G,KQ̃h−P�∗h

)
(7.8)

is well-defined for any open bounded set G ⊂ H such that h /∈ (L−N)(∂G∩D(L)).
Hence the degree theory constructed in this note is applicable to solve (7.3) with a non-
symmetric linear operator L. In view of applications it is useful to recognize the case
where F = I , the normalizing map for which the degree is +1, when ĥ∈G.

Lemma 7.2. Let KerL∗ = �(KerL) and N0 = Q(�∗)−1. Then N0 is bounded, continuous
and of class (S+)�P . Moreover,

F = P̃(I −KQ̃N0
)

+P�∗N0 = I. (7.9)

Proof. To prove the first assertion assume that

un⇀ u, P̃un −→ P̃u, limsup
n→∞

〈
N0
(
un
)
,�P

(
un−u

)〉≤ 0. (7.10)
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Then,

limsup
〈
N0
(
un
)
,�P

(
un−u

)〉= limsup
〈
Q
(
�∗
)−1(

Pun
)
,�
(
Pun−Pu

)〉
= limsup

〈(
�∗
)−1(

Pun
)
,�
(
Pun−Pu

)〉
= limsup

∥∥Pun−Pu∥∥2 ≤ 0

(7.11)

implying un → u and hence N0 is bounded, continuous and of class (S+)�P . A direct cal-
culation gives

F = P̃(I −KQ̃Q(�∗)−1)
+P�∗Q

(
�∗
)−1 = P̃ +P�∗Q

(
�∗
)−1

, (7.12)

where

P�∗Q
(
�∗
)−1 = P�∗

(
I − Q̃)(�∗)−1 = P−P�∗Q̃

(
�∗
)−1 = P (7.13)

due to the fact that �∗(ImL) = ImL∗ and thus P�∗Q̃(�∗)−1 = 0. Consequently, F = I
and the proof is complete. �

For further applications to problems involving non-symmetric linear part, we refer
to [2].
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