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In this work, we study bifurcation in the von Kármán equations for a thin circular elastic
plate which lies on the elastic base and is simply supported and subjected to a compressive
force along the boundary. Applying analytical methods, we prove the existence of stable
and unstable simple bifurcation points in the solution set of these equations.

1. Introduction

In this paper, we study a certain problem of partial differential equations which derives
from the mechanics of elastic constructions. Our goal is to find forms of equilibrium of
a thin circular elastic plate on the elastic foundation under the action of a compressive
force. A form of equilibrium of the plate is a pair of functions (w,σ) composed of a
deflection function w and a stress function σ .

Let D be the unit disk in R2 centered at the origin (D corresponds with the shape of
the plate) and let µ∈ (0,1). Forms of equilibrium of the plate may be found as solutions
(w,σ)∈ C4,µ(D)×C4,µ(D) of the following differential equations:

∆2w− [w,σ]−αwuu
(
3w2

u +w2
v

)−αwvv
(
3w2

v +w2
u

)
−4αwuvwuwv + 2α∆w+βw− γw3 = 0,

∆2σ +
1
2

[w,w]= 0, (u,v)∈D,

w = ∆w = 0,

σ = ∆σ = 0, (u,v)∈ ∂D

(1.1)

with two positive parameters α, β and a positive constant γ. The parameter α is a value
of the loading (the compressive force on the length unit of ∂D), β is a parameter of the
elastic foundation (it corresponds with the force produced by the foundation), and γ is a
constant that characterizes the foundation. The operator [·,·] is given as follows:

[w,σ]=wuuσvv − 2wuvσuv +wvvσuu, (1.2)

and ∆ denotes the Laplace operator.
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Our partial differential equations are called the von Kármán equations. The first equa-
tions that described the buckling of a thin elastic plate were proposed by Theodore von
Kármán in 1910. He studied two nonlinear partial differential equations with Dirichlet
boundary conditions and one parameter corresponding to a compressive force. Many
people have studied his equations with extra assumptions on the shape of the plate and
with different boundary conditions (clamped, simply supported, free) by the use of nu-
merical, analytical and variational methods. Among the previous studies of the von
Kármán equations are those of [1, 2, 5, 6, 9, 11]. The equations with two parameters
appeared for the first time in [10], and later in [4, 7]. The equations (1.1) describe the
phenomenon of the buckling of the plate only approximately. They were derived from the
rule of conservation of energy. Writing the formula of energy of the plate we took into
account the terms up till the 4th order.

We note that (0,0)∈ C4,µ(D)×C4,µ(D) is a solution of (1.1) for every α and β. This is
of course the solution corresponding with the undeflected position of the plate. Experi-
ments show that for some values of α and β the plate may deflect out, that is, equilibrium
forms other than (0,0) are possible. We prove this by the use of bifurcation theory.

From now on, a solution of (1.1) is called a 4-tuple (w,σ ,α,β) such that:
(i) (w,σ)∈ C4,µ(D)×C4,µ(D),

(ii) (α,β)∈ R2
+,

(iii) (w,σ) satisfies pointwise (1.1) with the parameters α, β.
Let Γ = {(0,0,α,β) ∈ C4,µ(D)× C4,µ(D)× R2

+ : α,β ∈ R+}. Every point from Γ is called
a trivial solution of (1.1). Every solution of (1.1) that does not belong to Γ is called a
nontrivial solution. A trivial solution of (1.1) that belongs to the closure of the set of
nontrivial solutions is a bifurcation point of (1.1).

Our main purpose is the study of the existence of bifurcation points of (1.1). In
Section 2, we write our equations in the form of an operator equation F(w,σ ,α,β) = 0
and we collect basic properties of F. In Section 3, we review some of the standard notions
and facts of bifurcation theory. Section 4 is devoted to the study of stable and unstable
bifurcation in the von Kármán problem.

2. Properties of the von Kármán equations

In this section, we transform the von Kármán equations into the operator equation
F(w,σ ,α,β) = 0 in Banach spaces. We discuss a few important properties of F that we
apply to the study of bifurcation in the next section.

Let C
4,µ
0,0 (D) = { f ∈ C4,µ(D) : f|∂D = ∆ f|∂D = 0}. Set X = C

4,µ
0,0 (D)×C

4,µ
0,0 (D) and Y =

C0,µ(D)×C0,µ(D). The Hölder spaces are considered here with their standard and well-
known norms. The norms in X and Y are defined as the maximum of the norms of both
coordinates. Let F1,F2 : X ×R2

+ → C0,µ(D) be given by

F1(x, p)= ∆2w− [w,σ] + 2α∆w−αwuu
(
3w2

u +w2
v

)
−αwvv

(
3w2

v +w2
u

)− 4αwuvwuwv +βw− γw3,

F2(x, p)=−∆2σ − 1
2

[w,w],

(2.1)
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where x = (w,σ) and p = (α,β). The map F : X ×R2
+ → Y is defined by

F = (F1,F2
)
. (2.2)

We see at once that the von Kármán equations are equivalent to the operator equation

F(x, p)= 0. (2.3)

F is easily seen to be C∞-smooth, and a trivial verification shows that for every p ∈ R2
+

and h∈ X

F′x(0, p)h= (∆2z+ 2α∆z+βz,−∆2η
)
, (2.4)

where h= (z,η). We collect now several important facts concerning F′x(0, p) : X → Y . All
the details can be found in [7, 8].

Fact 2.1. F′x(0, p) : X → Y is a Fredholm map of index zero for every p ∈ R2
+.

The proof of this fact is immediate. It is based on the observation that

F′x(0, p)h=A(h) +B(h), (2.5)

whereA(h)= (∆2z,−∆2η) is an isomorphism and B(h)= (2α∆z+βz,0) is completly con-
tinuous.

Set C
2,µ
0 (D) = { f ∈ C2,µ(D) : f|∂D = 0}. To simplify notation, we use the same letter

I for the natural embedding of C
2,µ
0 (D) into C0,µ(D) and for the natural embedding of

C
4,µ
0,0 (D) into C0,µ(D).

Fix p = (α,β)∈ R2
+. Let δ = α2−β. Set a=−α−√δ and b =−α+

√
δ, provided δ ≥ 0.

Let ∆− aI ,∆− bI : C
2,µ
0 (D)→ C0,µ(D). We will describe the kernel of F′x(0, p), denoted by

N(p). Since ∆2 : C
4,µ
0,0 (D)→ C0,µ(D) is an isomorphism, it suffices to research the kernel

of ∆2 + 2α∆+βI : C
4,µ
0,0 (D)→ C0,µ(D).

Fact 2.2. (i) If δ < 0 then ker(∆2 + 2α∆+βI)= {0}.
(ii) If δ = 0 then ker(∆2 + 2α∆+βI)= ker(∆− aI).

(iii) If δ > 0 then ker(∆2 + 2α∆+βI)= ker(∆− aI)⊕ ker(∆− bI).

It is well-known that λ < 0 is an eigenvalue of ∆ : C
2,µ
0 (D)→ C0,µ(D) if and only if there

is k ∈N ∪{0} such that
√−λ is a root of the Bessel function Jk : R→ R given by

Jk(s)= 1
π

∫ π

0
cos(ssin t− kt)dt. (2.6)

Furthermore, if Jk(
√−λ) = 0 for a certain k ∈ N then dimker(∆− λI) = 2 and ker(∆−

λI) = span{Jk(
√−λr)cos(kϕ), Jk(

√−λr)sin(kϕ)}, where (r,ϕ) are polar coordinates. If
J0(
√−λ)= 0 then ker(∆− λI)= span{J0(

√−λr)}. Combining this with Fact 2.2 we con-
clude that the dimension N(p) is no greater than 4. We are able to determine when exactly
N(p) is one, two, three, or four dimensional. In this paper, we are interested in a one di-
mensional case.
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Fact 2.3. N(p) is one dimensional if and only if one of the following conditions holds:
(i) δ = 0 and J0(

√−a)= 0,
(ii) δ > 0, J0(

√−a)= 0 and Jk(
√−b) 	= 0 for every k ∈N ∪{0},

(iii) δ > 0, J0(
√−b)= 0 and Jk(

√−a) 	= 0 for every k ∈N ∪{0}.
Let 〈·,·〉 : Y ×Y → R be given by

〈
(w,σ),(z,η)

〉= 1
π

∫∫
D

(wz+ ση)dudv. (2.7)

Formula (2.7) determines the scalar product both in Y and X . Since the convergence in
Hölder spaces implies the uniform convergence, this scalar product is continuous in X
and Y . Define E : X ×R2

+ → R as follows

E(x, p)= 1
2π

∫∫
D

(
(∆w)2− (∆σ)2− [w,w]σ

)
dudv

+
1

2π

∫∫
D

(
− 2α

(
w2
u +w2

v

)
+
α

2

(
w2
u +w2

v

)2
)
dudv

+
1

2π

∫∫
D

(
βw2− 1

2
γw4

)
dudv.

(2.8)

Note that E is C∞-smooth.

Fact 2.4. F is a variational gradient of E with respect to the scalar product (2.7), that is,
E′x(x, p)h= 〈F(x, p),h〉 for all x,h∈ X and p ∈ R2

+.

Proof. Take x = (w,σ), h = (z,η) ∈ X and p ∈ R2
+. Since E is C∞-smooth, the Fréchet

derivative of E is equal to the Gateux derivative of this functional. An easy computation
shows that

d

dt
E(x+ th)|t=0 = 1

π

∫∫
D
∆w∆zdudv− 1

π

∫∫
D
∆σ∆ηdudv

− 1
π

∫∫
D
σ[w,z]dudv− 1

π

∫∫
D

1
2

[w,w]ηdudv

− 1
π

∫∫
D

2α
(
wuzu +wvzv

)
dudv

+
1
π

∫∫
D
α
(
w2
u +w2

v

)(
wuzu +wvzv

)
dudv

+
1
π

∫∫
D

(
βwz− γw3z

)
dudv.

(2.9)

The operator ∆ : C
2,µ
0 (D)→ C0,µ(D) is symmetric with respect to the scalar product in

L2(D). Hence

∫∫
D
∆w∆zdudv =

∫∫
D

(∆2w)zdudv,∫∫
D
∆σ∆ηdudv =

∫∫
D

(∆2σ)ηdudv.
(2.10)
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Applying the Fubini theorem and the method of integrating by parts we receive

∫∫
D
σ[w,z]dudv

=
∫ 1

−1

(∫ √1−u2

−√1−u2
σwuuzvvdv

)
du+

∫ 1

−1

(∫ √1−v2

−√1−v2
σwvvzuudu

)
dv

− 2
∫ 1

−1

(∫ √1−v2

−√1−v2
σwuvzuvdu

)
dv

=
∫∫

D
[w,σ]zdudv,∫∫

D

(
wuzu +wvzv

)
dudv

=
∫ 1

−1

(∫ √1−v2

−√1−v2
wuzudu

)
dv+

∫ 1

−1

(∫ √1−u2

−√1−u2
wvzvdv

)
du

=−
∫∫

D
(∆w)zdudv,∫∫

D

(
w2
u +w2

v

)(
wuzu +wvzv

)
dudv

=
∫ 1

−1

(∫ √1−v2

−√1−v2

(
w2
u +w2

v

)
wuzudu

)
dv

+
∫ 1

−1

(∫ √1−u2

−√1−u2

(
w2
u +w2

v

)
wvzvdv

)
du

=−
∫∫

D
wuu

(
3w2

u +w2
v

)
zdudv−

∫∫
D
wvv

(
3w2

v +w2
u

)
zdudv

−
∫∫

D
4wuwvwuvzdudv.

(2.11)

Consequently,

E′x(x, p)h= 1
π

∫∫
D

(
∆2w− [w,σ] + 2α∆w−αwuu

(
3w2

u +w2
v

))
zdudv

+
1
π

∫∫
D

(−αwvv
(
3w2

v +w2
u

)− 4αwuwvwuv
)
zdudv

+
1
π

∫∫
D

(
βw− γw3)zdudv+

1
π

∫∫
D

(
−∆2σ − 1

2
[w,w]

)
ηdudv

= 1
π

∫∫
D

(
F1(x, p)z+F2(x, p)η

)
dudv

= 〈F(x, p),h
〉
.

(2.12)

�

3. Introduction to bifurcation theory

We recall a few notions and facts of bifurcation theory. To shorten notation, we use the
same letters as in the von Kármán problem. The following assumptions will be needed
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throughout this section:
(i) X and Y are Banach spaces,

(ii) F is a C1-smooth map defined in a certain neighbourhood of a point (0,α0) ∈
X ×Rn to Y ,

(iii) F(0,α)= 0 for every α in a certain neighbourhood of α0.
Consider the equation

F(x,α)= 0. (3.1)

The set Γ = {(0,α) ∈ X ×Rn : F(0,α) = 0} is composed of trivial solutions of (3.1). Each
point (x,α)∈ X ×Rn such that F(x,α)= 0 and x 	= 0 is a nontrivial solution of (3.1).

Definition 3.1. (0,α0) ∈ Γ is a bifurcation point of (3.1) with respect to the set Γ if it
belongs to the closure of the set of nontrivial solutions of (3.1).

Let N(α0) = kerF′x(0,α0). If F′x(0,α0) : X → Y is a Fredholm operator of index 0 then
the necessary condition for bifurcation at (0,α0) is that dimN(α0) > 0. It is a simple con-
sequence of the theorem on the implicit function. If (0,α0) is a bifurcation point such
that N(α0) is one dimensional, then it is called a simple bifurcation point. Otherwise, it is
a multiple bifurcation point.

In this paper, we are interested in simple bifurcation points. One of the basic theorems
on simple bifurcation points was proved by Crandall and Rabinowitz in 1971. Below we
formulate this theorem in the form adopted to our needs.

Theorem 3.2. Assume that F : X ×R1 → Y satisfies the following conditions:
(1) F is a Cr-map, r ≥ 3,
(2) dimN(α0)= 1, F′x(0,α0)e = 0, e 	= 0,
(3) codimImF′x(0,α0)= 1,
(4) F′′αα(0,α0)∈ ImF′x(0,α0),
(5) F′′xα(0,α0) /∈ ImF′x(0,α0).

Under the above assumptions, the solution set of (3.1) in a certain neighbourhood of (0,α0)
is composed of Γ and a Cr−2-smooth curve Λ. Γ and Λ intersect at (0,α0) only, and Λ is
parametrized as follows

Λ= {(x̂(t), α̂(t)
)

: |t| < ε
}

, (3.2)

where x̂(0)= 0, x̂′(0)= e, and α̂(0)= α0.

Suppose that (3.1) describes a certain problem coming from the mechanics of elastic
plates and a parameter α∈ R denotes the loading. We may distinguish stable and unstable
bifurcation points. If the shape of the plate changes continuously by crossing α0, then
(0,α0) is called a stable bifurcation point. Otherwise, it is called an unstable bifurcation
point. We present now a simple way of the study of stable and unstable bifurcation points.

Let X be a linear subspace of Y . Assume that there is given a scalar product in Y ,
〈·,·〉 : Y ×Y → R, that is continuous in X and Y . Let F satisfy the following conditions:

(H1) F is a Cr-map, r ≥ 3,
(H2) dimN(α0)= 1, F′x(0,α0)e = 0, 〈e,e〉 	= 0,
(H3) F′x(0,α0) : X → Y is a Fredholm map of index 0,
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x

α0 α

Figure 3.1. Transcritical bifurcation.

(H4) F is a variational gradient of a certain Cr+1-smooth functional E with respect
to the scalar product in Y , that is, E′x(x,α)h = 〈F(x,α),h〉 for every (x,α) in the
domain of F and h∈ X ,

(H5) E′′′xxα(0,α0) 	= 0.
It is easy to check that F satisfies the assumptions of Theorem 3.2. Applying the scheme
of the finite-dimensional reduction by Lyapunov and Schmidt we reduce the problem of
existence of bifurcation from the trivial solution of (3.1) to the bifurcation problem for a
certain equation in R:

Φ′
ξ(ξ,α)= 0, (3.3)

where ξ ∈ R. There are different methods of finding Φ. We use the method described by
Sapronov. To this aim consider the equation

F(x,α) +
(
ξ −〈x,e〉)e = 0. (3.4)

By the theorem on the implicit function, there exist two open sets U ⊂ X and V ⊂ R2 such
that 0∈U and (0,α0)∈V and there exists a Cr-map x̃ : V →U such that x̃(0,α0)= 0 and
the solution set of (3.4) in U ×V is the graph of x̃. Then Φ : V → R is given by

Φ(ξ,α)=−E(x̃(ξ,α),α
)

+
1
2

(
ξ − 〈x̃(ξ,α),e

〉)2
. (3.5)

Φ is called the key function.

Theorem 3.3 (Borysowicz, see [3, 4]). Under the above assumptions, the solution set of
(3.1) in a certain neighbourhood of (0,α0) is composed of Γ and a Cr−2-smooth curve Λ. The
curves Γ and Λ intersect at (0,α0) only.

(i) If Φ′′′
ξξα(0,α0) 	= 0 and Φ′′′

ξξξ(0,α0) 	= 0 then (0,α0) is a transcritical bifurcation point
and Λ is parametrized as follows:

Λ : x̂(α)= C
(
α−α0

)
e+ o

(∣∣α−α0
∣∣), α∈ (α0− ε,α0 + ε

)
, (3.6)

where C =−2Φ′′′
ξξα(0,α0)/Φ′′′

ξξξ(0,α0) and ε > 0 is small enough (see Figure 3.1).
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x

α0 α

Figure 3.2. Postcritical bifurcation.

x

α0 α

Figure 3.3. Subcritical bifurcation.

(ii) If Φ′′′
ξξα(0,α0) 	= 0, Φ′′′

ξξξ(0,α0)= 0 and Φ(4)
ξξξξ(0,α0) 	= 0 then the phenomenon of bi-

furcation at (0,α0) depends on

D = −6Φ′′′
ξξα

(
0,α0

)
Φ(4)

ξξξξ

(
0,α0

) . (3.7)

If D > 0 then (0,α0) is a postcritical bifurcation point and Λ is parametrized as fol-
lows:

Λ : x̂(α)=±
√
D
(
α−α0

)
e+ o

(√
α−α0

)
, α∈ [α0,α0 + ε

)
, (3.8)

where ε > 0 is small enough (see Figure 3.2).
If D < 0 then (0,α0) is a subcritical bifurcation point and Λ is parametrized as

follows:

Λ : x̂(α)=±
√
|D|(α0−α

)
e+ o

(√
α0−α

)
, α∈ (α0− ε,α0

]
, (3.9)

where ε > 0 is small enough (see Figure 3.3).

The proof of this theorem is based on the Crandall-Rabinowitz theorem and the key
function method.
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x

α0 α

Figure 3.4. Unstable bifurcation.

If (3.1) describes the phenomenon of buckling of an elastic plate then on the strength
of experimental results and Theorem 3.3 we conclude that if D < 0 then (0,α0) is an un-
stable bifurcation point. That is we observe bifurcation such as in Figure 3.4.

4. Stable and unstable bifurcation points in the von Kármán equations

We come back to the von Kármán problem. Let p0 = (α0,β0)∈ R2
+ and δ0 = α2

0−β0. From
now on, we assume that (0, p0) ∈ X × R2

+ is such that δ0 ≥ 0 and N(p0) = 1. Set a0 =
−α0−

√
δ0 and b0 =−α0 +

√
δ0. By Fact 2.2,

N(p0)= ker
(
∆− c0I

)×{0} = span
{(
J0
(
r
√−c0

)
,0
)}

, (4.1)

where

c0 =


a0 if J0

(√−a0
)= 0,

b0 if J0
(√−b0

)= 0.
(4.2)

Take e ∈N(p0) such that 〈e,e〉 = 1. From the above it follows that e = (e1,0), ∆e1 = c0e1

and there exists c1 ∈ R \ {0} such that e1(u,v)= c1J0(r
√−c0). Consider the equation

F
(
x,α,β0

)= 0 (4.3)

with F defined by (2.2). Let

γ(p0)= αc2
0

∫ 1
0 r
(
J ′0
(
r
√−c0

))4
dr− 2c3

0

∫ 1
0 r
(
∆−1

(
(1/r)J ′′0

(
r
√−c0

)
J ′0
(
r
√−c0

)))2
dr∫ 1

0 rJ
4
0

(
r
√−c0

)
dr

.

(4.4)

Theorem 4.1. If γ > γ(p0) then (0,α0) is a subcritical (unstable) bifurcation point of (4.3),
and if γ < γ(p0) then (0,α0) is a postcritical bifurcation point of (4.3).

Proof. Let Φ be the key function for (4.3), that is,

Φ
(
ξ,α,β0

)=−E(x̃(ξ,α,β0
)
,α,β0

)
+

1
2

(
ξ − 〈x̃(ξ,α,β0

)
,e
〉)2

, (4.5)
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where x̃(·,·,β0) is the implicit function of the equation F(x,α,β0) + (ξ − 〈x,e〉)e = 0
such that x̃(0,α0,β0)= 0. An easy computation based on (4.5) shows that

Φ′′′
ξξα

(
0,α0,β0

)=−E′′′xxα(0,α0,β0
)
(e,e,1),

Φ′′′
ξξξ

(
0,α0,β0

)=−E′′′xxx(0,α0,β0
)
(e,e,e),

Φ(4)
ξξξξ

(
0,α0,β0

)=−E(4)
xxxx

(
0,α0,β0

)
(e,e,e,e)− 3E′′′xxx

(
0,α0,β0

)
(e,e, y),

(4.6)

where y = x̃′′ξξ(0,α0,β0). Let us denote y = (y1, y2), yi ∈ C0,µ(D) for i = 1,2. Applying
(2.8) we receive

Φ′′′
ξξα

(
0,α0,β0

)=−2c0 > 0,

Φ′′′
ξξξ

(
0,α0,β0

)= 0,

Φ(4)
ξξξξ

(
0,α0,β0

)= 1
π

∫∫
D

(
6γe4

1− 6α
((
e1
)2
u +

(
e1
)2
v

)2− 3(∆y2)2
)
dudv.

(4.7)

Differentiating the equality F(x̃(ξ,α,β0),α,β0) + (ξ − 〈x̃(ξ,α,β0),e〉)e = 0 twice with re-
spect to ξ at (0,α0), we receive

F′′xx
(
0, p0

)
(e,e) +F′x

(
0, p0

)
y−〈y,e〉e= 0, (4.8)

and hence 〈
F′′xx
(
0, p0

)
(e,e),e

〉
+
〈
F′x
(
0, p0

)
y,e
〉−〈y,e〉 = 0,

E′′′xxx
(
0, p0

)
(e,e,e) +

〈
F′x
(
0, p0

)
e, y

〉−〈y,e〉 = 0,

〈y,e〉 = 0.

(4.9)

From this it follows that F′x(0, p0)y =−F′′xx(0, p0)(e,e), hence that F′x(0, p0)y = (0,[e1,e1]),
and finally that ∆2y2 = −[e1,e1]. Consequently, substituting e1(u,v) = c1J0(r

√−c0), we
receive

Φ(4)
ξξξξ

(
0,α0,β0

)= 1
π

∫∫
D

(
6γe4

1− 6α
((
e1
)2
u +

(
e1
)2
v

)2
)
dudv

− 1
π

∫∫
D

3
(
∆−1[e1,e1

])2
dudv

= c4
1

π

∫∫
D

(
6γJ4

0

(
r
√−c0

)− 6αc2
0

(
J ′0
(
r
√−c0

))4
)
dudv

+
c4

1

π

∫∫
D

12c3
0

(
∆−1

(
1
r
J ′′0

(
r
√−c0

)
J ′0
(
r
√−c0

)))2

dudv

= 12γc4
1

∫ 1

0
rJ4

0

(
r
√−c0

)
dr− 12αc4

1c
2
0

∫ 1

0
r
(
J ′0
(
r
√−c0

))4
dr

+ 24c4
1c

3
0

∫ 1

0
r
(
∆−1

(
1
r
J ′′0

(
r
√−c0

)
J ′0
(
r
√−c0

)))2

dr.

(4.10)

Let D =−6Φ(4)
ξξξξ(0,α0,β0)/Φ′′′

ξξα(0,α0,β0). Then D > 0 if and only if γ < γ(p0), and D < 0
if and only if γ > γ(p0). By Theorem 3.3, the proof is finished. �
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Consequently, we receive the following theorem.

Theorem 4.2. If γ 	= γ(p0) then (0, p0) is a bifurcation point of (2.3). Moreover, if γ > γ(p0)
then (0, p0) is a subcritical (unstable) bifurcation point with respect to α, and if γ < γ(p0)
then (0, p0) is a postcritical bifurcation point with respect to α.
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Comput. 18 (1997), no. 6, 1737–1766.

[6] K. O. Friedrichs and J. J. Stoker, The non-linear boundary value problem of the buckled plate,
Amer. J. Math. 63 (1941), 839–888.

[7] J. Janczewska, Bifurcation in the solution set of the von Kármán equations of an elastic disk lying
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E-mail address: janczewska@mifgate.pg.gda.pl

mailto:andbor@math.univ.gda.pl
mailto:janczewska@mifgate.pg.gda.pl

