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Let A0 be a closed, minimal symmetric operator from a Hilbert space H into H with do-
main not dense in H. Let Â also be a correct selfadjoint extension of Ao. The purpose of
this paper is (1) to characterize, with the help of Â, all the correct selfadjoint extensions
B of A0 with domain equal to D(Â), (2) to give the solution of their corresponding prob-
lems, (3) to find sufficient conditions for B to be positive (definite) when Â is positive
(definite).

1. Introduction

Minimal symmetric operators arise naturally in boundary value problems where they
represent differential operators with all their defects, that is, their range is not the whole
space and also their domain cannot be dense in the whole space. For example, the op-
erator A0 defined by the problem A0y = iy′, y(0) = y(1) = 0 is a minimal symmetric
nondensely defined operator. The problem of finding all correct selfadjoint extensions of
a minimal symmetric operator is not either easy or always possible. The whole problem
is facilitated when the domain of definition of the minimal symmetric operator is dense.
Correct extensions of densely defined minimal not necessarily symmetric operators in
Hilbert and Banach spaces have been investigated by Vishik [17], Dezin [3], Otelbaev et
al. [10], Oı̆narov and Parasidi [14], and many others. Correct selfadjoint extensions of a
densely defined minimal symmetric operator A0 have been studied by a number of au-
thors as J. Von Neumann [13], Kočubeı̆ [7], Mikhaı̆lets [12], and V. I. Gorbachuk and M.
L. Gorbachuk [5]. They described the extensions as restrictions of some operators, usually
of the adjoint operator A∗0 of A0. In this paper, we attack the above problem, developing
a method which does not depend on maximal operators, but only on the existence of
some correct selfadjoint extension of A0. The essential ingredient in our approach is the
extension of the main idea in [14]. More precisely, we show (Theorem 3.2) that every cor-
rect selfadjoint extension of a minimal operator is uniquely determined by a vector and a
Hermitian matrix (see the comments preceding Theorem 3.2).

In [1, 2, 9, 8] extensions of nondensely defined symmetric operators by embeddingH
in a space X in which the operator A0 is dense were studied. The class of extensions they
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consider is much wider than ours, but they do not consider correct selfadjoint extensions.
Our method does not require such an embedding and applies equally well to positive
correct selfadjoint extensions. Positive selfadjoint extensions of densely defined positive
symmetric operators have been considered by Friedrichs [4].

As a demonstration of the theory developed in this paper, we give here all the cor-
rect selfadjoint extensions of the minimal operator A0 in the example mentioned in
the beginning of the introduction. These are the operators B : L2(0,1)→ L2(0,1), Bu =
iu′ − ct ∫ 1

0 tu(t)dt with D(B) = {u ∈ H(0,1) : u(0) = −u(1)}, where c is any real num-
ber.

The paper is organized as follows. In Section 2, we recall some basic terminology and
notation about operators. In Section 3, we prove the main general results. Finally, in
Section 4, we discuss several examples of integrodifferential equations which show the
usefulness of our results.

2. Terminology and notation

By H, we will always denote a complex Hilbert space with inner product (·,·). The op-
erators (linear) from H into H we refer to are not everywhere defined on H. We write
D(A) and R(A) for the domain and the range of the operator A, respectively. Two oper-
ators A1 and A2 are said to be equal if D(A1)=D(A2) and A1x = A2x, for all x ∈D(A1).
A2 is said to be an extension of A1, or A1 is a restriction of A2, in symbol A1 ⊂ A2 if
D(A2)⊇ D(A1) and A1x = A2x, for all x ∈ D(A1). We notice that if A⊂ B and A−1, B−1

exist, then A−1 ⊂ B−1. An operator A0 :H→H is called closed if for every sequence xn in
D(A) converging to x0 with Axn → f0, it follows that x0 ∈ D(A) and Ax0 = f0. A closed
operator A0 :H→H is called minimal if R(A0) �=H and the inverse A−1

0 exists on R(A0)
and is continuous. A is called maximal if R(A) =H and kerA �= {0}. An operator Â is
called correct if R(Â)=H and the inverse Â−1 exists and is continuous. An operator Â is
called a correct extension (resp., restriction) of the minimal (resp., maximal) operator A0

(resp., A) if it is a correct operator and A0 ⊂ Â (resp., Â⊂A).
Let A be an operator with domain D(A) dense inH. The adjoint operator A∗ :H→H

of A with domain D(A∗) is defined by the equation (Ax, y) = (x,A∗y) for every x ∈
D(A) and every y ∈ D(A∗). The domain D(A∗) of A∗ consists of all y ∈H for which
the functional x �→ (Ax, y) is continuous on D(A). An operator A is called selfadjoint if
A=A∗ and symmetric if (Ax, y)= (x,Ay) for all x, y ∈D(A). We note that, in the case in
which D(A)=H, A is symmetric if A⊂ A∗. A symmetric operator A is said to be positive
if (Ax,x)≥ 0 for every x ∈D(A) and positive definite if there exists a positive real number
k such that (Ax,x)≥ k‖x‖2, for all x ∈D(A).

The defect defA0 of an operator A0 is the dimension of the orthogonal complement
R(A0)⊥ of its range R(A0).

Let F = (F1, . . . ,Fm) be a vector of Hm and AF = (AF1, . . . ,AFm). We write Ft and
(Ax,Ft) for the column vectors col(F1, . . . ,Fm) and col((Ax,F1), . . . , (Ax,Fm)), respectively.
We denote by (AFt,F) the m×m matrix whose i, jth entry is the inner product (AFi,Fj)
and by Mt the transpose matrix of M. We denote by I and 0 the identity and the zero
matrix, respectively.
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3. Correct selfadjoint extensions of minimal symmetric operators

Throughout this paper,A0 will denote a nondensely defined symmetric minimal operator
and Â a correct selfadjoint extension of A0. Let Ecs(A0,Â) denote the set of all correct
selfadjoint extensions of A0 with domain D(Â) and let Emcs(A0,Â) denote the subset of
Ecs(A0,Â) consisting of all B ∈ Ecs(A0,Â) such that dimR(B− Â)=m.

We begin with the following key lemma.

Lemma 3.1. For every B ∈ Emcs(A0,Â), there exists a vector F = (F1, . . . ,Fm), where F1, . . . ,Fm
are linearly independent elements ofD(Â)∩R(A0)⊥ and a Hermitian invertible matrix T =
‖ti j‖mi, j=1 such that

Bx = Âx− (ÂF)T W−1
(
x,ÂFt

)
, ∀ x ∈D(Â), (3.1)

where W = I + (ÂFt,F)T , with detW �= 0.

Proof. Let B ∈ Emcs(A0,Â). Then dimR(B− Â) =m. The main result of [10] implies that
there exists a linear continuous operator K :H→ D(Â) with D(K) =H, kerK ⊇ R(A0),
Ker(Â

−1 +K)= {0} such that

B−1 = Â−1 +K or K = B−1− Â−1. (3.2)

Hence K = K∗, since B−1 and A−1 are selfadjoint operators. Since A0 is a minimal oper-
ator, it follows that R(A0) is a closed subspace ofH, and so

H= R(A0)⊕R(Ao)⊥. (3.3)

We will show that dimR(K)=m. Indeed, from (3.2), it follows that K f = B−1 f − Â−1 f
for all f ∈H. Let x = B−1 f . Then,

x = Â−1 f +K f , Âx = f + ÂK f , (3.4)

from which it follows that (Â−B)x = Â(K f ), for all f ∈H. Since dimR(Â−B)=m and
the operator Â is invertible, we have dimR(K) =m. Therefore, the selfadjointness of K
gives the decomposition

H= kerK ⊕R(K). (3.5)

From decompositions (3.3), (3.5), and the inclusion kerK ⊇ R(A0), we conclude that

R(K)⊆ R(A0)⊥. (3.6)

Fix a basis {F1,F2, . . . ,Fm} of R(K). Then, for every f inH, there are αi in R such that

K f =
m∑
i=1

αiFi. (3.7)
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Let {ψ1,ψ2, . . . ,ψm} be the biorthogonal family of elements of H corresponding to the
above basis of R(K), that is, (ψi,Fj)= δi j , i, j = 1, . . . ,m. From (3.7), we have (K f ,ψj)=
(
∑m

i=1αiFi,ψj)=
∑m

i=1αi(Fi,ψj)= αj , j = 1,2, . . . ,m. Hence,

K f =
m∑
i=1

(
K f ,ψi

)
Fi =

m∑
i=1

(
f ,Kψi

)
Fi, ∀ f ∈H. (3.8)

In particular, for f = ψj , we have

Kψj =
m∑
i=1

(
ψj ,Kψi

)
Fi, or equivalently, Kψi =

m∑
l=1

(
ψi,Kψl

)
Fl. (3.9)

Replacing the above expression for Kψj in (3.8), we obtain

K f =
m∑
i=1

(
f ,

m∑
l=1

(
ψi,Kψl

)
Fl

)
Fi =

m∑
i=1

m∑
l=1

(
f ,Fl

)(
Kψl,ψi

)
Fi. (3.10)

If T denotes the matrix ‖(Kψl,ψi)‖ml,i=1, then (3.10) takes the form

K f = FT( f ,Ft
)= FT(Ft, f ). (3.11)

Now, the reader can easily verify that each of the matrices T and (ÂFt,F) is a Hermitian
matrix. We claim that T is invertible. Let K̂ = K |R(K) denote the restriction of K to its
range. From (3.5), it follows that kerK ∩R(K)= {0}. Therefore, ker K̂ = {0}. Substitut-
ing f = Fj into (3.11), we obtain

KFj = FT (Ft,Fj) or KF = FT (Ft,F). (3.12)

The determinant det(Ft,F) is nonzero, being the determinant of the Gramm matrix
(Ft,F) of F. Since the vectors of R(K) F1,F2, . . . ,Fm are linearly independent and ker K̂ =
{0}, it follows that detT �= 0, which proves our claim.

We now prove the formula (3.1) which describes the action of the operator B on x.
From (3.4) and (3.11), we have

Âx = f + ÂFT (Ft, f ). (3.13)

Then, taking the inner product with Ft, we get

(
Âx,Ft

)= (ÂFT (Ft, f ),Ft
)

+
(
f ,Ft

)
= (Ft,ÂF)T (Ft, f ) +

(
f ,Ft

)
= ( f ,Ft

)
+ (Ft,ÂF)T( f ,Ft)

=
[
I + (ÂFt,F)T

]
( f ,Ft).

(3.14)
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Let W denote the matrix I + (ÂFt,F)T . We will show that detW �= 0. For if detW =
0, then detWt = 0. Hence, there exists a nonzero vector �a = col(a1, . . . ,am) such that
Wt�a= �o. We consider the linear combination f0 =

∑m
i=1 aiÂFi. Since the vectors F1, . . . ,Fm

are linearly independent and ker Â = {0}, their images Â(Fi) under Â are linearly inde-
pendent as well. It follows that f0 �= 0. Combining (3.4) and (3.11), we get x = Â−1 f +
FT( f ,Ft), where x = B−1 f . In particular, for x = B−1 f0, we compute

x0 = Â−1 f0 +FT
(
f0,Ft

)
= Â−1

m∑
i=1

αiÂFi +FT

( m∑
i=1

αiÂFi,Ft
)

= F�a+FT
m∑
i=1

αi(Ft,ÂFi)

= F�a+FT
m∑
i=1

αi(ÂFt,Fi)

= FI�a+FT(ÂFt,F)�a

= F
[
I +T(ÂFt,F)

]
�a

= FWt�a.

(3.15)

In the above chain of equalities, the last one follows from the definition of W and the

fact that the matrices T and (ÂFt,F) are Hermitian. But Wt�a =�0. This implies that the
nonzero vector f0 is contained in the kernel kerB−1 of B−1, contradicting the correctness
of B. So detW �= 0. Now (3.14) gives ( f ,Ft) =W −1(x,ÂFt), which with (3.13) implies
formula (3.1). �

We now prove our main theorem which describes the set Emcs(A0,Â) of all correct self-
adjoint extensions B of an operator A0 with D(B)= D(Â) and dimR(B− Â)=m, using
one correct selfadjoint extension Â of a minimal symmetric operator A0 with defA0 ≤∞.
Every operator B is uniquely determined by a vector F with components Fi ∈ D(Â)∩
R(A0)⊥, i = 1, . . . ,m, and a Hermitian m×m matrix C with rank C = n ≤m, satisfying
condition (3.16) which is the solvability condition for the problem Bx = f (whose solu-
tion is also given in the following result).

Theorem 3.2. Suppose that A0, Â are as in Lemma 3.1. Then the following hold.
(i) For every B ∈ Emcs(A0,Â), there exists a vector F = (F1 ···Fm), where F1, . . . ,Fm are

linearly independent elements from D(Â)∩R(A0)⊥ and a Hermitian m×m matrix C with
detC �= 0, such that

det
[
I − (ÂFt,F)C

]
�= 0, (3.16)

Bx = Âx− (ÂF)C(Âx,Ft
)= f . (3.17)

(ii) Conversely, for every vector F = (F1 ···Fm), where F1, . . . ,Fm defined as above, and
Hermitian m×m matrix C, which has rank C = n≤m and satisfies (3.16), the operator B
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defined by (3.17) belongs to Encs(A0,Â). The unique solution of (3.17) is given by the formula

x = B−1 f = Â−1 f +FC
[
I − (ÂFt,F)C

]−1(
f ,Ft

) ∀ f ∈H. (3.18)

Proof. (i) Let B ∈ Emcs(A0,Â). Then by Lemma 3.1, there exists a Hermitian, invertiblem×
m matrix T = (ti j), and vector F = (F1, . . . ,Fm), where F1, . . . ,Fm are linearly independent

elements fromD(Â)∩D(A0)⊥ such that detW �= 0 and (3.1) holds true. From (3.1), since
B = B∗, for every y ∈D(B∗)=D(B)=D(Â), we have

(Bx, y)= (Âx− (ÂF)T W−1(
x,ÂFt

)
, y
)= (Âx, y

)− (ÂF, y
)
T W

−1(
x,ÂFt

)
= (x,Ây

)−(x, (ÂF, y)T W
−1(

ÂFt
))=(x,Ây− (y,ÂF

)
TW−1(ÂFt))=(x,B∗y

)
.

(3.19)

Hence,

B∗y = Ây− (y,ÂF
)
TW−1(ÂFt)= Ây− (ÂF)(TW−1)t(y,ÂFt

)
. (3.20)

We denote by C the matrix T W −1. Since B = B∗, relations (3.1), (3.20) imply that

C = T W−1 = (TW−1)t = Ct. (3.21)

Hence the matrix C is Hermitian and so (3.1) implies (3.17). The invertibility of C is
implied by the fact that T and W −1 are invertible matrices. To show (3.16), we first
remember that the m×mmatrix (ÂFt,F)=D = (di j) is Hermitian. From C = TW−1, we
take T = CW = C(I +DT) or C = (I −CD)T. Since C and T are invertible, it follows that
det(I −CD) �= 0, and we finally have that det(I −DC) �= 0, that is, (3.16) is fulfilled.

(ii) We will show that B ∈ Encs(A0,Â). We first show that B is a correct extension of A0.
Taking into account (3.17), we have

(
Ft, f

)= (Ft,Âx− (ÂF)C(Âx,Ft
))

= [I − (ÂFt,F)C ](Âx,Ft),
(3.22)

or

[
I − (ÂFt,F)C

](
Âx,Ft

)= ( f ,Ft
)
. (3.23)

From (3.16), we have

(
Âx,Ft

)= [I − (ÂFt,F)C
]−1(

f ,Ft
)
. (3.24)
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Since Â is invertible, (3.17) implies that

x−FC(Âx,Ft
)= Â−1 f , f = Bx, (3.25)

and because of (3.24), we have

x = Â−1 f +FC
[
I − (ÂFt,F)C

]−1(
f ,Ft

)
, ∀ f ∈H, (3.26)

which is (3.18).
Since Â−1 is continuous on H, B−1 is continuous on H. From (3.18), it is clear that

D(B)=D(Â)⊇D(A0). Since A0 ⊂ Â and Fi ∈ R(A0)⊥, i= 1, . . . ,m, it follows from (3.17)
that Bx = Âx = A0x, for all x ∈D(A0).

So, A0 ⊂ B and since B−1 exists and is continuous on H, B is a correct extension of
A0. From (3.17), because of rank C = n and ÂF1, . . . ,ÂFm being linearly independent, it
follows that dimR(B− Â)= n.

It remains to show that B = B∗.
Taking into account (3.17) for y ∈D(Â), we have

(Bx, y)= (Âx, y
)− ((ÂF)C(Âx,Ft

)
, y
)= (x,Ây

)− (ÂF, y
)
C
(
Âx,Ft

)
= (x,Ây

)−(x, (ÂF, y)C
(
ÂFt

))= (x,Ây− (y,ÂF
)
C
(
ÂFt

))= (x,φ).
(3.27)

It follows that y ∈D(B∗) and D(Â)=D(B)⊆D(B∗). But for y ∈D(Â), we have

B∗y = φ= Ây− (y,ÂF
)
C
(
ÂFt

)= Ây− (ÂF)C(Ây,Ft
)= By. (3.28)

Hence B ⊂ B∗. Let now y ∈D(B∗). From (3.17), we have

(Bx, y)= (Âx, y
)− ((ÂF)C(Âx,Ft

)
, y
)= (Âx, y

)− (ÂF, y
)
C
(
Âx,Ft

)
=
(
Âx, y− (ÂF, y)CFt

)
= (x,B∗y

)
.

(3.29)

So, y− (ÂF, y)CFt ∈ D(Â∗) = D(Â) = D(B) and since F1, . . . ,Fm ∈ D(Â), it follows that
y ∈ D(Â). Hence, D(B∗) = D(Â) = D(B) and B = B∗. So the theorem has been proved.

�

In the next particular case when Fi ∈D(A0)∩R(A0)⊥, i= 1, . . . ,m, the condition (3.16)
is fulfilled automatically and the solution of Bx = f is simpler.
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Corollary 3.3. For every vector F = (F1 ···Fm), where F1, . . . ,Fm are linearly independent
elements from D(A0)∩R(A0)⊥, and for every Hermitian m×m matrix C with rank C =
n≤m, the operator B defined by (3.17) belongs to Encs(A0,Â).

The unique solution of (3.17) is given by

x = B−1 f = Â−1 f +FC
(
f ,Ft

)
, ∀ f ∈H. (3.30)

Proof. Indeed, if Fi ∈D(A0)∩R(A0)⊥, i= 1, . . . ,m, then (ÂFi,Fj)= (A0Fi,Fj)= 0 for all

i, j = 1, . . . ,m, since Fj ∈ R(A0)⊥, j = 1, . . . ,m. Hence (ÂFt,F)= 0. The rest easily follows
from the above theorem. �

Remark 3.4. For every B ∈ Emcs(A0,Â) from (3.2) and (3.6), we have

R
(
B−1− Â−1)⊆ R(A0

)⊥
, dimR(B− Â)=m≤ defA0. (3.31)

Let now the minimal operator A0 have finite defect defA0 = dimR(A0)⊥ =m. Then
D(A0) can be defined as follows:

D
(
A0
)= {x ∈D(Â) :

(
Âx,Ft

)= 0
}

, (3.32)

where F = (F1 ···Fm), F1, . . . ,Fm are linearly independent elements of R(A0)⊥ ∩D(Â). So
if we have chosen the elements F1, . . . ,Fm so that (3.32) holds, then every B from Emcs(A0,Â)
is defined only by the Hermitian matrix C and we can restate Theorem 3.2 as follows.

Theorem 3.5. (i) For every B ∈ Emcs(A0,Â), where A0 satisfies (3.32), there exists a Hermit-
ian m×m matrix C with detC �= 0, such that (3.16) and (3.17) are fulfilled.

(ii) Conversely, for every Hermitian m×m matrix C, which satisfies (3.16) and rank
C = n, the operator B defined by (3.17) belongs to Encs(A0,Â). The unique solution of (3.17)
is given by (3.18).

Proof. From (3.32), we have

R
(
A0
)= { f ∈H :

(
f ,Fi

)= 0, i= 1, . . . ,m
}
. (3.33)

It is evident that dimR(A0)⊥ = m and {F1, . . . ,Fm} is a basis of R(A0)⊥. Then from
dimR(A0)⊥ =m, dimR(K)=m, and (3.6), it follows that

R(K)= R(B−1− Â−1)= R(A0)⊥. (3.34)

As basis of R(K), we can take F1, . . . ,Fm. The rest is proved similarly. �

Remark 3.6. For every B ∈ Emcs(A0,Â), where A0 satisfies (3.32), we have R(B−1− Â−1)=
R(A0)⊥ and dimR(B− Â)= defA0.
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Remark 3.7. The operators B ∈ Emcs(A0,Â) in both cases of either defA0 = m < ∞ or
defA0 =∞ are described by the same formulas (3.16) and (3.17).

Remark 3.8. Let A0 be defined by (3.32) or (3.33), and F = (F1, . . . ,Fm), where F1, . . . ,Fm
are linearly independent elements of R(A0)⊥ ∩D(Â). Then,(

ÂFt,F
)= 0⇐⇒ Fi ∈D(A0), i= 1, . . . ,m. (3.35)

Let now the minimal symmetric operator A0 be defined by

A0 ⊂ Â, D(A0)= {x ∈D(Â) :
(
Âx,Fi

)= 0
}

, Fi ∈D(A0), (3.36)

i = 1, . . . ,m, and F1, . . . ,Fm are linearly independent elements of D(A0). Then from the
above remark and Theorem 3.5 follows the next corollary, which describes the most “sim-
ple” extensions of A0.

Corollary 3.9. (i) For every B ∈ Emcs(A0,Â), where A0 satisfies (3.36), there exists a Her-
mitian m×m matrix C with detC �= 0, such that (3.17) is fulfilled.

(ii) Conversely, for every Hermitian m×m matrix C, with rank C = n≤m, the operator
B defined by (3.17) belongs to Encs(A0,Â).

The unique solution of (3.17) is given by (3.30).

The next theorem is useful for applications and gives the criterion of correctness of
below problems and their solutions.

Theorem 3.10. Let

Bx = Âx− (ÂF)C(Âx,Ft
)= f , D(B)=D(Â), (3.37)

where Â as in Lemma 3.1, C a Hermitianm×mmatrix with rank C = n, F1, . . . ,Fm linearly
independent elements of D(Â). Then B is correct and selfadjoint operator with dimR(B−
Â)= n if and only if

det
[
I − (ÂFt,F)C

]
�= 0, (3.38)

and the unique solution of (3.37) is given by

x = B−1 f = Â−1 f +FC
[
I − (ÂFt,F)C

]−1(
f ,Ft

)
. (3.39)

Proof. We define corresponding to this problem the minimal operator A0 as a restriction
of Â by (3.32).

If n=m, then the theorem is true by Theorem 3.5.
While if n <m and B ∈ Encs(A0,Â), then from (3.37), we have Bx = f and

(
Ft, f

)= (Ft,Âx)− (Ft,ÂF)C(Âx,Ft)

= [I − (ÂFt,F)C ](Ft,Âx) (3.40)
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or

[
I − (ÂFt,F)C

](
Âx,Ft

)= ( f ,Ft
)
, ∀ f ∈H. (3.41)

Let L= I − (ÂFt,F)C and rank L= k < m. If we suppose that the first k lines of the ma-
trix L are linearly independent, then for f = ψk+1, where (Fi,ψk) = δi,k, i,k = 1, . . . ,m,
the system L(Âx,Ft) = ( f ,Ft) has no solution, since the rank of the augmented matrix
is k + 1 �= k. Then Bx = ψk+1 has no solution and R(B) �= H. Consequently, B is not a
correct operator. So (3.38) holds true. Conversely, let detL �= 0, then by Theorem 3.5, we
have that B ∈ Encs(A0,Â). �

We recall that a Hermitian m×m matrix C = (ci j) is called negative semidefinite (neg-

ative definite) if
∑m

i=1

∑m
j=1 ξiξ jci j ≤ 0,

( m∑
i=1

m∑
j=1

ξiξ jci j < 0

)
, ∀ξ = (ξ1, . . . ,ξm

)∈ Cm (ξ ∈ Cm\{0}). (3.42)

Theorem 3.11. If in Theorem 3.2 Â is positive operator and C is negative semidefinite ma-
trix, then B, defined by (3.17), is a positive operator.

Proof. We will show that (Bx,x)≥ 0 for all x ∈D(B).

(Bx,x)= (Âx− (ÂF)C(Âx,Ft
)
,x
)= (Âx,x

)− (ÂF,x
)
C
(
Âx,Ft

)
= (Âx,x

)− (Âx,F)C
(
Âx,Ft

)= (Âx,x
)− m∑

i=1

m∑
j=1

(Âx,Fi)
(
Âx,Fj

)
ci j ≥ 0,

(3.43)

for C is negative and semidefinite.
We remind that an operator Â :H→H is called positive definite if there exists a positive

real number k such that

(
Âx,x

)≥ k‖x‖2, ∀ x ∈D(Â). (3.44)

�

Theorem 3.12. If the operator Â in Theorem 3.2 is positive definite, then the operator B,
which is defined by the relation (3.17), is positive definite whenever the matrix C is Hermit-
ian and satisfies the inequality

k >
m∑
i=1

m∑
j=1

∥∥ÂFi∥∥∥∥ÂFj∥∥ ∣∣ci j∣∣ (3.45)

and positive when k ≥∑m
i=1

∑m
j=1‖ÂFi‖‖ÂFj‖ |ci j|.
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Proof. For x ∈D(B), we have

(Bx,x)= (Âx− (ÂF)C(Âx,Ft
)
,x
)= (Âx,x

)− (x,ÂF)C
(
x,ÂFt

)
≥ k‖x‖2−

m∑
i=1

m∑
j=1

∣∣∣(x,ÂFi
)(
x,ÂFj

)
ci j
∣∣∣

≥
(
k−

m∑
i=1

m∑
j=1

∥∥ÂFi∥∥∥∥ÂFj∥∥∣∣ci j∣∣
)
‖x‖2.

(3.46)

The theorem now easily follows. �

Now we will state Theorem 3.2, in the following more general form, which is useful in
the solutions of differential equations.

Theorem 3.13. Suppose that A0, Â are as in Theorem 3.2. Then the following hold.
(i) For every B ∈ Emcs(A0,Â), there exists a vector Q = (q1, . . . ,qm), where q1, . . . ,qm are

linearly independent elements from D(A0)⊥ and a Hermitian invertible m×m matrix C,
such that

det
[
I − (Qt,Â−1Q)C

]
�= 0, (3.47)

Bx = Âx−QC(x,Qt
)= f , D(B)=D(Â). (3.48)

(ii) Conversely, for every vector Q = (q1, . . . ,qm), defined as above, and Hermitian m×m
matrix C, which has rank C = n and satisfies (3.47), the operator B defined by (3.48) belongs
to Encs(A0,Â).

The unique solution of (3.48) is given by the formula

x = Â−1 f +
(
Â−1Q

)
C
[
I − (Qt,Â−1Q)C

]−1(
f ,Â−1Qt

)
(3.49)

for all f ∈H.

The proof easily follows from Theorem 3.2 by substituting Q = ÂF, F = Â−1Q, where
Q = (q1, . . . ,qm), qi ∈D(A0)⊥, i= 1, . . . ,m.

Corollary 3.14. For every vector Q = (q1, . . . ,qm), where q1, . . . ,qm are linearly indepen-
dent elements of D(A0)⊥ ∩R(A0), i = 1, . . . ,m, and for every Hermitian m×m matrix C,
with rank C = n, the operator B defined by (3.48) belongs to Encs(A0,Â)

The unique solution of (3.48) is given by the formula

x = B−1 f = Â−1 f +
(
Â−1Q

)
C
(
f ,Â−1Qt

)
, ∀ f ∈H. (3.50)
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Let now the minimal symmetric operator A0 have finite defect and be defined by the
relations

A0x = Âx, ∀ x ∈D(A0), D(A0)= {x ∈D(Â) : (x,Qt)= 0
}

, (3.51)

whereQ is defined as in Theorem 3.13. Then dimD(A0)⊥=m and defA0 = dimR(A0)⊥ =
m.

In this case, we restate Theorems 3.5, 3.11, and 3.12 in the following more general
form.

Theorem 3.15. (a) For every B ∈ Emcs(A0,Â), where A0 is defined by (3.51), there exists a
Hermitian m×m matrix C with detC �= 0, such that (3.47) and (3.48) are fulfilled.

(b) Conversely, for every Hermitianm×mmatrix C, which satisfies (3.47) and has rank
C = n, the operator B defined by (3.48) belongs to Encs(A0,Â). The unique solution of
(3.48) is given by (3.49).

(c) If the operator Â is positive and the matrix C is negative semidefinite, then B is posi-
tive.

(d) If Â is positive definite (so it satisfies a relation (3.44)) and if C is a Hermitianm×m
matrix which satisfies the inequality

k >
m∑
i=1

m∑
j=1

∥∥qi∥∥∥∥qj∥∥∣∣ci j∣∣, (3.52)

then B is positive definite; it is positive when k ≥∑m
i=1

∑m
j=1‖qi‖‖qj‖|ci j|,

Proof. Since Â is selfadjoint and R(Â) = H, for every x ∈ D(Â), we have (x,qi) =
(x,ÂÂ−1qi)= (Âx,Fi), where Fi = Â−1qi, i= 1,2, . . . ,m.

It is clear that Fi ∈ D(Â), i = 1,2, . . . ,m, and that they are linearly independent. If we
substitute Q = ÂF, Qt = ÂFt in (3.47), (3.48), and (3.49), then we receive the relations
(3.16), (3.17), and (3.18) of Theorem 3.2, which hold true. Because of Theorems 3.11,
3.12, and the relations qi = ÂFi, i = 1,2, . . . ,m, cases (c) and (d) of the present theorem
are true. �

Remark 3.16. Suppose that A0, Â are as in Theorem 3.15 and Q = (q1, . . . ,qm), where
q1, . . . ,qm are linearly independent elements of D(A0)⊥, then

R(A0)= { f ∈H :
(
f ,Â−1qj

)= 0, j = 1, . . . ,m
}

,

(Q′,Â−1Q)= 0⇐⇒ qi ∈ R(A0), i= 1, . . . ,m.
(3.53)

Let now the minimal symmetric operator A0 be defined by the relation

A0 ⊂ Â, D(A0)= {x ∈D(Â) :
(
x,Qt

)= 0, Q ∈ R(A0)m
}

(3.54)
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and let Q = (q1, . . . ,qm), q1, . . . ,qm be linearly independent elements of D(A0)⊥. By the
above remark and Theorem 3.15, we take the following corollary, which describes the
most “simple” extensions of A0.

Corollary 3.17. (i) For every B ∈ Emcs(A0,Â), where A0 satisfies (3.54), there exists a Her-
mitian m×m matrix C with detC �= 0, such that (3.48) is fulfilled.

(ii) Conversely, for every Hermitian m×m matrix C, with rank C = n≤m, the operator
B defined by (3.48) belongs to Encs(A0,Â), where A0 satisfies (3.54).

The unique solution of (3.48) is given by (3.50).

Let now G= (g1, . . . ,gm), where g1, . . . ,gm are arbitrary elements ofH, Â as in Theorem
3.2, and Q satisfies (3.51). Then holds the next corollary which is useful for applications.

Corollary 3.18. (i) If the operator B :H→H defined by

Bx = Âx−G(x,Qt
)= f , D(B)=D(Â) (3.55)

is correct and selfadjoint and dimR(B− Â) =m, then the elements q1, . . . ,qm are linearly
independent and there exists a Hermitian, invertible m×m matrix C such that G = QC,
where C satisfies (3.47).

(ii) Conversely, if there exists a Hermitian, m×m matrix C such that G=QC, where C
satisfies (3.47), then B is correct and selfadjoint. If also detC �= 0, then dimR(B− Â)=m.

Proof. Follows easily from Theorem 3.15 by defining a minimal operator A0 by (3.51).
�

Let now G = (g1, . . . ,gn), Q = (q1, . . . ,qn), where gi ∈H, qi ∈ D(A0)⊥ ⊂H, i = 1, . . . ,n.
We suppose that the elements q1, . . . ,qm (m< n) are linearly independent and for the rest
qm+1, . . . ,qn, there exists an (n−m)×m matrix M = (µi j) such that Qt

n−m =MQtm, where
Qm = (q1, . . . ,qm), Qn−m = (qm+1, . . . ,qn), Qtm = col(q1, . . . ,qm), and Qt

n−m = col(qm+1,
. . . ,qn).

A generalization of Theorem 3.13 is the following theorem.

Theorem 3.19. (i) If the operator B :H→H defined by (3.55) is correct and selfadjoint and
R(B− Â)=m, then the elements of the matrix Gm +Gn−mM are linearly independent and
there exists a Hermitian invertible m×m matrix C such that

Gm +Gn−mM =QmC, (3.56)

det
[
I − (Qtm,Â−1Qm)C

]
�= 0. (3.57)

(ii) Conversely, if there exists a Hermitian m×m matrix C such that relations (3.56)
and (3.57) are satisfied, then B is correct and selfadjoint. If also detC �= 0, then dimR(B−
Â)=m.

The solution of problem (3.55) is given by the formula

x = Â−1 f +
(
Â−1Qm

)
C
[
I − (Qtm,Â−1Qm)C

]−1(
f ,Â−1Qtm

)
(3.58)

for all f ∈H.
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Proof. We have

G
(
x,Qt

)=Gm
(
x,Qtm

)
+Gn−m

(
x,Qt

n−m
)=Gm

(
x,Qtm

)
+Gn−m

(
x,MQtm

)
=Gm

(
x,Qtm

)
+Gn−mM

(
x,Qtm

)= (Gm +Gn−mM
)(
x,Qtm

)
.

(3.59)

If we substitute the term G(x,Qt) in (3.55) with its equal from above, then we take

Bx = Âx− (Gm +Gn−mM
)(
x,Qtm

)= f . (3.60)

Now the operator B in (3.60) has the form of the operator B in (3.55), where instead of G
we have Gm +Gn−mM and instead of Q we have Qm. So according to Corollary 3.18, the
relations (3.56) and (3.57) hold true; also (3.49) implies (3.58). �

In the following examples, H1(0,1)(H2(0,1)) denotes the Sobolev space of all com-
plex functions of L2(0,1), which have generalized derivatives up to first-(second-)order,
Lebesgue integrable.

4. Examples

Example 4.1. For every real number c, the operator B : L2(o,1)→ L2(0,1) corresponding
to the problem

Bu= iu′ − cx
∫ 1

0
xu(x)dx = f (x), (4.1)

D(B)= {u∈H1(0,1) : u(0)=−u(1)
}

(4.2)

is a correct selfadjoint extension of the minimal symmetric operator A0 defined by

A0 ⊂ B, D(A0)=
{
u∈D(B) :

∫ 1

0
xu(x)dx = 0

}
. (4.3)

The unique solution of (4.1)-(4.2) is given by the formula

u(x)= i

2

∫ 1

0
f (t)dt− i

∫ x
0
f (t)dt+

ci

16

(
1− 2x2)∫ 1

0

(
1− 2t2

)
f (t)dt. (4.4)

Proof. By comparing (4.1) with (3.48) and (4.3) with (3.54), we take

Âu= iu′, D(Â)=D(B), m= 1, C = c, Q(x)= x, x ∈D(A0)⊥. (4.5)

It is evident that A0 is minimal symmetric operator. From [6, page 272] (in our case
θ = π) follows that Â is selfadjoint and it is easily seen that

Â−1 f = i

2

∫ 1

0
f (t)dt− i

∫ x
0
f (t)dt, ∀ f ∈H. (4.6)
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Then

Â−1Q = i

2

∫ 1

0
tdt− i

∫ x
0
tdt = i

4

(
1− 2x2),

(
Q′,Â−1Q

)= ∫ 1

0
t
i

4

(
1− 2t2

)
dt = 0,

(
f ,Â−1Q

)= ∫ 1

0
f (t)

i

4

(
1− 2t2

)
dt =− i

4

∫ 1

0

(
1− 2t2

)
f (t)dt.

(4.7)

The condition (Q′,Â−1Q)= 0 and Remark 3.16 imply thatQ ∈ R(A0) and from Corollary
3.17 follows the validity of this example. �

Example 4.2. The operator Â : L2(0,1)→ L2(0,1) defined by

Âu=−u′′ = f , (4.8)

D
(
Â
)= {u∈H2(0,1) : u(0)=−u(1), u′(0)=−u′(1)

}
(4.9)

is a correct, selfadjoint, positive definite operator and satisfies the inequality

(Âu,u)=
∫ 1

0
|u′|2dx ≥ 4

∫ 1

0
|u|2dx. (4.10)

For every f ∈ L2(0,1), the unique solution u of the problem (4.8)-(4.9) is given by the
formula

u= Â−1 f =−
∫ t

0
(t− ξ) f (ξ)dξ +

t

2

∫ 1

0
f (ξ)dξ − 1

2

∫ 1

0

(
ξ − 1

2

)
f (ξ)dξ. (4.11)

Proof. Indeed, formula (4.11) is found by two direct integrations of (4.8), where (4.9)
is taken into consideration. That Â−1 is continuous is proved easily by showing, using
Schwarz’s inequality and formula (4.11), that Â−1 is a bounded operator. Hence Â is a
correct operator. We show that Â is selfadjoint. From formula (4.11), we take

Â−1 f =
∫ t

0
(ξ − t) f (ξ)dξ +

∫ t
0

[
t

2
− 1

2

(
ξ − 1

2

)]
f (ξ)dξ

+
∫ 1

t

[
t

2
− 1

2

(
ξ − 1

2

)]
f (ξ)dξ

=
∫ 1

0

[
1
2

(
ξ − t+

1
2

)
η(t− ξ) +

1
2

(
t− ξ +

1
2

)
η(ξ − t)

]
f (ξ)dξ.

(4.12)
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So, the integral Kernel of Â−1 is the function

K(t,ξ)= 1
2

(
ξ − t+

1
2

)
η(t− ξ) +

1
2

(
t− ξ +

1
2

)
η(ξ − t), (4.13)

where

η(x)=
1, x > 0,

0, x ≤ 0,
is the Heaviside’s function. (4.14)

Since

K(t,ξ)= 1
2

(
t− ξ +

1
2

)
η(ξ − t) +

1
2

(
ξ − t+

1
2

)
η(t− ξ)= K(ξ, t), (4.15)

it follows from [16] that Â−1 is selfadjoint. Then, from the equalities Â−1 = (Â−1)∗ =
(Â∗)−1 [11] follows that D(Â)=D(Â∗). On the other hand, for all x, y ∈D(Â)=D(Â∗),
we have

(
Âx, y

)= (Âx,Â−1Ây
)= (x,Ây

)
. (4.16)

The above two remarks imply that Â= Â∗.
Next, we prove inequality (4.10), showing at the same time that Â is positive definite.

Let u(x)∈D(Â). Since u(0)=−u(1), we have

u(x)=
∫ x

0
u′(t)dt−u(1), u(1)= 1

2

∫ 1

0
u′(t)dt. (4.17)

From these equalities, we take

u(x)=
∫ 1

0
u′(t)η(x− t)dt− 1

2

∫ 1

0
u′(t)dt =

∫ 1

0
u′(t)

[
η(x− t)− 1

2

]
dt, (4.18)

and then |u(x)| ≤ 1/2
∫ 1

0 |u′(t)|dt. Using Schwarz’s inequality, we take

|u(x)|2 ≤ 1
4

(∫ 1

0
|u′(t)|dt

)2

≤ 1
4

∫ 1

0
|u′(t)|2dt. (4.19)

Then

∫ 1

0
|u(x)|2dx ≤ 1

4

∫ 1

0
dx
∫ 1

0
|u′(t)|2dt = 1

4

∫ 1

0
|u′(t)|2dt. (4.20)
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Now, by (4.9), we have

(
Âu,u

)=−∫ 1

0
u′′ūdx =−u′(x)ū(x)

∣∣1
0 +
∫ 1

0
u′ū′dx

=−u′(1)ū(1) +u′(0)ū(0) +
∫ 1

0
|u′|2dx =

∫ 1

0
|u′(x)|2dx.

≥ 4
∫ 1

0
|u(x)|2dx.

(4.21)

�

Example 4.3. The operator B : L2(0,1)→ L2(0,1), which corresponds to the problem

Bu=−u′′ − c(3t2− 1
)∫ 1

0

(
2t4− 4t2 + 1

)
u′′(t)dt = f (t) (4.22)

with

D(B)= {u∈H2(0,1) : u(0)=−u(1), u′(0)=−u′(1)
}

(4.23)

and c a constant is
(i) correct and selfadjoint if and only if c is real and c �= 105/64,

(ii) positive definite when c is real and |c| < 5/8 and positive when c is real and c ≤ 5/8.
The unique solution of problem (4.22) for every f ∈ L2(0,1) is given by

u(t)= Â−1 f +
(
2t4− 4t2 + 1

) 105c
8(105− 64c)

∫ 1

0

(
2t4− 4t2 + 1

)
f (t)dt, (4.24)

where Â−1 f is found by (4.11) of Example 4.2.

Proof. If we compare (4.22) with (3.37), it is natural to take Âu=−u′′ withD(Â)=D(B),
m = 1, F(t) = 2t4 − 4t2 + 1. We easily see that F ∈ D(Â) and ÂF = −8(3t2 − 1). Then
(4.22) can be written as follows:

Bu=−u′′ − c

8
(−8)

(
3t2− 1

)∫ 1

0

(
2t4− 4t2 + 1

)
(−u′′(t))dt, (4.25)

which is the form of (3.37) with C = c/8. Then we find

‖ÂF‖2 = 64
∫ 1

0

(
3t2− 1

)2
dt = 256

5
,

(
ÂF,F

)=−8
∫ 1

0

(
3t2− 1

)(
2t4− 4t2 + 1

)
dt = 512

105
,

det
[
I − (ÂFt,F)C

]
= 1− 512

105
c

8
= 105− 64c

105
.

(4.26)

Relation (4.10) shows that k = 4. From Theorem 3.10, we conclude that B is correct and
selfadjoint operator if and only if c ∈R and (105− 64c)/105 �= 0, or c �= 105/64.
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To find the values of c ∈R for which B is positive definite, we use (3.45)

4= k > ‖ÂF‖2 |c|
8
= |c|

8
256

5
or |c| < 5

8
. (4.27)

So for c ∈R and |c| < 5/8, the operator B is positive definite.
By Theorem 3.12 for |c| ≤ 5/8, B is positive. Also by Theorem 3.11 for c ≤ 0, B is again

positive. So we conclude that for c ≤ 5/8, B is a positive operator. �

Example 4.4. The operator B : L2(0,1)→ L2(0,1), which corresponds to the problem

Bu=−u′′ + c1

∫ 1

0

(
t2− t)u′′(t)dt+ c2 sin(πx)

∫ 1

0
sin(πt)u′′(t)dt = f (x), (4.28)

D(B)= {u∈H2(0,1) : u(0)=−u(1), u′(0)=−u′(1)
}

(4.29)

is
(i) correct and selfadjoint if and only if c1, c2 are real constants such that

(
1− c1

6

)(
1 +

c2

2

)
+

8c1c2

π4
�= 0, (4.30)

(ii) positive definite when c1, c2 are reals and satisfy the inequality

4|c1|+π2|c2| < 8, (4.31)

(iii) positive when c1 ≤ 0, c2 ≥ 0 or when 4|c1|+π2|c2| ≤ 8.

Proof. By comparing again (4.28) with (3.37), we take Âu = −u′′ with D(Â) = D(B),
m= 2, F1(t)= t2− t, F2(t)= sin(πt), andC = ( c1/2 0

0 −c2/π2

)
. Then we find ÂF1 =−2, ÂF2 =

π2 sin(πt), (ÂFt,F)= ( 1/3 −4/π
−4/π π2/2

)
. We notice that C is Hermitian if and only if c1,c2 ∈R.

The condition (3.38) gives the relation (4.30). So B is correct and selfadjoint operator
if and only if c1,c2 ∈ R and satisfy (4.30). By simple calculation, we find ‖ÂF1‖2 = 4
and ‖ÂF2‖2 = π4/2. From (3.45), it is implied that B is positive definite if c1,c2 ∈ R and
satisfy inequality (4.31). By Theorem 3.11, B is positive if C is negative semidefinite, that
is, c1 ≤ 0, c2 ≥ 0. Also, by Theorem 3.12, B is positive if c1, c2 satisfy 4|c1|+π2|c2| ≤ 8. �

Example 4.5. The operator B : L2(0,1)→ L2(0,1), with D(B) defined by (4.29) and B by
the equation

Bu=−u′′ − c
∫ 1

0
u(t)dt = f (t) (4.32)

is
(i) correct and selfadjoint if and only if c is a real number such that c �= 12,

(ii) positive definite when c is real and |c| < 4 and positive when c is real and c ≤ 4.
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The unique solution of problem (4.32) is given by the formula

u(t)=−
∫ t

0
(t− ξ) f (ξ)dξ +

t

2

∫ 1

0
f (ξ)dξ

− 1
2

∫ 1

0

(
ξ − 1

2

)
f (ξ)dξ +

3c
(
t2− t)

12− c
∫ 1

0

(
ξ2− ξ) f (ξ)dξ.

(4.33)

Proof. We refer now to Theorem 3.15. By comparing (4.32) with (3.48), we take Âu =
−u′′ with D(Â)=D(B) and

A0 ⊂ Â, with D(A0)=
{
u∈D(Â) :

∫ 1

0
u(t)dt = 0

}
. (4.34)

Since Â is a correct and selfadjoint operator,A0 is a minimal symmetric operator. We take
also Q = 1, C = c. By Theorem 3.15, B is correct and selfadjoint if and only if c ∈ R and
relation (3.47) is satisfied, that is, if

1− c
∫ 1

0

(
Â−1Q

)
(t)dt �= 0, (4.35)

where by (4.11),

Â−1Q = Â−11=−
∫ t

0
(t− ξ)dξ +

t

2

∫ 1

0
dξ − 1

2

∫ 1

0

(
ξ − 1

2

)
dξ =−1

2
(t2− t), (4.36)

∫ 1

0

(
Â−1Q

)
(t)dt =−1

2

∫ 1

0

(
t2− t)dt = 1

12
. (4.37)

So, (4.35) implies that (12− c)/12 �= 0, that is, c �= 12. By Theorem 3.15, if c ∈ R and
|c| < 4, then B is positive definite. Again by Theorem 3.15, if c ≤ 0 and |c| ≤ 4, that is,
c ≤ 4, then B is a positive operator. The solution of the problem (4.32) is found by formula
(3.49). �

Let Ω = {x ∈ R2 : |x| < 1}, ∂Ω = γ, and H2(Ω)—the Sobolev space of all functions
of L2(Ω) which have their partial generalized derivatives up to second-order, Lebesgue
integrable. The problem

−�u= f , u|γ = 0, u∈H2(Ω), f ∈ L2(Ω) (4.38)

is the well-known Dirichlet problem and it is known that the corresponding operator Â
(i) is correct and selfadjoint, and

u= Â−1 f =
∫
Ω
G(x, y) f (y)dy, ∀ f ∈ L2(Ω), (4.39)

where G(x, y) is Green’s function,
(ii) is positive definite and

(
Âu,u

)= ∫
Ω
|∇u|2dx ≥ π2

2

∫
Ω
|u|2dx = π2

2
‖u‖2

L2(Ω). (4.40)
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This inequality which has been proved in [15, pages 194, 195] for real functions u ∈
C2(Ω̄) : u|γ = 0 holds true for all u ∈ H2(Ω) : u|γ = 0, since C2(Ω̄) is dense in H2(Ω)

and for all u ∈ D(Â), exist the real functions g,h ∈ D(Â) such that u = g + ih, (Âu,u) =
(Âg,g)− i(Âg,h) + i(Âh,g) + (Âh,h)≥ (π2/2)‖g‖2 + (π2/2)‖h‖2 = (π2/2)‖u‖2 and since

(Âh,g)=−
∫
Ω
g�hdx =

∫
Ω
∇g∇hdx,

(Âg,h)=−
∫
Ω
h�g dx =

∫
Ω
∇g∇hdx, g|γ = h|γ = 0, (g,h)= (h,g),

‖u‖2 = (u,u)= (g + ih,g + ih)= (g,g) + (h,h)= ‖g‖2 +‖h‖2.

(4.41)

Example 4.6. The operator B : L2(Ω)→ L2(Ω) which corresponds to the problem

Bu=−�u− c�v
∫
Ω
u�vdx = f (x) (4.42)

D(B)= {u∈H2(Ω) : u|γ = 0
}

, (4.43)

where v ∈D(B), v �= 0, is correct and selfadjoint if and only if 1− c ∫Ω |∇v|2dx �= 0 and B
is positive definite if |c| < π2/(2

∫
Ω |�v|2dx), B is positive if c ≤ π2/(2

∫
Ω |�v|2dx).

The unique solution of (4.42)-(4.43) is given by the formula

u(x)=
∫
Ω
G(x, y) f (y)dy +

cv(x)
1− c ∫Ω |∇v|2dy

∫
Ω
f (y)v(y)dy. (4.44)

Proof. From Green’s formula, since u|γ = 0, v|γ = 0, we have

∫
Ω

(v̄�u−u�v̄)dx =
∫
γ

(
v̄
∂u

∂n
−u∂v̄

∂n

)
ds= 0. (4.45)

So,

∫
Ω
v̄�udx =

∫
Ω
u�v̄ dx. (4.46)

Now (4.42) takes the form

Bu=−�u− c�v
∫
Ω
v̄�udx = f , u∈D(B). (4.47)

We refer now to Theorem 3.10 and take m = 1, F = v, Âu = −�u with D(Â) = D(B).
Then, since v �= 0, we have ‖ÂF‖2 = ∫Ω |�v|2dx �= 0,

(
ÂFt,F

)= (Âv,v
)=−∫

Ω
v̄�vdx =

∫
Ω
|∇v|2dx. (4.48)
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The last equality follows from Green’s formula

∫
Ω
u�vdx =

∫
γ
u
∂v

∂n
ds−

∫
Ω
∇v∇udx (4.49)

by taking u= v̄ ∈D(B) and the fact that v|γ = 0.
Now, by Theorem 3.10, B is correct and selfadjoint if and only if c ∈R and

det
[
I − (ÂFt,F)C

]
= 1− c

∫
Ω
|∇v|2dx �= 0. (4.50)

By relations (3.39) and (4.39), we find (4.44)—the unique solution of problem (4.42)-
(4.43).

From (4.40) and Theorems 3.11, 3.12, it is implied that k = π2/2 and B is positive
definite if |c| < π2/(2

∫
Ω |�v|2dx), and B is positive if c ≤ π2/(2

∫
Ω |�v|2dx). �

Let Â be as above, λ1, λ2 its two eigenvalues and v1, v2 the eigenvectors of Â, corre-
sponding to λ1, λ2. It is known that v1, v2 are linearly independent elements of D(Â),
(v1,v2)= 0, and λ1,λ2 ≥ 0. Let λ1,λ2 > 0.

Example 4.7. The operator B : L2(Ω)→ L2(Ω) which corresponds to the problem

Bu=−�u− c1v1

∫
Ω
v1�udx− c2v2

∫
Ω
v2�udx = f (x), (4.51)

D(B)= {u∈H2(Ω) : u|γ = 0
}

(4.52)

is
(i) correct and selfadjoint if and only if c1, c2 are real numbers such that

(
1 + c1

∥∥v1
∥∥2
)(

1 + c2
∥∥v2
∥∥2
)
�= 0, (4.53)

(ii) positive definite if c1,c2 ∈R and

2λ1
∣∣c1
∣∣ ∥∥v1

∥∥2
+ 2λ2

∣∣c2
∣∣ ∥∥v2

∥∥2
< π2, (4.54)

(iii) positive if c1,c2 ∈R and

c1,c2 ≤ 0 or when 2λ1
∣∣c1
∣∣ ∥∥v1

∥∥2
+ 2λ2

∣∣c2
∣∣ ∥∥v2

∥∥2 ≤ π2. (4.55)

The unique solution of (4.51)-(4.52) is given by the formula

u(x)=
∫
Ω
G(x, y) f (y)dy +

2∑
i=1

civi(x)

λi
(

1 + ci
∥∥vi∥∥2

) ∫
Ω
f (y)vi(y)dy. (4.56)
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Proof. Since vi =−�vi/λi, i= 1,2, from (4.51), we have

Bu=−�u−
2∑
i=1

ci
λi

(−�vi)∫
Ω
v̄i(−�u)dx = f (x). (4.57)

By comparing (4.57) with (3.37), we take Âu = −�u, D(Â) = D(B), m = 2, F =
(v1(x)v2(x)), C =

(
c1/λ1 0

0 c2/λ2

)
. Then ÂFt = (−�v1

−�v2

)
, (ÂFt,F)=−

(
λ1‖v1‖2 0

0 λ2‖v2‖2

)
, ( f ,Ft)=(

( f ,v1)
( f ,v2)

)
, det(I − (ÂFt,F)C) = (1 + c1‖v1‖2)(1 + c2‖v2‖2) �= 0, that is, we received (4.53).

Also, ‖ÂFi‖ = ‖−�vi‖ = λi‖vi‖, i= 1,2 and

(
I − (ÂFt,F)C

)−1 =


1(

1 + c1
∥∥v1
∥∥2
) 0

0
1(

1 + c2
∥∥v2
∥∥2
)
 . (4.58)

From Theorem 3.12 and (4.40), it follows that k = π2/2 and operator B is positive definite
if c1,c2 ∈R and satisfy the inequality (4.54). By Theorem 3.11, the operator B is positive
if C is negative semidefinite, that is, c1,c2 ≤ 0. Also, by Theorem 3.12, B is positive if
c1,c2 ∈R and satisfy 2λ1|c1| ‖v1‖2 + 2λ2|c2| ‖v2‖2 ≤ π2.

The relations (3.39) and (4.39) give us the unique solution (4.56) of this problem. �

The results of this paper can be applied to Hermitian matrices, which are the matrices
of Hermitian operators in unitary spaces with respect to any orthonormal basis of the
space.

Example 4.8. Let Â be a Hermitian operator in the n-dimensional unitary space E,
λ1, . . . ,λm its eigenvalues, which are real numbers, different from zero, with multiplicity
p1, . . . , pm and E1, . . . ,Em, the corresponding eigenspaces. If we consider that E endowed
with an orthonormal basis D consisted of eigenvectors of Â, such that the first p1 ele-
ments of D constitute a basis of E1, the next p2 elements constitute a basis of E2 and so
on, then the matrix of Â, with respect to this basis, is the following:

λ1

. . .
λ1

. . .
λm

. . .
λm


, (4.59)

where all the other elements are zero. Let A0 be the restriction of Â onto the subspace
E1⊕···⊕Em−1, which is a symmetric operator on this subspace. Let also ε1, . . . ,εp be an
orthonormal basis of Em, where pm = p. If we write F = (ε1 ···εp), then Theorem 3.10
asserts that any invertible Hermitian extension B of A0 to the whole space E which takes
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different values on Em than Â is given by the formula

Bx = Âx− (ÂF)C(Âx,Ft
)
, x ∈ E, (4.60)

where C is an invertible Hermitian matrix which satisfies relation (3.16), that is,

det
[
I − (ÂFt,F)C

]
�= 0. (4.61)

This relation is equivalent to

det
[
C− 1

λm
I
]
�= 0, (4.62)

which means that the number 1/λm is not an eigenvalue of C. The action of B on Em is
found easily, which is described by the formula

Bx = λmx− λ2
m

(
ε1 ···εp

) c11 ···c1p

·········
cp1 ···cpp



x1
...
xp

 , (4.63)

where x = x1ε1 + ···+ xpεp ∈ Em, and its matrix, with respect to D, is

λ1

. . .
λ1

. . .
λm−1

. . .
λm−1

λm− λ2
mc11 −λ2

mc12 ··· − λ2
mc1p

−λ2
mc21 λm− λ2

mc22 ··· − λ2
mc2p

··· ··· ··· ···
−λ2

mcp1 −λ2
mcp2 ··· λm− λ2

mcpp



.

(4.64)

The p× p submatrix at the right-bottom place of the previous matrix represents an in-
vertible Hermitian matrix which has not the number λm as eigenvalue, and this is some-
thing expected.

Now, if Â is positive definite, then if we choose the elements ci j of the matrix C to
satisfy the inequality

k > λ2
m

p∑
j=1

p∑
i=1

∣∣ci j∣∣, (4.65)

we obtain, by Theorem 3.12, a positive definite matrix B.
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