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This paper studies the second-order nonlinear neutral delay difference equation Δ[anΔ(xn +
bnxn−τ ) + f(n, xf1n , . . . , xfkn)] + g(n, xg1n , . . . , xgkn) = cn, n ≥ n0. By means of the Krasnoselskii
and Schauder fixed point theorem and some new techniques, we get the existence results of
uncountably many bounded nonoscillatory, positive, and negative solutions for the equation,
respectively. Ten examples are given to illustrate the results presented in this paper.

1. Introduction

We are concerned with the second-order nonlinear neutral delay difference equation of the
form

Δ
[
anΔ(xn + bnxn−τ) + f

(
n, xf1n , . . . , xfkn

)]
+ g

(
n, xg1n , . . . , xgkn

)
= cn, n ≥ n0, (1.1)

where τ, k ∈ N, n0 ∈ N0, {an}n∈Nn0
, {bn}n∈Nn0

and {cn}n∈Nn0
are real sequences with an /= 0 for

each n ∈ Nn0 , f, g ∈ C(Nn0 × R
k,R), and fl, gl : Nn0 → Z with

lim
n→∞

fln = lim
n→∞

gln = +∞, l ∈ {1, 2, . . . , k}. (1.2)

Note that a few special cases of (1.1) were studied in [1–9]. In particular, González and
Jiménez-Melado [3] used a fixed-point theorem derived from the theory of measures of
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noncompactness to investigate the existence of solutions for the second-order difference
equation

Δ
(
qnΔxn

)
+ fn(xn) = 0, n ≥ 0. (1.3)

By applying the Leray-Schauder nonlinear alternative theorem for condensing operators,
Agarwal et al. [1] studied the existence of a nonoscillatory solution for the second-order
neutral delay difference equation

Δ
(
anΔ

(
xn + pxn−τ

))
+ F(n + 1, xn+1−σ) = 0, n ≥ 0, (1.4)

where p ∈ R\{±1}. Using the Banach contraction principle, Cheng [5] discussed the existence
of a positive solution for the second-order neutral delay difference equation with positive and
negative coefficients

Δ2(xn + pxn−m
)
+ pnxn−k − qnxn−l = 0, n ≥ n0, (1.5)

where p ∈ R \ {−1}, Liu et al. [6] and Liu et al. [7] extended the results due to cheng [5] and
got the existence of uncountably many bounded nonoscillatory solutions for (1.1) and the
second-order nonlinear neutral delay difference equation

Δ[anΔ(xn + bxn−τ)] + f(n, xn−d1n , xn−d2n , . . . , xn−dkn) = cn, n ≥ n0, (1.6)

with respect to b ∈ R, where f is Lipschitz continuous, respectively.
The purpose of this paper is to establish the existence results of uncountably many

bounded nonoscillatory, positive, and negative solutions, respectively, for (1.1) by using the
Krasnoselskii fixed point theorem, Schauder fixed point theorem, and a few new techniques.
The results obtained in this paper improve essentially the corresponding results in [5–7] by
removing the Lipschitz continuity condition. Ten nontrivial examples are given to reveal the
superiority and applications of our results.

2. Preliminaries

Throughout this paper, we assume thatΔ is the forward difference operator defined byΔxn =
xn+1 − xn, Δ2xn = Δ(Δxn), R = (−∞,+∞), R

+ = [0,+∞), R− = (−∞, 0), and Z, N, and N0

stand for the sets of all integers, positive integers, and nonnegative integers, respectively,

Nn0 = {n : n ∈ N0 with n ≥ n0}, n0 ∈ N0,

β = min
{
n0 − τ, inf

{
fln, gln : 1 ≤ l ≤ k, n ∈ Nn0

}}
,

Zβ =
{
n : n ∈ Z with n ≥ β

}
.

(2.1)
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Let l∞β denote the Banach space of all bounded sequences in Zβ with norm

‖x‖ = sup
n∈Zβ

|xn| for x = {xn}n∈Zβ
∈ l∞β ,

B(d,D) =
{
x = {xn}n∈Zβ

∈ l∞β : ‖x − d‖ ≤ D
}

for d = {d}n∈Zβ
∈ l∞β , D > 0

(2.2)

represent the closed ball centered at d and with radius D in l∞
β
.

By a solution of (1.1), we mean a sequence {xn}n∈Zβ
with a positive integer T ≥ n0 +

τ + |β| such that (1.1) is satisfied for all n ≥ T . As is customary, a solution of (1.1) is said to be
oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is said to
be nonoscillatory.

Lemma 2.1 ([2]). A bounded, uniformly Cauchy subset Y of l∞
β
is relatively compact.

Lemma 2.2 (Krasnoselskii fixed point theorem [10]). Let Y be a nonempty bounded closed convex
subset of a Banach space X and S,G : Y → X mappings such that Sx + Gy ∈ Y for every pair
x, y ∈ Y . If S is a contraction and G is completely continuous, then

Sx +Gx = x (2.3)

has a solution in Y .

Lemma 2.3 (Schauder fixed point theorem [10]). Let Y be a nonempty closed convex subset of a
Banach space X and S : Y → Y a continuous mapping such that S(Y ) is a relatively compact subset
of X. Then, S has a fixed point in Y .

Lemma 2.4. Let τ ∈ N, n0 ∈ N0 and {an}n∈Nn0
be a nonnegative sequence. Then,

∞∑

i=0

∞∑

s=n0+iτ

as < +∞ ⇐⇒
∞∑

s=n0

sas < +∞ . (2.4)

Moreover, if
∑∞

i=0
∑∞

s=n0+iτas < +∞, then

∞∑

i=0

∞∑

s=n0+iτ

as ≤
∞∑

s=n0

(
1 +

s

τ

)
as < +∞. (2.5)
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Proof. For each t ∈ R, let [t] stand for the largest integer not exceeding t. It follows that

∞∑

i=0

∞∑

s=n0+iτ

as =
∞∑

s=n0

as +
∞∑

s=n0+τ
as +

∞∑

s=n0+2τ

as + · · ·

=
∞∑

s=n0

(
1 +

[
s − n0

τ

])
as ≤

∞∑

s=n0

(
1 +

s

τ

)
as,

(2.6)

lim
s→∞

1 + [s − n0/τ]
s/τ

= 1. (2.7)

Combining (2.6) and (2.7), we infer that (2.4) holds. Assume that
∑∞

i=0
∑∞

s=n0+iτas < +∞. In
view of (2.4), we get that

∑∞
s=n0

sas < +∞, which gives that
∑∞

s=n0
as < +∞. It follows that

∞∑

s=n0

(
1 +

s

τ

)
as < +∞. (2.8)

This completes the proof.

3. Existence of Uncountably Many Bounded Positive Solutions

Now, we use the Krasnoselskii fixed point theorem to prove the existence of uncountably
many bounded nonoscillatory, positive, and negative solutions of (1.1) under various
conditions relative to the sequence {bn}n∈Nβ

⊂ R.

Theorem 3.1. Assume that there exist n1 ∈ Nn0 , d ∈ R, D, b ∈ R
+ \ {0} and two nonnegative

sequences {Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying

1 <
|d|
D

<
1 − b

b
, |bn| ≤ b, ∀n ≥ n1, (3.1)

∣∣f(n, u1, . . . , uk)
∣∣ ≤ Fn,

∣∣g(n, u1, . . . , uk)
∣∣ ≤ Gn, ∀(n, ul) ∈ Nn0 × [d −D,d +D], 1 ≤ l ≤ k,

(3.2)

∞∑

i=n0+1

1
|ai| max

⎧
⎨

⎩
Fi,

i−1∑

j=n0

max
{
Gj,

∣∣cj
∣∣}
⎫
⎬

⎭
< +∞. (3.3)

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d,D).

Proof. Let L ∈ (d − (1 − b)D + b|d|, d + (1 − b)D − b|d|). It follows from (3.3) that there exists
T ≥ 1 + n0 + n1 + τ + |β| satisfying

∞∑

i=T

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ ≤ (1 − b)D − b|d| − |L − d|. (3.4)
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Define two mappings SL and GL : B(d,D) → l∞β by

SLxn =

⎧
⎨

⎩

L − bnxn−τ , n ≥ T,

SLxT , β ≤ n < T,
(3.5)

GLxn =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑

i=n

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭
, n ≥ T,

GLxT , β ≤ n < T,

(3.6)

for any x = {xn}n∈Zβ
∈ B(d,D).

Now, we assert that

SLx +GLy ∈ B(d,D), ∀x, y ∈ B(d,D), (3.7)
∥∥SLx − SLy

∥∥ ≤ b
∥∥x − y

∥∥, ∀x, y ∈ B(d,D), (3.8)

‖GLx‖ ≤ D, ∀x ∈ B(d,D). (3.9)

It follows from (3.1), (3.2), and (3.4)–(3.6) that for any x = {xn}n∈Zβ
, y = {yn}n∈Zβ

∈ B(d,D),
and n ≥ T ,

∣∣SLxn +GLyn − d
∣∣ =

∣∣∣∣∣∣
L − d − bnxn−τ +

∞∑

i=n

1
ai

×
⎧
⎨

⎩
f
(
i, yf1i , . . . , yfki

)
+

i−1∑

j=n0

[
g
(
j, yg1j , . . . , ygkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

≤ |L − d| + b(|d| +D) +
∞∑

i=T

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦

≤ |L − d| + b(|d| +D) + (1 − b)D − b|d| − |L − d| = D,
∣∣SLxn − SLyn

∣∣ =
∣∣bn

(
xn−τ − yn−τ

)∣∣ ≤ b
∥∥x − y

∥∥,

|GLxn| ≤
∞∑

i=T

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ ≤ (1 − b)D − b|d| − |L − d| ≤ D,

(3.10)

which imply that (3.7)–(3.9) hold.
Next, we prove that GL is continuous and GL(B(d,D)) is uniformly Cauchy. It follows

from (3.3) that for each ε > 0, there exists M > T satisfying

∞∑

i=M

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ <
ε

4
. (3.11)
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Let xν = {xν
n}n∈Zβ

and x = {xn}n∈Zβ
∈ B(d,D) satisfy that

lim
ν→∞

xν = x. (3.12)

In view of (3.12) and the continuity of f and g, we know that there exists V ∈ N such that

M−1∑

i=T

1
|ai|

⎡

⎣
∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎤

⎦ <
ε

2
, ∀ν ≥ V.

(3.13)

Combining (3.6), (3.11), and (3.13), we obtain that

‖GLx
ν −GLx‖ ≤

∞∑

i=T

1
|ai|

⎧
⎨

⎩

∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎫
⎬

⎭

≤
M−1∑

i=T

1
|ai|

⎧
⎨

⎩

∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎫
⎬

⎭

+ 2
∞∑

i=M

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠ < ε, ∀ν ≥ V,

(3.14)

which means that GL is continuous in B(d,D).
In view of (3.6) and (3.11), we obtain that for any x = {xn}n∈Zβ

∈ B(d,D) and t, h ≥ M

|GLxt −GLxh| ≤
∣∣∣∣∣∣

∞∑

i=t

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∞∑

i=h

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

≤ 2
∞∑

i=M

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ < ε,

(3.15)
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which implies that GL(B(d,D)) is uniformly Cauchy, which together with (3.9) and
Lemma 2.1 yields that GL(B(d,D)) is relatively compact. Consequently, GL is completely
continuous in B(d,D). Thus, (3.7), (3.8), and Lemma 2.2 ensure that the mapping SL + GL

has a fixed point x = {xn}n∈Zβ
∈ B(d,D), which together with (3.5) and (3.6) implies that

xn = L − bnxn−τ +
∞∑

i=n

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭
, n ≥ T,

(3.16)

which yields that

Δ
[
anΔ(xn + bnxn−τ) + f

(
n, xf1n , . . . , xfkn

)]
+ g

(
n, xg1n , . . . , xgkn

)
= cn, n ≥ T. (3.17)

That is, x = {xn}n∈Zβ
is a bounded nonoscillatory solution of (1.1) in B(d,D).

Let L1, L2 ∈ (d − (1 − b)D + b|d|, d + (1 − b)D − b|d|), and L1 /=L2. Similarly, we can
prove that for each l ∈ {1, 2}, there exist a constant Tl ≥ 1 + n0 + n1 + τ + |β| and two mappings
SLl and GLl : B(d,D) → l∞β satisfying (3.4)–(3.6), where T, L, SL, and GL are replaced by

Tl, Ll, SLl , andGLl , respectively, and SLl+GLl has a fixed point zl ∈ B(d,D), which is a bounded
nonoscillatory solution of (1.1); that is,

zln = Ll − bnz
l
n−τ +

∞∑

i=n

1
ai

⎧
⎨

⎩
f
(
i, zlf1i , . . . , z

l
fki

)
+

i−1∑

j=n0

[
g
(
j, zlg1j , . . . , z

l
gkj

)
− cj

]
⎫
⎬

⎭
,

∀n ≥ Tl, l ∈ {1, 2}.

(3.18)

Note that (3.3) implies that there exists T3 > max{T1, T2} satisfying

∞∑

i=T3

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠ <
|L1 − L2|

4
. (3.19)

Using (3.2), (3.18), and (3.19), we get that for any n ≥ T3,

∣∣∣z1n − z2n + bn
(
z1n−τ − z2n−τ

)∣∣∣

=

∣∣∣∣∣∣
L1 − L2 +

∞∑

i=n

1
ai

⎧
⎨

⎩

[
f
(
j, z1f1j , . . . , z

1
fkj

)
− f

(
j, z2f1j , . . . , z

2
fkj

)]

+
i−1∑

j=n0

[
g
(
j, z1g1j , . . . , z

1
gkj

)
− g

(
j, z2g1j , . . . , z

2
gkj

)]
⎫
⎬

⎭

∣∣∣∣∣∣
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≥ |L1 − L2| − 2
∞∑

i=T3

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠

>
|L1 − L2|

2

> 0,

(3.20)

that is, z1 /= z2. Therefore, (1.1) possesses uncountably many bounded nonoscillatory solu-
tions in B(d,D). This completes the proof.

Theorem 3.2. Assume that there exist n1 ∈ Nn0 , d ∈ R, D, b ∈ R
+ \ {0}, and two nonnegative

sequences {Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying (3.2), (3.3), and

|d|
D

<
1 − b

b
, |bn| ≤ b, ∀n ≥ n1. (3.21)

Then, (1.1) has uncountably many bounded solutions in B(d,D).

The proof of Theorem 3.2 is analogous to that of Theorem 3.1 and hence is omitted.

Theorem 3.3. Assume that there exist n1 ∈ Nn0 , d ∈ R, D, b∗, b∗ ∈ R
+ \ {0}, and two nonnegative

sequences {Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying (3.2), (3.3), and

|d|
D

<
b∗ − 1
b∗ + 1

, 1 < b∗ ≤ |bn| ≤ b∗, ∀n ≥ n1. (3.22)

Then, (1.1) has uncountably many bounded solutions in B(d,D).

Proof. Let L ∈ (−(b∗ − 1)D + (b∗ + 1)|d|, (b∗ − 1)D − (b∗ + 1)|d|). It follows from (3.3) that there
exists T ≥ 1 + n0 + n1 + τ + |β| satisfying

∞∑

i=T

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ ≤ (b∗ − 1)D − (b∗ + 1)|d| − |L|. (3.23)

Define two mappings SL and GL : B(d,D) → l∞β by

SLxn =

⎧
⎨

⎩

L

bn+τ
− xn+τ

bn+τ
, n ≥ T,

SLxT , β ≤ n < T,
(3.24)
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GLxn =

⎧
⎪⎪⎨

⎪⎪⎩

1
bn+τ

∞∑

i=n+τ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭
, n ≥ T,

GLxT , β ≤ n < T,

(3.25)

for any x = {xn}n∈Zβ
∈ B(d,D).

Now, we assert that (3.7), (3.9), and the below

∥∥SLx − SLy
∥∥ ≤ 1

b∗

∥∥x − y
∥∥, ∀x, y ∈ B(d,D) (3.26)

hold. It follows from (3.2) and (3.22)–(3.25) that for any x = {xn}n∈Zβ
, y = {yn}n∈Zβ

∈ B(d,D),
and n ≥ T ,

∣∣SLxn +GLyn − d
∣∣

=

∣∣∣∣∣∣

L

bn+τ
− d − xn+τ

bn+τ
+

1
bn+τ

∞∑

i=n+τ

1
ai

×
⎧
⎨

⎩
f
(
i, yf1i , . . . , yfki

)
+

i−1∑

j=n0

[
g
(
j, yg1j , . . . , ygkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

≤ 1
b∗

|L − bn+τd| + |d| +D

b∗
+

1
b∗

∞∑

i=T

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦

≤ 1
b∗

(|L| + b∗|d|) + |d| +D

b∗
+

1
b∗

[(b∗ − 1)D − (b∗ + 1)|d| − |L|] ≤ D,

∣∣SLxn − SLyn

∣∣ =
∣∣∣∣

1
bn+τ

(
xn+τ − yn+τ

)
∣∣∣∣ ≤

1
b∗

∥∥x − y
∥∥,

|GLxn| ≤ 1
b∗

∞∑

i=T

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ ≤ 1
b∗

[(b∗ − 1)D − (b∗ + 1)|d| − |L|] ≤ D,

(3.27)

which imply (3.7), (3.9), and (3.26).
Next, we show that GL is continuous and GL(B(d,D)) is uniformly Cauchy. It follows

from (3.3) that for each ε > 0, there exists M > T satisfying (3.11). Let xν = {xν
n}n∈Zβ

and
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x = {xn}n∈Zβ
∈ B(d,D) with (3.12). It follows from (3.12) and the continuity of f and g that

there exists V ∈ N satisfying (3.13). In light of (3.11), (3.13), and (3.25), we deduce that

‖GLx
ν −GLx‖ ≤ 1

b∗

∞∑

i=T+τ

1
|ai|

⎡

⎣
∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎤

⎦

≤ 1
b∗

M−1∑

i=T

1
|ai|

⎡

⎣
∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎤

⎦ +
2
b∗

∞∑

i=M

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠

<
ε

b∗
, ∀ν ≥ V,

(3.28)

which yields that GL is continuous in B(d,D).
Using (3.1) and (3.25), we get that for any x = {xn}n∈Zβ

∈ B(d,D) and t, h ≥ M

|GLxt −GLxh| ≤
∣∣∣∣∣∣

1
bt+τ

∞∑

i=t+τ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

+

∣∣∣∣∣∣

1
bh+τ

∞∑

i=h+τ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

≤ 2
b∗

∞∑

i=M

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦

<
ε

b∗
,

(3.29)

whichmeans thatGL(B(d,D)) is uniformly Cauchy, which together with (3.9) and Lemma 2.1
yields that GL(B(d,D)) is relatively compact. Consequently, GL is completely continuous in
B(d,D). Thus, (3.22), (3.26), and Lemma 2.2 ensure that the mapping SL+GL has a fixed point
x = {xn}n∈Zβ

∈ B(d,D); that is,

xn =
L

bn+τ
− xn+τ

bn+τ
+

1
bn+τ

∞∑

i=n+τ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭
, n ≥ T,

(3.30)
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which gives that

Δ
[
anΔ(xn + bnxn−τ) + f

(
n, xf1n , . . . , xfkn

)]
+ g

(
n, xg1n , . . . , xgkn

)
= cn, n ≥ T + τ. (3.31)

That is, x = {xn}n∈Zβ
is a bounded solution of (1.1) in B(d,D).

Let L1, L2 ∈ (−(b∗ − 1)D + (b∗ + 1)|d|, (b∗ − 1)D − (b∗ + 1)|d|) and L1 /=L2. Similarly,
we conclude that for each l ∈ {1, 2}, there exist a constant Tl ≥ 1 + n0 + n1 + τ + |β| and two
mappings SLl and GLl : B(d,D) → l∞

β
satisfying (3.23)–(3.25), where T, L, SL, and GL are

replaced by Tl, Ll, SLl , andGLl , respectively, and SLl +GLl has a fixed point zl ∈ B(d,D), which
is a bounded solution of (1.1); that is,

zln =
Ll

bn+τ
− zln+τ
bn+τ

+
1

bn+τ

∞∑

i=n+τ

1
ai

⎧
⎨

⎩
f
(
i, zlf1i , . . . , z

l
fki

)
+

i−1∑

j=n0

[
g
(
j, zlg1j , . . . , z

l
gkj

)
− cj

]
⎫
⎬

⎭
, (3.32)

for all n ≥ Tl and l ∈ {1, 2}. Note that (3.3) implies that there exists T3 > max{T1, T2} satisfying
(3.19). By means of (3.2), (3.19), and (3.32), we infer that for any n ≥ T3,

∣∣∣∣∣
z1n − z2n +

zln+τ − z2n+τ
bn+τ

∣∣∣∣∣

=

∣∣∣∣∣∣

L1 − L2

bn+τ
+

1
bn+τ

∞∑

i=n+τ

1
ai

⎧
⎨

⎩

[
f
(
j, z1f1j , . . . , z

1
fkj

)
− f

(
j, z2f1j , . . . , z

2
fkj

)]

+
i−1∑

j=n0

[
g
(
j, z1g1j , . . . , z

1
gkj

)
− g

(
j, z2g1j , . . . , z

2
gkj

)]
⎫
⎬

⎭

∣∣∣∣∣∣

≥ |L1 − L2|
b∗

− 2
b∗

∞∑

i=T3

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠

>
|L1 − L2|

2b∗

> 0,

(3.33)

that is, z1 /= z2. Therefore, (1.1) possesses uncountably many bounded solutions in B(d,D).
This completes the proof.

Similar to the proofs of Theorems 3.1 and 3.3, we have the following results.

Theorem 3.4. Assume that there exist n1 ∈ Nn0 , d ∈ R, D, b∗, b∗ ∈ R
+ \ {0} and two nonnegative

sequences {Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying (3.2), (3.3), and
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|d| > D,
(
b2∗b

∗ + b∗b∗2 − b∗2 − b2∗
)
D >

(
b∗2 − b2∗ − b2∗b

∗ + b∗b∗2
)
|d|,

1 < b∗ ≤ bn ≤ b∗, ∀n ≥ n1.

(3.34)

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d,D).

Theorem 3.5. Assume that there exist n1 ∈ Nn0 , d,D ∈ R
+ \ {0}, b∗, b∗ ∈ R− and two nonnegative

sequences {Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying (3.2), (3.3), and

d > D, D(2 + b∗ + b∗) < d(b∗ − b∗), b∗ ≤ bn ≤ b∗ < −1, ∀n ≥ n1. (3.35)

Then, (1.1) has uncountably many bounded positive solutions in B(d,D).

Theorem 3.6. Assume that there exist n1 ∈ Nn0 , D ∈ R
+ \ {0}, d, b∗ ∈ R− \ {0}, b∗ ∈ R− and two

nonnegative sequences {Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying (3.2), (3.3), and

−d > D, d(b∗ − b∗) > D(2 + b∗ + b∗), b∗ ≤ bn ≤ b∗, ∀n ≥ n1. (3.36)

Then, (1.1) has uncountably many bounded negative solutions in B(d,D).

Theorem 3.7. Assume that there exist n1 ∈ Nn0 , d ∈ R \ {0}, b∗, D ∈ R
+ \ {0} and two negative

sequences {Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying (3.2), (3.3), and

1 <
|d|
D

<
2 − b∗

b∗
, 0 ≤ bn ≤ b∗, ∀n ≥ n1. (3.37)

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d,D).

Theorem 3.8. Assume that there exist n1 ∈ Nn0 , d ∈ R \ {0}, b∗ ∈ R− \ {0}, D ∈ R
+ \ {0} and two

negative sequences {Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying (3.2), (3.3), and

1 <
|d|
D

<
b∗ + 2
−b∗ , b∗ ≤ bn ≤ 0, ∀n ≥ n1. (3.38)

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d,D).

Next, we investigate the existence of uncountably bounded nonoscillatory solutions
for (1.1) with the help of the Schauder fixed point theorem under the conditions of bn = ±1.

Theorem 3.9. Assume that there exist n1 ∈ Nn0 , d ∈ R, D ∈ R
+\{0} and two nonnegative sequences

{Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying (3.2), (3.3), and

|d| > D, bn = 1, ∀n ≥ n1. (3.39)

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d,D).
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Proof. Let L ∈ (d − D,d + D). It follows from (3.3) that there exists T ≥ 1 + n0 + n1 + τ + |β|
satisfying

∞∑

i=T

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ ≤ D − |L − d|. (3.40)

Define a mapping SL : B(d,D) → l∞β by

SLxn =

⎧
⎪⎪⎨

⎪⎪⎩

L +
∞∑

s=1

n+2sτ−1∑

i=n+(2s−1)τ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭
, n ≥ T,

SLxT , β ≤ n < T,

(3.41)

for any x = {xn}n∈Zβ
∈ B(d,D).

Now, we prove that

SLx ∈ B(d,D), ‖SLx‖ ≤ |L| +D, ∀x ∈ B(d,D). (3.42)

It follows from (3.2) and (3.39)–(3.41) that for any x = {xn}n∈Zβ
∈ B(d,D) and n ≥ T ,

|SLxn − d| =
∣∣∣∣∣∣
L − d +

∞∑

s=1

n+2sτ−1∑

i=n+(2s−1)τ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

≤ |L − d| +
∞∑

i=T

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦

≤ |L − d| +D − |L − d|

= D,

|SLxn| ≤ |L| +
∞∑

i=T

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ ≤ |L| +D − |L − d| ≤ |L| +D,

(3.43)

which imply (3.42).
Next, we prove that SL is continuous and SL(B(d,D)) is uniformly Cauchy. It follows

from (3.3) that for each ε > 0, there exists M > T satisfying (3.11). Let xν = {xν
n}n∈Zβ

and
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x = {xn}n∈Zβ
∈ B(d,D) satisfying (3.12). It follows from (3.12) and the continuity of f and g

that there exists V ∈ N satisfying (3.13). Combining (3.11), (3.13), and (3.41), we infer that

‖SLx
ν − SLx‖

≤ sup
n≥T

⎧
⎨

⎩

∞∑

s=1

n+2sτ−1∑

i=n+(2s−1)τ

1
|ai|

⎧
⎨

⎩

∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎫
⎬

⎭

⎫
⎬

⎭

≤
∞∑

i=T

1
|ai|

⎧
⎨

⎩

∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎫
⎬

⎭

≤
M−1∑

i=T

1
|ai|

⎧
⎨

⎩

∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎫
⎬

⎭
+ 2

∞∑

i=M

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠

< ε, ∀ν ≥ V,

(3.44)

which implies that SL is continuous in B(d,D).
By means of (3.11) and (3.41), we get that for any x = {xn}n∈Zβ

∈ B(d,D) and t, h ≥ M

|SLxt − SLxh| ≤
∣∣∣∣∣∣

∞∑

s=1

t+2sτ−1∑

i=t+(2s−1)τ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∞∑

s=1

h+2sτ−1∑

i=h+(2s−1)τ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

≤ 2
∞∑

i=M

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦

< ε,

(3.45)



Abstract and Applied Analysis 15

which means that SL(B(d,D)) is uniformly Cauchy, which together with (3.42) and
Lemma 2.1 yields that SL(B(d,D)) is relatively compact. It follows from Lemma 2.3 that the
mapping SL has a fixed point x = {xn}n∈Zβ

∈ B(d,D); that is,

xn = L +
∞∑

s=1

n+2sτ−1∑

i=n+(2s−1)τ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭
, n ≥ T,

(3.46)

which give that

Δ
[
anΔ(xn + xn−τ) + f

(
n, xf1n , . . . , xfkn

)]
+ g

(
n, xg1n , . . . , xgkn

)
= cn, n ≥ T + τ. (3.47)

That is, x = {xn}n∈Zβ
∈ B(d,D) is a bounded nonoscillatory solution of (1.1).

Let L1, L2 ∈ (d − D,d + D) and L1 /=L2. Similarly, we infer that for each l ∈ {1, 2},
there exist a constant Tl ≥ 1 + n0 + n1 + τ + |β| and a mapping SLl : B(d,D) → l∞

β
satisfying

(3.41), where L, T, and SL are replaced by Tl, Ll, and SLl , respectively, and SLl has a fixed
point zl ∈ B(d,D), which is a bounded nonoscillatory solution of (1.1); that is,

zln = Ll +
∞∑

s=1

n+2sτ−1∑

i=n+(2s−1)τ

1
ai

⎧
⎨

⎩
f
(
i, zlf1i , . . . , z

l
fki

)
+

i−1∑

j=n0

[
g
(
j, zlg1j , . . . , z

l
gkj

)
− cj

]
⎫
⎬

⎭
, n ≥ Tl,

(3.48)

for l ∈ {1, 2}. Note that (3.3) implies that there exists T3 > max{T1, T2} satisfying (3.19). Using
(3.2), (3.19), and (3.48), we conclude that for any n ≥ T3

∣∣∣z1n − z2n

∣∣∣

=

∣∣∣∣∣∣
L1 − L2 +

∞∑

s=1

n+2sτ−1∑

i=n+(2s−1)τ

1
ai

⎧
⎨

⎩

[
f
(
i, z1f1i , . . . , z

1
fki

)
− f

(
i, z2f1i , . . . , z

2
fki

)]

+
i−1∑

j=n0

[
g
(
j, z1g1j , . . . , z

1
gkj

)
− g

(
j, z2g1j , . . . , z

2
gkj

)]
⎫
⎬

⎭

∣∣∣∣∣∣

≥ |L1 − L2| − 2
∞∑

s=1

n+2sτ−1∑

i=n+(2s−1)τ

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠

≥ |L1 − L2| − 2
∞∑

i=T3

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠

>
|L1 − L2|

2

> 0,

(3.49)
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which gives that z1 /= z2. Therefore, (1.1) possesses uncountably many bounded nonoscilla-
tory solutions in B(d,D). This completes the proof.

Theorem 3.10. Assume that there exist n1 ∈ Nn0 , d ∈ R, D ∈ R
+ \ {0} and two nonnegative

sequences {Fn}n∈Nn0
and {Gn}n∈Nn0

satisfying (3.2),

|d| > D, bn = −1, ∀n ≥ n1 , (3.50)

∞∑

s=1

∞∑

i=n0+sτ

1
|ai| max

{

Fi,
i−1∑

j=n0

max
{
Gj,

∣∣cj
∣∣}
}

< +∞. (3.51)

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d,D).

Proof. Let L ∈ (d − D,d + D). It follows from (3.41) that there exists T ≥ 1 + n0 + n1 + τ + |β|
satisfying

∞∑

s=1

∞∑

i=T+sτ

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ ≤ D − |L − d|. (3.52)

Define a mapping SL : B(d,D) → l∞
β
by

SLxn =

⎧
⎪⎪⎨

⎪⎪⎩

L −
∞∑

s=1

∞∑

i=n+sτ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭
, n ≥ T

SLxT , β ≤ n < T,

(3.53)

for any x = {xn}n∈Zβ
∈ B(d,D). It follows from (3.2), (3.52), and (3.53) that for any x =

{xn}n∈Zβ
∈ B(d,D) and n ≥ T

|SLxn − d| =
∣∣∣∣∣∣
L − d −

∞∑

s=1

∞∑

i=n+sτ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

≤ |L − d| +
∞∑

s=1

∞∑

i=T+sτ

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦

≤ |L − d| +D − |L − d|
= D

|SLxn| ≤ |L| +
∞∑

s=1

∞∑

i=T+sτ

1
|ai|

⎡

⎣
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣) + Fi

⎤

⎦ ≤ |L| +D,

(3.54)

which imply (3.42).
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Next, we show that SL is continuous and SL(B(d,D)) is uniformly Cauchy. It follows
from (3.51) and Lemma 2.4 that for each ε > 0, there exists M > 1 + T + τ satisfying

∞∑

i=M

(
1 +

i

τ

)
1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦ <
ε

4
. (3.55)

Let xν = {xν
n}n∈Zβ

and x = {xn}n∈Zβ
∈ B(d,D) satisfying (3.12). By means of (3.12) and the

continuity of f and g, we deduce that there exists V ∈ N satisfying

M−1∑

i=T+τ

(
1 +

i

τ

)
1
|ai|

⎧
⎨

⎩

∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎫
⎬

⎭
<

ε

2
, ∀ν ≥ V.

(3.56)

In light of (3.2), (3.53)–(3.56) and Lemma 2.4, we conclude that

‖SLx
ν − SLx‖ ≤

∞∑

s=1

∞∑

i=T+sτ

1
|ai|

⎧
⎨

⎩

∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎫
⎬

⎭

≤
∞∑

i=T+τ

(
1 +

i

τ

)
1
|ai|

⎧
⎨

⎩

∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎫
⎬

⎭

≤
M−1∑

i=T+τ

(
1 +

i

τ

)
1
|ai|

⎧
⎨

⎩

∣∣∣f
(
i, xν

f1i
, . . . , xν

fki

)
− f

(
i, xf1i , . . . , xfki

)∣∣∣

+
i−1∑

j=n0

∣∣∣g
(
j, xν

g1j , . . . , x
ν
gkj

)
− g

(
j, xg1j , . . . , xgkj

)∣∣∣

⎫
⎬

⎭

+ 2
∞∑

i=M

(
1 +

i

τ

)
1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠

< ε, ∀ν ≥ V,

(3.57)

which implies that SL is continuous in B(d,D).
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By virtue of (3.53), (3.55), and Lemma 2.4, we get that for any x = {xn}n∈Zβ
∈ B(d,D)

and t, h ≥ M,

|SLxt − SLxh| ≤
∣∣∣∣∣∣

∞∑

s=1

∞∑

i=t+sτ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∞∑

s=1

∞∑

i=h+sτ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭

∣∣∣∣∣∣

≤ 2
∞∑

s=1

∞∑

i=M+sτ

1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦

≤ 2
∞∑

i=M

(
1 +

i

τ

)
1
|ai|

⎡

⎣Fi +
i−1∑

j=n0

(
Gj +

∣∣cj
∣∣)
⎤

⎦

< ε,

(3.58)

which means that SL(B(d,D)) is uniformly Cauchy, which together with (3.42) and
Lemma 2.1 yields that SL(B(d,R)) is relatively compact. It follows from Lemma 2.3 that the
mapping SL has a fixed point x = {xn}n∈Zβ ∈ B(d,R); that is,

xn = L −
∞∑

s=1

∞∑

i=n+sτ

1
ai

⎧
⎨

⎩
f
(
i, xf1i , . . . , xfki

)
+

i−1∑

j=n0

[
g
(
j, xg1j , . . . , xgkj

)
− cj

]
⎫
⎬

⎭
, n ≥ T, (3.59)

which means that

Δ
[
anΔ(xn − xn−τ) + f

(
n, xf1n , . . . , xfkn

)]
+ g

(
n, xg1n , . . . , xgkn

)
= cn, n ≥ T + τ. (3.60)

That is, x = {xn}n∈Zβ
is a bounded nonoscillatory solution of (1.1) in B(d,D).

Let L1, L2 ∈ (d −D,d +D) and L1 /=L2. Similarly, we conclude that for each l ∈ {1, 2},
there exist a positive integer Tl ≥ 1 + n0 + n1 + τ + |β| and a mapping SLl : B(d,D) → l∞β
satisfying (3.53), where T, L, and SL are replaced by Tl, Ll, and SLl , respectively, and SLl has a
fixed point zl ∈ B(d,D), which is a bounded nonoscillatory solution of (1.1); that is,

zln = Ll −
∞∑

s=1

∞∑

i=n+sτ

1
ai

⎧
⎨

⎩
f
(
i, zlf1i , . . . , z

l
fki

)
+

i−1∑

j=n0

[
g
(
j, zlg1j , . . . , z

l
gkj

)
− cj

]
⎫
⎬

⎭
, n ≥ T, (3.61)

for l ∈ {1, 2}. Note that (3.41) implies that there exists T3 > max{T1, T2} satisfying

∞∑

s=1

∞∑

i=T3+sτ

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠ <
|L1 − L2|

4
, (3.62)
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which together with (3.2), (3.53), and (3.61) gives that

∣∣∣z1n − z2n

∣∣∣

=

∣∣∣∣∣∣
L1 − L2 −

∞∑

s=1

∞∑

i=n+sτ

1
ai

⎧
⎨

⎩

[
f
(
j, z1f1j , . . . , z

1
fkj

)
− f

(
j, z2f1j , . . . , z

2
fkj

)]

+
i−1∑

j=n0

[
g
(
j, z1g1j , . . . , z

1
gkj

)
− g

(
j, z2g1j , . . . , z

2
gkj

)]
⎫
⎬

⎭

∣∣∣∣∣∣

≥ |L1 − L2| − 2
∞∑

s=1

∞∑

i=T3+sτ

1
|ai|

⎛

⎝Fi +
i−1∑

j=n0

Gj

⎞

⎠

>
|L1 − L2|

2
> 0, ∀n ≥ T3,

(3.63)

that is, z1 /= z2. Therefore, (1.1) possesses uncountably many bounded nonoscillatory solu-
tions in B(d,D). This completes the proof.

Remark 3.11. Theorems 3.1 and 3.4–3.10 generalize Theorem 1 in [5] and Theorems 2.1–2.7 in
[6, 7], respectively. The examples in Section 4 reveal that Theorems 3.1 and 3.4–3.10 extend
authentically the corresponding results in [5–7].

4. Examples and Applications

Now, we construct ten examples to explain the advantage and applications of the results
presented in Section 3. Note that Theorem 1 in [5] and Theorem 2.1–2.7 in [6, 7] are invalid
for Examples 4.1–4.10, respectively.

Example 4.1. Consider the second-order nonlinear neutral delay difference equation

Δ

[(
n6 ln n

)
Δ
(
xn +

(−1)n(n − 1)
3n + 1

xn−τ

)
+

5n3x2n+1

n + x2
3n−15

]

+ n2xn3+1x2n2+3 = (n − 1)2, n ≥ 2,

(4.1)

where n0 = 2 and τ ∈ N are fixed. Let n1 = 6, k = 2, d = ±6, D = 5, b = 1/3, β = min{2 − τ,−9},
and

an = n6 ln n, bn =
(−1)n(n − 1)

3n + 1
, cn = (n − 1)2, f(n, u, v) =

5un3

n + v2
,

f1n = 2n + 1, f2n = 3n − 15, g(n, u, v) = uvn2, g1n = n3 + 1, g2n = 2n2 + 3,

Fn = 55n2, Gn = 121n2, (n, u, v) ∈ Nn0 × [d −D,d +D]2.
(4.2)
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It is easy to show that (3.1)–(3.3) hold. It follows from Theorem 3.1 that (4.1) possesses
uncountably many bounded nonoscillatory solutions in B(d,D).

Example 4.2. Consider the second-order nonlinear neutral delay difference equation

Δ

[

n2(1 − 2n)3Δ

(

xn +
(−1)n−1(3 + sin n)

4 + sinn
xn−τ

)

+ 3n2xn2x5n

]

+
2nx2n−9

1 + n3|x3n3 | = n2, n ≥ 2,

(4.3)

where n0 = 2 and τ ∈ N are fixed. Let n1 = 5, k = 2, d = ±2,D = 11, b = 5/6, β = min{2−τ,−5},
and

an = n2(1 − 2n)3, bn =
(−1)n−1(3 + sinn)

4 + sinn
, cn = n2, f(n, u, v) = 3n2uv,

f1n = n2, f2n = 5n, g(n, u, v) =
2nu

1 + n3|v| , g1n = 2n − 9, g2n = 3n3,

Fn = 507n2, Gn = 26n, (n, u, v) ∈ Nn0 × [d −D,d +D]2.

(4.4)

It is clear that (3.2), (3.3), and (3.21) hold. It follows from Theorem 3.2 that (4.3) possesses
uncountably many bounded solutions in B(d,D).

Example 4.3. Consider the second-order nonlinear neutral delay difference equation

Δ

[(
n8 sin

(−1)n
n

)
Δ

(

xn +
(−1)n−1(4n3 + 1

)

n3 + 2n + 2
xn−τ

)

+
4n2x3

n+1

1 + nx2
n2−1

]

+ n4x2
2nx

3
n−3 = n3, n ≥ 1,

(4.5)

where n0 = 1 and τ ∈ N are fixed. Let n1 = 10, k = 2, d = ±1, D = 5, b∗ = 3, b∗ = 4,
β = min{1 − τ,−2}, and

an = n8 sin
(−1)n
n

, bn =
(−1)n−1(4n3 + 1

)

n3 + 2n + 2
, cn = n3, f(n, u, v) =

4nu3

1 + nv2
,

f1n = n + 1, f2n = n2 − 1, g(n, u, v) = n4u2v3, g1n = 2n, g2n = n − 3,

Fn = 864n2, Gn = 7776n4, (n, u, v) ∈ Nn0 × [d −D,d +D]2.

(4.6)

It is easy to see that (3.2), (3.3), and (3.22) hold. It follows from Theorem 3.3 that (4.5)
possesses uncountably many bounded solutions in B(d,D).

Example 4.4. Consider the second-order nonlinear neutral delay difference equation

Δ

[

n5
(
sin

1
n

)−1/(ln n)

Δ

(

xn +
3n2 + 1

n2 + n + 2
xn−τ

)

+
nx2

n2+3

1 + n cos2x2n

]

+
n4 − x3n

n2 + x2
n+1

=
(−1)n
n − 1

, n ≥ 2,

(4.7)
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where n0 = 2 and τ ∈ N are fixed. Let n1 = 5, k = 2, d = ±4,D = 3, b∗ = 2, b∗ = 3, β = 2 − τ , and

an = n5
(
sin

1
n

)−1/(ln n)

, bn =
3n2 + 1

n2 + n + 2
, cn =

(−1)n
n − 1

, f(n, u, v) =
nu2

1 + n cos2v
,

f1n = n2 + 3, f2n = 2n, g(n, u, v) =
n4 − u

n2 + v2
, g1n = 3n, g2n = n + 1,

Fn = 49n, Gn = n2 + 7, (n, u, v) ∈ Nn0 × [d −D,d +D]2.
(4.8)

It is easy to show that (3.2), (3.3), and (3.34) hold. It follows from Theorem 3.4 that (4.7) has
uncountably many bounded nonoscillatory solutions in B(d,D).

Example 4.5. Consider the second-order nonlinear neutral delay difference equation

Δ

[

n6
(
1 +

1
1 + n

)3n

Δ

(

xn −
6 − 2 ln

(
1 + n2)

5 + ln(1 + n2)
xn−τ

)

+ nx2n+1x
4
n−9

]

+ n2x3nx
3
4n = 2n2, n ≥ 0,

(4.9)

where n0 = 0 and τ ∈ N are fixed. Let n1 = 10, k = 2, d = 9, D = 7, b∗ = −2, b∗ = −17/15,
β = min{−τ,−9}, and

an = n6
(
1 +

1
1 + n

)3n

, bn = −6 − 2 ln
(
1 + n2)

5 + ln(1 + n2)
, cn = 2n2, f(n, u, v) = nuv4,

f1n = 2n + 1, f2n = n + 2, g(n, u, v) = n2uv3, g1n = 3n, g2n = 4n,

Fn = 1048576n, Gn = 65536n2, (n, u, v) ∈ Nn0 × [d −D,d +D]2.
(4.10)

It is easy to show that (3.2), (3.3), and (3.35) hold. It follows from Theorem 3.5 that (4.9) has
uncountably many bounded positive solutions in B(d,D).

Example 4.6. Consider the second-order nonlinear neutral delay difference equation

Δ

[

(−1)n−1n17(n − 4)5Δ

(

xn +
3 − 2n4

5 + n + n4
xn−τ

)

+
n18 − n7x2

3n−19
ln(3 + n5|x2n|)

]

+
n2x2

n+5

1 + x2
2n+3

= n15, n ≥ 5,

(4.11)
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where n0 = 5 and τ ∈ N are fixed. Let n1 = 5, k = 2, d = −9, D = 7, b∗ = −2, b∗ = −17
15

,

β = min{5 − τ,−4}, and

an = (−1)n−1n17(n − 4)5, bn =
3 − 2n4

5 + n + n4
, cn = n15, f(n, u, v) =

n18 − n7u2

ln(3 + n5|v|) ,

f1n = 3n − 18, f2n = 2n, g(n, u, v) =
n2u2

1 + v2
, g1n = n + 5, g2n = 2n + 3,

Fn = n18 + 256n7, Gn = 256n2, (n, u, v) ∈ Nn0 × [d −D,d +D]2.
(4.12)

It is easy to show that (3.2), (3.3), and (3.36) hold. It follows from Theorem 3.6 that (4.11) has
uncountably many bounded negative solutions in B(d,D).

Example 4.7. Consider the second-order nonlinear neutral delay difference equation

Δ

[

n8 ln
(
cos

π

n

)
Δ

(

xn +
5n2 − 2n + 170
6n2 + n + 1

xn−τ

)

− n2x2n

n + x2
4n

]

+
n2 − x3

2n−3
1 + n|xn−6| = n2(2 − n), n ≥ 3,

(4.13)

where n0 = 3 and τ ∈ N are fixed. Let n1 = 60, k = 2, d = ±7,D = 6, b∗ = 5/6, β = min{3−τ,−3},
and

an = n8 ln
(
cos

π

n

)
, bn =

5n2 − 2n + 170
6n2 + n + 1

, cn = n2(2 − n), f(n, u, v) = − n2u

n + v2
,

f1n = 2n, f2n = 4n, g(n, u, v) =
n2 − u3

1 + n|v| , g1n = 2n − 3, g2n = n − 6,

Fn = 13n, Gn = 2197 + n2, (n, u, v) ∈ Nn0 × [d −D,d +D]2.
(4.14)

It is clear (3.2), (3.3), and (3.37) hold. It follows from Theorem 3.7 that (4.13) has uncountably
many bounded nonoscillatory solutions in B(d,D).

Example 4.8. Consider the second-order nonlinear neutral delay difference equation

Δ

[

n6Δ

(

xn +
1 − 8n4

3 + 9n4
xn−τ

)

+
n3xn+1 −

(
n2 + 1

)
x2
n−3

1 + nx2
n−3

]

+
n2 + x3

2n+5

2 + n2|x3n−1|
= (−1)nn3, n ≥ 4,

(4.15)



Abstract and Applied Analysis 23

where n0 = 4 and τ ∈ N are fixed. Let n1 = 4, k = 2, d = ±7,D = 6, b∗ = −8/9, β = min{4− τ, 1},
and

an = n6, bn =
1 − 8n4

3 + 9n4
, cn = (−1)nn3, f(n, u, v) =

n3u − (n2 + 1
)
v2

1 + nv2
,

f1n = n + 1, f2n = n − 3, g(n, u, v) =
n2 + u3

2 + n2|v| , g1n = 2n + 5, g2n = 3n − 1,

Fn = 13n3 + 169
(
n2 + 1

)
, Gn = n2 + 2197, (n, u, v) ∈ Nn0 × [d −D,d +D]2.

(4.16)

It is clear (3.2), (3.3), and (3.38) hold. It follows from Theorem 3.8 that (4.15) has uncountably
many bounded nonoscillatory solutions in B(d,D).

Example 4.9. Consider the second-order nonlinear neutral delay difference equation

Δ

[

n6
(
1 +

1
n

)n

Δ(xn + xn−τ) +
(n − 1)2 − nx3n+1

n2 ln
(
3 + nx2

6n

)

]

+
1 − n3 + nx2

7n

1 + n + n5
∣∣x5

3nx
3
7n

∣∣ =
(−1)nn2

n3 + 1
, n ≥ 1,

(4.17)

where n0 = 1 and τ ∈ N are fixed. Let n1 = 1, k = 2, d = ±6, D = 2, β = 1 − τ , and

an = n6
(
1 +

1
n

)n

, cn =
(−1)nn2

n3 + 1
, f(n, u, v) =

(n − 1)2 − nu

n2 ln(3 + nv2)
, f1n = 3n + 1,

f2n = 6n, g(n, u, v) =
1 − n3 + nu2

1 + n + n5|v5u3| , g1n = 7n, g2n = 3n, Fn = 1 +
8
n
,

Gn = 1 + 64n + n3, (n, u, v) ∈ Nn0 × [d −D,d +D]2.
(4.18)

It is clear (3.2), (3.3), and (3.39) hold. It follows from Theorem 3.9 that (4.17) has uncountably
many bounded nonoscillatory solutions in B(d,D).

Example 4.10. Consider the second-order nonlinear neutral delay difference equation

Δ
[
n4(1 − 2n)(2n − 3)2Δ(xn − xn−τ) +

5nx3n3−n+2
2 + n3|x5n5+3|

]
+ n2x3n3+4x4n3−5 = n2, n ≥ 2, (4.19)

where n0 = 2 and τ ∈ N are fixed. Let n1 = 2, k = 2, d = ±10, D = 6, β = 2 − τ , and

an = n4(1 − 2n)(2n − 3)2, cn = n2, f(n, u, v) =
5nu

2 + n3|v| , f1n = 3n3 − n + 2,

f2n = 5n5 + 3, g(n, u, v) = uvn2, g1n = 3n3 + 4, g2n = 4n3 − 5, Fn = 40n,

Gn = 256n2, (n, u, v) ∈ Nn0 × [d −D,d +D]2.
(4.20)
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It is clear (3.2), (3.50), and (3.51) hold. It follows from Theorem 3.10 that (4.19) possesses
uncountably bounded nonoscillatory solutions in B(d,D).
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