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We consider eigenvalues of elliptic boundary value problems, written in variational form,
when the leading coefficients are perturbed by terms which are small in some integral
sense. We obtain asymptotic formulae. The main specific of these formulae is that the
leading term is different from that in the corresponding formulae when the perturbation
is small in L∞-norm.
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1. Introduction

Here we consider eigenvalues of boundary value problems for elliptic partial differen-
tial equations in variational form with measurable coefficients. The main goal is to de-
scribe asymptotics of eigenvalues under small perturbations of coefficients. A specific of
the problem is that we suppose that perturbations are small only in some integral sense.
Such class of perturbations is quite natural in applications. For example, if coefficients
take different values on different parts of the domain and we will study what happened
if boundaries between these parts are changed slightly, then we have smallness of the
perturbations in Lq-norm with q <∞ but not in L∞-norm and we cannot apply in this
situation well-known classical results of perturbation theory, see Kato [5], [4, Chapter 8].
Moreover, it appears that even the main term in the asymptotic formula for an eigenvalue
is different from the classical one. In order to explain the difference, let us consider the
following eigenvalue problem for a symmetric matrix:

(
λI +B C
C∗ A+D

)(
u

v

)
= μ

(
u

v

)
, (1.1)

where I is the unit matrix, B, A, and D are symmetric matrices. The matrices B, D, and C
are considered as small perturbation matrices. Then, as is well known, an approximation
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2 Asymptotics of eigenvalues

to an eigenvalue μ located near λ is given by λ+ ν, where ν is an eigenvalue to the matrix
B. Another possibility is to write (1.1) as two equations and then solve the second one
with respect to v and insert this in the first equation. We obtain the eigenvalue problem(
λI +B−C(A+D− μ)−1C∗)u = μu with respect to μ, which nonlinearly depends on μ.

Now, as an approximation to the eigenvalue μ located near λ, we can take λ+ ν′, where ν′

is an eigenvalue of

B−C(A+D− λ)−1C∗. (1.2)

Usually ν− ν′ gives a higher-order approximation to the eigenvalue μ. But, it appears that
in the class of problems under consideration, ν and ν− ν′ may have the same order.

In Section 2, we present an abstract version of our asymptotic result. We consider two
closed, positively definite forms a and b in a Hilbert space H with domains Ha and Hb

with Hb densely imbedded in Ha. The main assumptions on the forms a and b are Ha is
compactly imbedded into H , all eigenvectors corresponding to a belong to Hb, and that
c0a(u,u) ≤ b(u,u) for all u ∈ Hb. Then under a certain smallness assumption on b− a,
see (2.9), we obtain the asymptotic formula (2.18) for all eigenvalues of the form b which
are located near a fixed eigenvalue λm of the form a. The asymptotic parameters in this
asymptotic formula are numbers ρm and σm defined by (2.16) and (2.17). We obtain also
an asymptotic formula for corresponding eigenvectors.

In Section 3, we present our main application of the above asymptotic formula. We
consider an elliptic quadratic form

a(u,v)=
∑

|α|=|β|=m

∫
Ω

(
Aαβ(x)∂

β
xu,∂αxv

)
dx (1.3)

defined on (W̊m,2(Ω))d, where Ω is a bounded domain in Rn. The only assumptions on
the coefficients Aαβ and the domain Ω are the ellipticity condition (3.1) and that the
eigenfunctions corresponding to these forms belong to (Wm,q(Ω))d with some q ≥ 2.
Certainly, the last assumption is true for q = 2. If m= d = 1 and Ω is sufficiently smooth,
then, as it follows from [1, 2] (for n= 2) and from [9] (for arbitrary n), the eigenfunctions
belong always to W1,q(Ω) with a certain q > 2 depending only on the ellipticity constants.
Other cases of validity of the above property for operators with discontinuous coefficients
are discussed in Remarks 3.1 and 3.2. Parallel to (1.3), we consider the form

b(u,v)=
∑

|α|=|β|=m

∫
Ω

(
Bαβ(x)∂

β
xu,∂αxv

)
dx. (1.4)

The main assumptions on the form b are the ellipticity condition (3.3) and the smallness
of the constant

κ =
⎛
⎝ ∑
|α|=|β|=m

∫
Ω

∣∣Bαβ(x)−Aαβ(x)
∣∣q/(q−2)

dx

⎞
⎠

(q−2)/q

. (1.5)

Under these conditions, we show that the asymptotic formula (3.16) is valid for eigenval-
ues of the form b located near a fixed eigenvalue λm of the form a.
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We also consider the case when the coefficients Bαβ are bounded. Under some natural
assumption on solutions to the problem b(u,v)= ( f ,v), we simplify the general asymp-
totic formula for eigenvalues. At the end of Section 3, we give an example demonstrating
that the leading term in the formulae (2.18) and (3.16), which differs from the classical
one for L∞-perturbations, is proper for such class of problems.

2. An abstract version of asymptotic formula for eigenvalues

Let H be a Hilbert space with the inner product (·,·) and the norm ‖ · ‖ and let a(·,·) be
a sesquilinear, positive definite, closed form with the domain Ha, which is supposed to be
dense and compactly imbedded in H . Consider the eigenvalue problem

a(u,v)= λ(u,v) ∀v ∈Ha (2.1)

and denote by 0 < λ1 < λ2 < ··· the eigenvalues of problem (2.1). Clearly, they have finite
multiplicities and λj →∞ as j →∞. We denote by X1, X2, . . . corresponding eigenspaces
and set J j = dimXj .

Consider also a sesquilinear, positive definite, closed form b(·,·) with domain Hb ⊂
Ha. We suppose that linear combinations of vectors from Xj belong to Hb and are dense
there and that there exists a positive constant c0 such that

c0a(u,u)≤ b(u,u) ∀u∈Hb. (2.2)

Our main concern is the following spectral problem:

b(U ,v)= μ(U ,v) ∀v ∈Hb. (2.3)

Clearly, the spectrum of this problem consists of isolated eigenvalues of finite multiplicity.
Let us fix an index m. Our goal is to describe eigenvalues of problem (2.3) located in a
neighborhood of λm.

We choose N such that N ≥m and

λm+1 ≤ c0λN+1 (2.4)

and introduce spaces

�N =
N∑
j=1

Xj (2.5)

and �N which are equal to the closure in Hb of all linear combinations of vectors from
Xj , j ≥N + 1. Clearly, Hb is the direct sum of �N and �N .

We supply the Hilbert spaces Ha and Hb with the innner products (·,·)a = a(·,·)
and (·,·)b = b(·,·), respectively, and the corresponding norms are denoted by ‖ · ‖a and
‖ · ‖b. Since Hb is a direct sum of the finite dimensional space �N and the infinite dimen-
sional space �N , we can introduce an equivalent norm

‖w‖N =
∥∥w1

∥∥
a +

∥∥w2
∥∥
b, w =w1 +w2, w1 ∈�N , w2 ∈�N . (2.6)



4 Asymptotics of eigenvalues

Proposition 2.1. Let

p(u,v)= b(u,v)− a(u,v) for u,v ∈Hb. (2.7)

Put

εm =min

{
λm− λm−1

λm + λm+1
,
λm+1− λm
λm + 2λm+1

}
. (2.8)

If

∣∣p(u,v)
∣∣≤ ε‖u‖a‖v‖N ∀u∈�N , v ∈Hb (2.9)

with ε < εm, then the interval ((1 + ε)λm−1, (1− 2ε)λm+1) contains exactly Jm eigenvalues of
the spectral problem (2.3). Moreover, these eigenvalues lie in the interval [λm(1− ε),λm(1 +
ε)]. If m= 1, then one should put in the above formulae λ0 = 0.

Proof. (i) First, we show that

b(u,u)≥ (1− 2ε)‖u‖2 (2.10)

for all u ∈ �m. We write u as u = V + W , where V ∈∑N
j=m+1 Xj and W ∈ �N . Since

b(u,u)= b(W ,W) + b(V ,V) + 2�p(V ,W), it follows from (2.9) and from the definition
(2.6) that

b(u,u)≥ ‖W‖2
b +‖V‖2

a− ε‖V‖2
a− 2ε‖V‖a‖W‖b

≥ (1− ε)‖W‖2
b + (1− 2ε)‖V‖2

a.

This together with (2.2) and (2.4) gives

b(u,u)≥ (1− ε)c0λN+1‖W‖2 + (1− 2ε)λm+1‖V‖2 ≥ (1− 2ε)λm+1‖u‖2, (2.11)

which gives (2.10) provided ε ≤ ε0, where

(
1− 2ε0

)
λm+1 ≥ λm + λm+1

2
. (2.12)

This implies that the interval (0,(1− 2ε)λm+1) contains at most J1 + ···+ Jm eigenvalues
of problem (2.3).

(ii) Let u∈ Xm. Then

b(u,u)= λm‖u‖2 + p(u,u) (2.13)

and by (2.9),

∣∣b(u,u)− λm‖u‖2
∣∣≤ λmε‖u‖2, (2.14)

which implies that the interval [λm(1− ε),λm(1 + ε)] contains at least Jm eigenvalues of
problem (2.3).
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(iii) Finally, let u∈ X1 + ···+Xm−1. Then

b(u,u)≤ λm−1‖u‖2 + ε‖u‖2
a ≤ (1 + ε)λm−1‖u‖2, (2.15)

which shows that the interval (0,(1 + ε)λm−1) contains at least J1 + ···+ Jm−1 eigenvalues
of problem (2.3). Now the required assertions follow from (i)–(iii).

In order to describe more explicitly the asymptoics of the eigenvalues of problem (2.3)
located near λm, we introduce the numbers ρm and σm as follows. Let Ym be the closure in
Hb of all linear combinations of vectors from Xk with k 
=m. Then ρm and σm are defined
as the best constants in the inequalities

∣∣p(u,v)
∣∣≤ ρm‖u‖a‖v‖a ∀u,v ∈ Xm, (2.16)∣∣p(u,w)

∣∣≤ σm‖u‖a‖w‖N ∀u∈ Xm, w ∈ Ym. (2.17)

Clearly, ρm ≤ ε and σm ≤ ε, where ε is the constant in (2.9). �

Theorem 2.2. Let (2.9) be satisfied with ε < εm. Then the following assertions are valid.
(i) There exists a positive constant c depending only on the form such that the inter-

val (λm− c(ρm + σ2
m),λm + c(ρm + σ2

m)) contains exactly Jm eigenvalues μmj , j = 1, . . . , Jm, of
problem (2.3). Moreover,

μmj = λm + νmj +O
(
σ2
m

(
ρm + σ2

m

))
, (2.18)

where {νmj}Jmj=1 are eigenvalues of the sesquilinear form

Xm �V −→ p(V ,V) + p
(
Wm(V),V

)
, (2.19)

where Wm =Wm(V)∈ Ym is the solution of the equation

b
(
Wm,w

)− λm
(
Wm,w

)=−p(V ,w) ∀w ∈ Ym. (2.20)

This solution satisfies the estimate

∥∥Wm

∥∥
N ≤ cσm‖V‖a. (2.21)

(ii) Let the numbers νm1, . . . ,νmJm be different and

∣∣νmj − νmk

∣∣≥ h
(
ρm + σ2

m

)
σ2
m

(
ρm + σ2

m

)
for j 
= k (2.22)
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with h(s)→∞ as s→ 0, then the corresponding eigenvectors to μmj are given by

Ψmj =Φmj +Wmj +Rmj , (2.23)

where Φmj is the eigenvector of the sesquilinear form (2.20) corresponding to the eigenvalue
νmj normed by ‖Φmj‖H = 1 and Wmj ∈ Ym solves (2.20) with V = Φmj . The remainder
Rmj satisfies

∥∥Rmj

∥∥
N ≤ c

(
1

h
(
ρm + σ2

m

) + σm
(
ρm + σ2

m

))
. (2.24)

Proof. We represent a solution to problem (2.3) in the form

U =V +W with V ∈ Xm, W ∈ Ym (2.25)

and split (2.3) into two equations

a(V ,v) + p(V ,v) + p(W ,v)= μ(V ,v) ∀v ∈ Xm, (2.26)

b(W ,w)−μ(W ,w)=−p(V ,w) ∀w ∈ Ym. (2.27)

(1) Let us show that the equation

b(W ,w)−μ(W ,w)= f (w) ∀w ∈ Ym (2.28)

has a unique solution W ∈ Ym, where f is an antilinear, bounded functional on Ym,
provided μ is sufficiently close to λm. Let X ′ = X1 + ···+Xm−1 +Xm + ···+XN . Then Ym

is the direct sum of X ′ and �N and we can represent W as W1 +W2 with W1 ∈ X ′ and
W2 ∈�N . Now, (2.28) is equivalent to

a
(
W1,w1

)−μ
(
W1,w1

)
+ p

(
W1 +W2,w1

)= f
(
w1
) ∀w1 ∈ X ′, (2.29)

b
(
W2,w2

)−μ
(
W2,w2

)
+ p

(
W1,w2

)= f
(
w2
) ∀w2 ∈�N . (2.30)

Consider first the equation

b
(
W2,w2

)−μ
(
W2,w2

)= F
(
w2
) ∀w2 ∈�N , (2.31)

where F is an antilinear functional on �N . We suppose that |F(w2)| ≤ Fb‖w2‖b. By (2.2)
and (2.4),

b
(
w2,w2

)−μ
∥∥w2

∥∥2 ≥ b
(
w2,w2

)− μ

λN+1
a
(
w2,w2

)≥ (1− μ

λm+1

)
b
(
w2,w2

)
. (2.32)

Assuming that μ≤ (λm + λm+1)/2, we get

b
(
w2,w2

)−μ
∥∥w2

∥∥2 ≥ 1
2

(
1− λm

λm+1

)
b
(
w2,w2

)
. (2.33)
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Therefore, (2.31) is uniquely solvable, taking w2 =W2 in (2.31) and using (2.33), we
obtain

∥∥W2
∥∥
b ≤

2λm+1

λm+1− λm
Fb. (2.34)

Furthermore, consider the equation

a
(
W1,w1

)−μ
(
W1,w1

)= h
(
w1
) ∀w1 ∈ X ′, (2.35)

where h is an antilinear functional on X ′ with the norm ha, that is, |h(w1)| ≤ ha‖w1‖a for
all w1 ∈ X ′. Clearly, this problem is uniquely solvable for λm−1 < μ < λm+1 and

∥∥W1
∥∥
a ≤max

(
λm−1

μ− λm−1
,

λm+1

λm+1−μ

)
ha. (2.36)

By (2.6) and (2.9), the perturbations p(W1 +W2,w1) and p(W1,w2) in (2.29) and (2.30)
admit the estimates
∣∣p(W1 +W2,w1

)∣∣≤ ε
(∥∥W1

∥∥
a +

∥∥W2
∥∥
b

)∥∥w1
∥∥
a,

∣∣p(W1,w2
)∣∣≤ ε

∥∥W1
∥∥
a

∥∥w2
∥∥
b.

(2.37)

Having in mind estimates (2.34) and (2.36) for problems (2.31) and (2.35), which repre-
sent the leading terms in (2.29) and (2.30), we see that there exists a constant ε0 depending
only on λm−1, λm and λm+1 such that if ε ≤ ε0 and

∣∣μ− λm
∣∣≤ 1

2
min

(
λm+1− λm,λm− λm−1

)
, (2.38)

then the system (2.29), (2.30) has a unique solution (W1,W2), which is subject to the
estimate

‖W‖N =
∥∥W1

∥∥
a +

∥∥W2
∥∥
b ≤ c

(
fa + fb

)
, (2.39)

where | f (w1)| ≤ fa‖w1‖a for all w1 ∈ X ′ and | f (w2)| ≤ fb‖w2‖b for all w2 ∈�N . Here c
is a positive constant depending only on λm−1, λm and λm+1.

(2) Let us turn to (2.27). By (2.17),
∣∣p(V ,w1

)∣∣≤ σm‖V‖a
∥∥w1

∥∥
a,

∣∣p(V ,w2
)∣∣≤ σm‖V‖a

∥∥w2
∥∥
b (2.40)

for w1 ∈ X ′ and for w2 ∈�N , respectively. Therefore, problem (2.27) has a unique solu-
tion and using (2.39), we obtain

‖W‖N ≤ cσm‖V‖a. (2.41)

So, we can consider W =W(V) as a linear bounded operator from Xm into Ym. Assuming
‖V‖a = 1, taking v = V in (2.26), and using (2.41) together with (2.16) and (2.17), we
arrive at ∣∣∣∣1− μ

λm

∣∣∣∣≤ c
(
ρm + σ2

m

)
. (2.42)
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In order to derive an asymptotic representation for μ, we proceed as follows. We represent
the solution W of (2.27) as Wm +Wr , where Wm satisfies (2.20) and

b
(
Wr ,w

)−μ
(
Wr ,w

)= (μ− λm
)(
Wm,w

) ∀w ∈ Ym. (2.43)

Similar to (2.41), we get (2.21). Therefore, Wm =Wm(V) is a linear, bounded oper-
ator from Xm to Ym. Moreover, taking in (2.20) w =Wm, we conclude that the form
p(Wm(V),V) is real valued on Xm. Using (2.42) together with (2.21), we obtain

∥∥Wr

∥∥
N ≤ c

(
ρm + σ2

m

)∥∥Wm

∥∥
N ≤ cσm

(
ρm + σ2

m

)‖V‖a. (2.44)

Now (2.26) can be written as

(
λm−μ

)
(V ,v) + p(V ,v) + p

(
Wm,v

)=−p(Wr ,v
) ∀v ∈ Xm. (2.45)

By (2.44) and (2.17),

∣∣p(Wr(V),v
)∣∣≤ cσ2

m

(
ρm + σ2

m

)‖V‖a‖v‖a. (2.46)

Since the sesquilinear form p(V ,v) + p(Wm(V),v) corresponds to a selfadjoint operator
on Xm, there exists an ON-basis Φm1, . . . ,ΦmJm in Xm with respect to the inner product
(·,·), such that

p
(
Φmj ,Φmk

)
+ p

(
Wm

(
Φmj

)
,Φmk

)= δkj νmj for j 
= k. (2.47)

Therefore, the eigenvalues μmj , j = 1, . . . , Jm, satisfy (2.18).
(3) Let us prove (ii). Let μmj be an eigenvalue of (2.3) satisfying (2.18) and let Ψmj be

a corresponding eigenfunction subject to ‖Ψmj‖ = 1. We represent it as

Ψmj =
Jm∑
k=1

ck
(
Φmk +Wm

(
Φmk

)
+Wr

(
Φmk

))
, (2.48)

where Wm, Wr , and Φmj are defined in (2). We will suppose that the coefficient cj is a

positive number or zero. Taking in (2.45) V =∑Jm
k=1 ckΦmk, μ = μmj , and v = Φmk, we

obtain

(
λm + νmk −μmj

)
ck =−p

(
Wr(V),Φmk

)
, k = 1, . . . , Jm, (2.49)

where νmk is given by (2.47). From (2.22) and (2.46), it follows that

ck =O

(
1

h
(
ρm + σ2

m

)
)

for k 
= j. (2.50)

Since ‖Ψmj‖ = 1, we get that

cj = 1 +O

(
1

h
(
ρm + σ2

m

)
)
. (2.51)
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Using these relations for the coefficients together with estimates (2.21) and (2.44), we
derive from (2.48) representation (2.23) and estimate (2.24). The proof is complete. �

Remark 2.3. Let us make some comments on the asymptotic formula (2.18). The main
ingredient here is the finite dimensional matrix (2.19), which is built through solving
problem (2.20) with a known invertible operator and right-hand sides. Thus, the con-
struction of the matrix (2.19) involves only solving a finite number of well-defined prob-
lems with known coefficients and right-hand sides and the eigenvalues of this symmetric
matrix deliver the main asymptotic term in (2.18). The class of perturbations covered
by Theorem 2.2 is quite large and one cannot expect an explicit asymptotic form for the
leading term as we have in usual asymptotic formulae for perturbations of an individual
eigenvalue. But if a class of perturbations is more restrictive, then one can use various
asymptotic methods for solving asymptotically problem (2.20) and constructing asymp-
totically matrix (2.19), which will lead to more explicit asymptotic representation for μmj .

3. Perturbations of elliptic problems with discontinuous coefficients

(1) Unbounded perturbations. Let Ω be a bounded domain in Rn, n≥ 2. Let also m and
d be positive integers and let H = (L2(Ω))d. We consider the sesquilinear form (1.3) on

Ha = (W̊m,2(Ω))d, where Aαβ are bounded, measurable d × d-matrices on Ω and (·,·)
is the standard inner product in CN . We suppose that Aαβ = Aβα, and that there exist
constants C1 and C2, 0 < C1 ≤ C2, such that

C1

∑
|α|=m

∣∣ξα∣∣2 ≤
∑

|α|=|β|=m

(
Aαβ(x)ξβ,ξα

)
dx ≤ C2

∑
|α|=m

∣∣ξα∣∣2
(3.1)

for all complex numbers ξα and for all x ∈Ω. By this assumption, the form a(u,v) defines
an equivalent inner product on Ha. Consider the eigenvalues of the problem

a(u,v)= λ(u,v) ∀v ∈Ha. (3.2)

We suppose that Ω satisfies the following condition: the embedding operator from Ha

into L2(Ω)N is compact. This guarantees that the spectrum of problem (3.2) consists of
isolated eigenvalues of finite multiplicities with the only limit point at infinity. Let us
denote by 0 < λ1 < λ2 < ··· eigenvalues of the problem (3.2) and by Jk the multiplicity
of λk, and by Xk the eigenspace corresponding to λk. We assume that all eigenfunctions

belong to (W̊m,q(Ω))d with some 2≤ q ≤∞.

Remark 3.1. Certainly, if ∂Ω is smooth and the coefficients Aαβ are smooth in Ω, then
eigenfunctions are smooth also and we can take q = ∞. For second-order scalar ellip-
tic operators with discontinuous coefficients, it is known that eigenfunctions belong to
W1,2+ε(Ω) with a certain ε > 0, see [1, 2, 9]. From [10], see also [3, 6, 11], it follows that
the same is true for higher-order systems, provided the boundary has some smoothness.
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We introduce also the form (1.4), where Bαβ are measurable d× d-matrices on Ω and
Bαβ = Bβα. We assume that

C1

∑
|α|=m

∣∣ξα∣∣2 ≤
∑

|α|=|β|=m

(
Bαβ(x)ξβ,ξα

)
(3.3)

for all complex numbers ξα and for all x ∈ Ω. We will consider the form b as a small
perturbation of a in the following sense. Let

κs =
⎛
⎝ ∑
|α|=|β|=m

∫
Ω

∣∣Bαβ(x)−Aαβ(x)
∣∣sdx

⎞
⎠

1/s

(3.4)

if s∈ [1,∞) and

k∞ = esssupΩ

∑
|α|=|β|=m

∣∣Bαβ(x)−Aαβ(x)
∣∣. (3.5)

Then we assume that the quantity

κ = κq/(q−2) (3.6)

is small.
The form b(U ,U) is well defined on all elements from (C∞0 (Ω))d and we denote by Hb

the closure of these elements in the norm
(
b(U ,U)

)1/2
. Clearly, Hb ⊂Ha and all elements

from
∑

k Xk belong to Hb. In parallel to (3.2), we consider also the following eigenvalue
problem:

b(U ,v)= μ(U ,v) ∀v ∈Hb. (3.7)

Since the embedding operator from Hb into (L2(Ω))d is also compact, the spectrum of
this problem consists of isolated eigenvalues of finite multiplicities with the only limit
point at infinity.

By (3.1) and (3.3),

c0a(u,u)≤ b(u,u) ∀u∈Hb (3.8)

with c0 = C1/C2. Our goal is to describe the eigenvalues of problem (3.7) situated near
λm. We chose N according to (2.4) and put

p(u,v)= b(u,v)− a(u,v)=
∑

|α|=|β|=m

∫
Ω

((
Bαβ(x)−Aαβ

)
∂
β
xu,∂αxv

)
dx. (3.9)

Since for almost every x ∈Ω,

∣∣∣∣∣
∑

|α|=|β|=m

((
Bαβ(x)−Aαβ

)
ξα,ξβ

)∣∣∣∣∣≤ ch1/2(x)‖ξ‖
( ∑
|α|=|β|=m

((
Bαβ(x) +Aαβ

)
ξα,ξβ

))1/2

,

(3.10)
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where

h(x)=
∑

|α|=|β|=m

∣∣Bαβ(x)−Aαβ(x)
∣∣, (3.11)

we have that

∣∣p(u,v)
∣∣≤ cκ1/2

( ∑
|α|=m

∫
Ω

∣∣∂αxu∣∣pdx
)1/p(

b(v,v)
)1/2

(3.12)

for all u∈�N and v ∈Hb, where κ is introduced by (3.6). This implies that

∣∣p(u,v)
∣∣≤ C(N ,q)κ1/2‖u‖a‖v‖b (3.13)

for all u∈�N and v ∈�N . If u,v ∈�N , then using u,v ∈ (Wm,q(Ω))d, we obtain

∣∣p(u,v)
∣∣≤ C(N ,q)κ‖u‖a‖v‖a. (3.14)

Since we have assumed that the number κq is small enough, it follows from Proposition

2.1 that there are exactly Jm eigenvalues {μmj}Jmj=1 of problem (3.7) in a neighborhood of
λm. By (3.13) and (3.14), the numbers ρm and σm in (2.16) and (2.17) admit the estimate

ρm + σ2
m ≤ cκ. (3.15)

Now, we are in a position to apply Theorem 2.2. By this theorem,

μmj = λm + νmj +O
(
κ

2), j = 1, . . . , Jm, (3.16)

where νmj are eigenvalues of the form (2.19).

(2) Bounded perturbations. Let us consider the same b under the additional assumption

C1

∑
|α|=m

∣∣ξα∣∣2 ≤
∑

|α|=|β|=m

(
Bαβ(x)ξβ,ξα

)≤ C2

∑
|α|=m

∣∣ξα∣∣2
. (3.17)

Here and in (3.1), C1 and C2 are fixed constants. In this case, Hb =Ha = (W̊m,2(Ω))d and
the corresponding norms are equivalent. The main assumption now is the following. Let
u∈Ha be the solution of the equation

b(u,v)= ( f ,v) ∀v ∈Ha, (3.18)

where f ∈ (Wm,2(Ω))d. Then there exists q > 2 depending only on the ellipticity con-
stants C1 and C2 such that u∈ (Wm,q(Ω))d and

‖u‖(Wm,q(Ω))d ≤ c‖ f ‖(Wm,2(Ω))d . (3.19)

Remark 3.2. To establish such property for operators with discontinuous coefficients,
one can use the following abstract interpolation result. Let T : (X0,X1)→ (Y0,Y1) be a
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bounded linear operator acting on two Banach pairs. Let also [X0,X1]θ and [Y0,Y1]θ ,
θ ∈ (0,1), be interpolation spaces. If

T :
[
X0,X1

]
θ −→

[
Y0,Y1

]
θ (3.20)

is invertible for some θ = θ0 ∈ (0,1), then there exists ε > 0 depending on the norms
of T and the inversion to (3.20) for θ = θ0, and on θ0 such that the operator (3.20) is
invertible for all θ ∈ [θ0− ε,θ0 + ε]. This theorem is due to Shneiberg [10], various gen-
eralizations can be found in [3, 6, 11] (see also references therein). Using this result, one
can obtain that the solution of the problem (3.18) even with f ∈ (W−m,q(Ω))d belongs
to (Wm,q(Ω))d with a certain q > 2 depending on the ellipticity constants C1 and C2, pro-
vided the boundary ∂Ω has some smoothness, in order to apply interpolation results for

W̊m,p-spaces.

Certainly, the above regularity property should be valid for the form a because it also
satisfies the estimates (3.1). Clearly, all eigenfuctions of (3.2) belong to (Wm,q(Ω))d and
we can apply previous result on asymptotics of eigenvalues of (3.7). But in this case, we
can construct a simpler approximation to Wm =Wm(V). Indeed, we represent it as

Wm = Pwm + rm, (3.21)

where P is the orthogonal projector in Ha onto Ym with respect to the inner product
a(·,·), wm satisfies

b
(
wm,w

)=−p(V ,w) ∀w ∈Ha (3.22)

and rm ∈ Ym is a solution of

b
(
rm,w

)− λm
(
rm,w

)= λm
(
Pwm,w

) ∀w ∈ Ym. (3.23)

We can extend this relation for all w ∈ Ha but then we should add an additional term
(Φ,w) with a Φ∈ Xm,

b
(
rm,w

)− λm
(
rm,w

)= λm
(
Pwm,w

)
+ (Φ,w) ∀w ∈Ha. (3.24)

Taking in the last relation w =Φ and using orthogonality of Φ to Ym with respect to the
inner products (·,·) and a(·,·), we obtain ‖Φ‖2

(L2(Ω))d = p(rm,Φ). By (3.19) applied to

equation a(Φ,v)= λm(Φ,v), we conclude that Φ∈ (Wm,q(Ω))d and

‖Φ‖(Wm,q(Ω))d ≤ C‖Φ‖a = Cλ1/2
m ‖Φ‖(L2(Ω))d . (3.25)

Moreover,

∣∣p(rm,Φ
)∣∣≤ Cκ

∥∥rm∥∥(Wm,q(Ω))d‖Φ‖(Wm,q(Ω))d , (3.26)

where κ is given by (3.6). Therefore,

‖Φ‖(L2(Ω))d ≤ cκ
∥∥rm∥∥(Wm,q(Ω))d . (3.27)
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Applying this estimate together with (3.19) to (3.24) and using smallness of κ, we obtain

∥∥rm∥∥(Wm,q(Ω))d ≤ c
(∥∥rm∥∥a +

∥∥wm

∥∥
a

)
. (3.28)

Using estimate (2.39) for the solution of (2.28), we get

∥∥rm∥∥a ≤ c
∥∥wm

∥∥
(L2(Ω))d . (3.29)

Therefore,

∥∥rm∥∥(Wm,q(Ω))d ≤ c
∥∥wm

∥∥
a. (3.30)

From (3.22), we derive

∥∥wm

∥∥
a ≤ Cκ

1/2‖V‖a, (3.31)

which together with (3.30) leads to

∥∥rm∥∥(Wm,q(Ω))d ≤ Cκ
1/2‖V‖a. (3.32)

Since estimate (3.26) with Φ replaced by V is valid for p(rm,V), we have

∣∣p(rm,V
)∣∣≤ Cκ

3/2‖V‖2
a. (3.33)

Thus the formula (3.16) in this case can be written as

μmj = λm + ν′mj +O
(
κ

3/2), (3.34)

where ν′mj are eigenvalues of the form

Xm �V −→ p(V ,V) + p
(
wm(V),V

)
, (3.35)

where wm solves (3.22).
We note that in order to get an asymptotic approximation of ν′mj , it suffices to obtain

an asymptotic representation for solution wm to problem (3.22). For this goal, one can
use various asymptotic methods, see, for example, [7, 8].

(3) Example. The eigenproblem for finding ν′mj contains two terms, see (3.35). In the
following example, we show that contribution of these terms to ν′mj may have the same
order and in general, one cannot neglect one of them. Let Ω be an interval (0,1) in R and

a(u,v)=
∫ 1

0
A(t)u′(t)v′(t)dt, (3.36)

where A is a measurable function on (0,1), a0 ≤ A(t)≤ a1, with some positive constants
a0 and a1. Let also

b(u,v)=
∫ 1

0
B(t)u′(t)v′(t)dt, (3.37)
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where B is a measurable function such that B(t)≥ A(t). One can check that in this case,
estimate (3.19) is valid with m= 1 and q =∞. Therefore,

κ =
∫ 1

0

∣∣(B−A)(t)
∣∣dt (3.38)

is supposed to be small. Let λ be the first eigenvalue of (3.2). This eigenvalue is positive
and simple and the corresponding eigenfunction Φ is positive (up to a constant factor)
in Ω. We suppose that ‖Φ‖L2(0,1) = 1. Equation (3.22) for the function w takes the form

d

dt

(
B(t)

d

dt
w(t)

)
= d

dt

(
(B−A)(t)

d

dt
Φ(t)

)
(3.39)

for 0 < t < 1 and w(0)=w(1)= 0. The solution of (3.39) is

w(t)=
∫ t

0

B(τ)−A(τ)
B(τ)

Φ′(τ)dτ −Q
∫ t

0

1
B(τ)

dτ, (3.40)

where

Q=
∫ 1

0

B(τ)−A(τ)
B(τ)

Φ′(τ)dτ
(∫ 1

0

1
B(τ)

dτ
)−1

. (3.41)

Therefore, formula (3.34) takes the form

μ− λ=
∫ 1

0

(
B(τ)−A(τ)

)
Φ′2(τ)dτ

+
∫ 1

0

B(τ)−A(τ)
B(τ)

((
B(τ)−A(τ)

)
Φ′2(τ)−QΦ′(τ)

)
dτ +O

(
κ

3/2).
(3.42)

Assuming, for example, that B(τ)−A(τ) = 1 for a < τ < a+ ε and B(τ)−A(τ) = 0 oth-
erwise, where a ∈ (0,1) is a fixed number and ε is a small positive number, we see that
κ ∼ ε and the second term in the right-hand side of (3.42) can be written as

∼ Φ′2(a)
∫ a+ε

a

1
B(τ)

dτ
(∫ 1

0

1
B(τ)

dτ
)−1(∫ 1

0
−
∫ a+ε

a

)
1

B(τ)
dτ, (3.43)

which shows that the first and the second terms in the right-hand side of (3.42) have the
same order ε.

This example shows also that the form b in the left-hand side of (2.20) or (3.22) cannot
be replaced by the form a in general case.
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