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This paper studies the second-order nonlinear neutral delay difference equation A[a,A(x, +
buxp ) + f(n,xp,,...,x5,)] + 8§, Xg,,...,Xg,) = Cu, n 2 ny. By means of the Krasnoselskii
and Schauder fixed point theorem and some new techniques, we get the existence results of

uncountably many bounded nonoscillatory, positive, and negative solutions for the equation,
respectively. Ten examples are given to illustrate the results presented in this paper.

1. Introduction

We are concerned with the second-order nonlinear neutral delay difference equation of the
form

AlanA(xy +buxyr) + f(n, x5, ..., x5)] + (M, Xg,,, .. Xg,) =Cn, 1210, (1.1)

where 7,k € N, ny € Ny, {an}neNnol {bn}neN,,O and {cn}neNn0 are real sequences with a, #0 for
eachn e N, , f,g € C(N,, x Rk, R), and fi,g1 1 Ny — Z with

lim fi, = lim g, =400, 1 € {1,2,...,k}. (1.2)

n—oo

Note that a few special cases of (1.1) were studied in [1-9]. In particular, Gonzdlez and
Jiménez-Melado [3] used a fixed-point theorem derived from the theory of measures of
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noncompactness to investigate the existence of solutions for the second-order difference
equation

A(gnAxy) + fn(xy) =0, n>0. (1.3)

By applying the Leray-Schauder nonlinear alternative theorem for condensing operators,
Agarwal et al. [1] studied the existence of a nonoscillatory solution for the second-order
neutral delay difference equation

A(anA(xy +pxn-r)) + Fn+1,x411-6) =0, n>0, (1.4)

where p € R\ {£1}. Using the Banach contraction principle, Cheng [5] discussed the existence
of a positive solution for the second-order neutral delay difference equation with positive and
negative coefficients

A% (X + PXpom) + PuXn-k — GnXn-1 =0, 1 >mng, (15)

where p € R\ {-1}, Liu et al. [6] and Liu et al. [7] extended the results due to cheng [5] and
got the existence of uncountably many bounded nonoscillatory solutions for (1.1) and the
second-order nonlinear neutral delay difference equation

A [anA(xn + bxn—'r)] + f(n, Xn—diyr Xn—doyr -+ s xn—dk,,) =Cup, N > 7y (16)

with respect to b € R, where f is Lipschitz continuous, respectively.

The purpose of this paper is to establish the existence results of uncountably many
bounded nonoscillatory, positive, and negative solutions, respectively, for (1.1) by using the
Krasnoselskii fixed point theorem, Schauder fixed point theorem, and a few new techniques.
The results obtained in this paper improve essentially the corresponding results in [5-7] by
removing the Lipschitz continuity condition. Ten nontrivial examples are given to reveal the
superiority and applications of our results.

2. Preliminaries

Throughout this paper, we assume that A is the forward difference operator defined by Ax,, =
Xpi1 — Xn, A%x, = A(AX,), R = (—o0,+0), R* = [0,+x), R. = (-c0,0), and Z, N, and N
stand for the sets of all integers, positive integers, and nonnegative integers, respectively,

Ny, ={n:neNywithn>np}, nyeN,
p=min{ng -7, inf {fi,, gm:1<I1<k,neN,}}, (2.1)

Zg = {n:ne€Z with n > p}.
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Let [* denote the Banach space of all bounded sequences in Zs with norm

lxll = suplxa|  for x = (Xu}pez, €13,
nEZp
(2.2)

B(d,D) = {x = {Xu}yez, €17 : |x=dl <D} for d = {d} ez, €17, D>0

represent the closed ball centered at d and with radius D in ZE".

By a solution of (1.1), we mean a sequence {x,},c7, with a positive integer T > n +
T + |P| such that (1.1) is satisfied for all n > T. As is customary, a solution of (1.1) is said to be
oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is said to
be nonoscillatory.

Lemma 2.1 ([2]). A bounded, uniformly Cauchy subset Y of ZE" is relatively compact.
Lemma 2.2 (Krasnoselskii fixed point theorem [10]). Let Y be a nonempty bounded closed convex

subset of a Banach space X and S,G : Y — X mappings such that Sx + Gy € Y for every pair
x,y € Y. If S is a contraction and G is completely continuous, then

Sx+Gx=x (2.3)

has a solution in'Y.
Lemma 2.3 (Schauder fixed point theorem [10]). Let Y be a nonempty closed convex subset of a
Banach space X and S : Y — Y a continuous mapping such that S(Y) is a relatively compact subset

of X. Then, S has a fixed point in'Y.

Lemma 2.4. Let 7 € N, ng € No and {an},ey, be a nonnegative sequence. Then,

iias<+oo<=>isas<+oo. (2.4)

i=0 s=no+iT s=nyg

Moreover, if 372032, s < +oo, then

i i as < i (1 + ;>as < +o0. (2.5)
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Proof. For each t € R, let [t] stand for the largest integer not exceeding t. It follows that

DD as=Das+ D as+ D>, A+
i=0 s=ny+iT s=ngp S=np+T s=ng+2T
(2.6)
_ 0 s — 0 E
_S_Zno<1+ = ])asgs_zno<1+7_>as,
m M =1. (2.7)

s— oo s/T

Combining (2.6) and (2.7), we infer that (2.4) holds. Assume that 372,322, .. a5 < +oo. In
view of (2.4), we get that 3.2 sas < +oo, which gives that 3,22, as < +co. It follows that

0

Z (1 + ;>as < +oo0. (2.8)

S=Ng

This completes the proof. O

3. Existence of Uncountably Many Bounded Positive Solutions

Now, we use the Krasnoselskii fixed point theorem to prove the existence of uncountably
many bounded nonoscillatory, positive, and negative solutions of (1.1) under various
conditions relative to the sequence {by} ey, C R.

Theorem 3.1. Assume that there exist n; € N, d € R, D,b € R*\ {0} and two nonnegative
sequences {Fy} ey, and {Gn},en,, satisfying

d 1-b
1< % < T/ |bn| S b/ Vn 2 ni, (31)
|f(m,u, ..., u)| < Fn, |g(n,ua,...,uc)| <Gy, Y(n,u) €Ny x [d-D,d+D], 1<1<k,
(3.2)

0 i-1
Z |;—_| max{F,-, Z max{Gj, |c;|} } < +00. (3.3)

i=ng+1 j=n0

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d, D).

Proof. Let L € (d - (1 -b)D +bld|,d + (1 - b)D - b|d|). It follows from (3.3) that there exists
T >1+np+mn;+7+|p| satisfying

i-1

1 [F,- + 3 (Gj+ |c,-|)] < (1-b)D-b|d| - |L -d. (3.4)

|ai| j=no

M

1

Il
~
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Define two mappings Sy and Gy, : B(d, D) — l;" by

L- bnxn—'r/ n 2 T/
SL.X'n = (35)

Spxr, p<n<T,

Grx, = i {f(l xﬁ""xf"’)JrZ[g(]’xglﬂ ) - Cj]}' et (36)

i:n j=no

GLxT/ ﬂ <n< TI

for any x = {xy},¢z, € B(d, D).
Now, we assert that

Six+Gry € B(d,D), Vx,y € B(d,D), (3.7)
|Scx = Sry|| <b|x-y|, Vx,yeB(d,D), (3.8)
IGLx|| < D, Vxe€ B(d,D). (3.9)

It follows from (3.1), (3.2), and (3.4)—(3.6) that for any x = {xn}nezﬂ,y = {yn}nezﬂ € B(d,D),
andn >T,

L-d- ban+Z—

ion i

X{f(i’yfli"‘ "yfki) + i [g<]"yg1j/" "ygkj> - Cf] }'

j=no

|5an + GLyn —dl

<|L- d|+b(|d|+D)+Z| 1 [F +Z(G +|c]|)] (3.10)
1 ] 1o
<|L-d|+b(d|+D)+(1-b)D-bld|-|L-d|=D
|SLxn = S1ym| = |bu(xXnr = yn-r)| <bllx - y]|,
[ee] 1 i-1
|Grx,| < Zm [F,- + > (Gj+ |c,~|)] <(1-b)D-b|d|-|L-d| <D,

i=T j=no

which imply that (3.7)-(3.9) hold.
Next, we prove that Gy, is continuous and Gy (B(d, D)) is uniformly Cauchy. It follows
from (3.3) that for each € > 0, there exists M > T satisfying

> [p L 3G |c,|)] (3.11)

j=no

o
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Let x¥ = {xZ}neZﬂ and x = {xn}nezﬁ € B(d, D) satisfy that

lim x” = x. (3.12)

v — 0

In view of (3.12) and the continuity of f and g, we know that there exists V € N such that

NiZTaL I:if(l xf ,. ..,x}kl) - fl,xp, ..., x5,)
i (3.13)
+Z |g<], Xg,r x:g’,k]) —g(j,xglj,...,xgkj>|] < %, Yw>V.
j=no
Combining (3.6), (3.11), and (3.13), we obtain that
IGrx” — Grx|| <Z| 1|{'f<l, f1 . ’xfk> f(l,th, . ’xfkl)
Sslix, ) —g(ffxgu-/---,xgkj)(}
j=no
N1
:ZT Tl { |f<1 XL xj‘iki> —fl,xp,, ..., x5,) (3.14)

J=1o

F+ZG <g W2V,
1M| l| j=no

which means that Gy is continuous in B(d, D).
In view of (3.6) and (3.11), we obtain that for any x = {xn}nezﬁ € B(d,D)and t,h > M

+Z|g<], Xgir .,x;k])—g(j,xgll.,...,xgkj>|}

|Grx: — Grap| <

3 {f(z,xfh, CXf) + i [g(j,xglj,...,xgk/) - cj] }‘

j=no

+ ial,{ fl,xs,.. ,xfk,)+Z[g<],xg1], ,xgk]> c]]}‘ (3.15)

i=h j=no

2

;Ms

%[P +Z(G +|c]|)] <g,

j=no
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which implies that Gr(B(d,D)) is uniformly Cauchy, which together with (3.9) and
Lemma 2.1 yields that G (B(d, D)) is relatively compact. Consequently, G; is completely
continuous in B(d, D). Thus, (3.7), (3.8), and Lemma 2.2 ensure that the mapping S; + G,
has a fixed point x = {x,,},,cz , € B(d, D), which together with (3.5) and (3.6) implies that

© 1 .
xn:L—bnxn_T+Za{f(1,xf”, CXf) + Z[g(pxgl], ) ,xgkj>—cj]}, n>T,
1=n

j=no

(3.16)

which yields that

AlanA(xy +bpxyr) + f(n,x5,,..., x5,)] +§(M,xg,,, ..., Xg,) =Cn, n>T. (3.17)

That is, x = {x;},z, is a bounded nonoscillatory solution of (1.1) in B(d, D).

Let Li,L, € (d-(1-b)D +b|d|, d+ (1 -b)D - b|d|), and L; # L,. Similarly, we can
prove that for each [ € {1,2}, there exist a constant T; > 1+ ng + 11 + 7 +|f| and two mappings
Sy, and G, : B(d,D) — l;" satisfying (3.4)—(3.6), where T,L, Sy, and Gy are replaced by

Ti, L, S1,, and Gr,, respectively, and Sy, +Gy, has a fixed point z! € B(d, D), which is a bounded
nonoscillatory solution of (1.1); that is,

z =L, bznT+Z { <z zi[“,...,zi[k)+g[g<j,zfglj,...,zfg,kj>—cj]},

ion i

(3.18)

Vn>T, 1e€ll1,2).

Note that (3.3) implies that there exists T3 > max{Tj, T»} satisfying

lai<p e > L1 — Lol Lz' (3.19)

J=no

MS

i

3

Using (3.2), (3.18), and (3.19), we get that for any n > T3,

1.2 1 2
Zy = Zn +bn<zn_T -z >

n-t

ot S5 G603

+Z[g<]' 817 gk7>_g<j'z§1f""’z§’<f>]}‘

J=10o
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i-1

Mo

S |L1 — Lo
2
>0,
(3.20)

that is, z! # z%. Therefore, (1.1) possesses uncountably many bounded nonoscillatory solu-
tions in B(d, D). This completes the proof. O

Theorem 3.2. Assume that there exist ny € N, d € R, D,b € R* \ {0}, and two nonnegative
sequernces {l-"n}nel\ln0 and {Gn}neNn0 satisfying (3.2), (3.3), and

ld _1-b

D b’

|by| <b, Vn>mn. (3.21)

Then, (1.1) has uncountably many bounded solutions in B(d, D).
The proof of Theorem 3.2 is analogous to that of Theorem 3.1 and hence is omitted.

Theorem 3.3. Assume that there exist ny € N, d € R, D,b,,b* € R* \ {0}, and two nonnegative
sequernces {Fn}neNn0 and {Gn}neNn0 satisfying (3.2), (3.3), and

d  b.-1
<

< <b* > n. 3.22
D a1 1<b.<|by| <b*, Yn>m (3.22)

Then, (1.1) has uncountably many bounded solutions in B(d, D).

Proof. Let L € (—(b, —1)D + (b* +1)|d|, (b —1)D — (b* +1)|d|). It follows from (3.3) that there
exists T > 1+ ng + ny + 7 + |f satisfying

M8

:T j:no

i1
ai [Fi +>.(Gj+ |c,~|)] < (b, —1)D = (b* +1)|d| - |L|. (3.23)

Define two mappings Sy and Gy : B(d, D) — l;" by

L _ xn+1-’ n>T,
Sixy, = buir  bpir (3.24)
SLxTr ﬂ <n< T/
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Grx, = bl i;{ N xfk,)+Z[g<],xg]/, "xng')_Cf]}, et

AT joppr 1 j=no
Grxr, p<n<T,
(3.25)

for any x = {xn}nezﬁ € B(d, D).
Now, we assert that (3.7), (3.9), and the below

s Vx,y € B(d, D) (3.26)

hold. It follows from (3.2) and (3.22)—(3.25) that for any x = {xn}nezﬂ, Y= {yn}VLGZp € B(d,D),
andn>T,

|SL.X'n + GL]/n - d|

—d-
busr bur b

L e 1 &1
1

. a;
4T j—pyr

X {f(i’yfli""’yfki) + i [g<j’yglj""’ygkj> _Cf]}l

j=no

1 d| + 1& 1 2
< oL = byrd] + L b—ZTIFiJFZ(G;‘”CiD]

Jj=no

|d| + D
b,

< oL+ 1) + S 4 L - 1)D - 7+ Dld] - L] <,

1 1
|San SL]/nl—' b (xn+T ]/n+T) Sb_*”x_y”l

|G| < bliai lF +Z(G +|c]|)] < —[(b -1)D - (b* +1)|d| - |L|] < D,
=T j=no

(3.27)

which imply (3.7), (3.9), and (3.26).
Next, we show that G, is continuous and Gr,(B(d, D)) is uniformly Cauchy. It follows
from (3.3) that for each ¢ > 0, there exists M > T satisfying (3.11). Let x” = {x%}nezﬂ and
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x = {xn}nezp € B(d, D) with (3.12). It follows from (3.12) and the continuity of f and g that
there exists V' € N satisfying (3.13). In light of (3.11), (3.13), and (3.25), we deduce that

i=T+T

1 & 1 - » .
IGLx” = Grx|| < b Z m [|f<1,xf“,...,xfki> —f(z,xf“,...,xfki)

O SR |

j=no
M-1
Sbl* _Tlaihf(l' Ko r55) = S e 2p)
i-1 2> 1 i-1
+Z |g<j,x;1j ..,x;k]_> —g(j,xglj,...,xgkj>|] + b_*zm <Fi + ZG,-)
j=no i=M "1 j=ng
< bi V>V,
) (3.28)

which yields that Gy, is continuous in B(d, D).
Using (3.1) and (3.25), we get that for any x = {xn}nezﬂ € B(d,D)and t,h > M

|GLx: — Grxp| <

i a {f(l Xfigr oo Xfig) + Z [g<]fxgu /xgk/> - Cf] }‘

i=t+T j=no

| (3.29)

b i=h+1 j=no

bt+T

+

N [F 3G+ |c]~|>]

Jj=no

which means that G, (B(d, D)) is uniformly Cauchy, which together with (3.9) and Lemma 2.1
yields that G (B(d, D)) is relatively compact. Consequently, G is completely continuous in
B(d, D). Thus, (3.22), (3.26), and Lemma 2.2 ensure that the mapping S; +G; has a fixed point
X = {xn}nezﬂ € B(d, D); that is,

0

X, = L Xpr +b1 Z {f(z Xfyire- xfk1)+2[g<],xg1/, . ,xgkl)—cj]}, n>T,

le+T bn+’T N+T j—par l j=ng

(3.30)
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which gives that
AlanA(xy +bpxyr) + f(n,x5,,..., x5,)] +§(M,Xg,,, ..., Xg,) =Cn, n>2T+71. (3.31)

That is, x = {xn}nezﬂ is a bounded solution of (1.1) in B(d, D).

Let Li,L, € (=(by — 1)D + (b* + 1)|d|, (b« — 1)D — (b* + 1)|d|) and L; # L,. Similarly,
we conclude that for each I € {1,2}, there exist a constant T; > 1 + ng + n1 + 7 + |p| and two
mappings Sy, and Gy, : B(d,D) — lg’ satisfying (3.23)-(3.25), where T,L, Sy, and G are
replaced by Tj, L, S1,, and Gy, respectively, and S, + G, has a fixed point z! € B(d, D), which
is a bounded solution of (1.1); that is,

[ T izqar G j=no

2L CZwr, 1 il{f(l i)+ Z[g(], ZL, gk]>_cj]}, (332)

foralln > Tyand I € {1,2}. Note that (3.3) implies that there exists T3 > max{T;, T, } satisfying
(3.19). By means of (3.2), (3.19), and (3.32), we infer that for any n > T3,

Z}[ _ Zi 4 Zn+Tbn_+Tzi21+T
Li-L, 1 .
B bpir ’ ml ——— {[f<]l i ,Z}"f> _'f<]’zif1f"”’zifkf>]
Bliizh) 052 o
Ly — Ly 2 &
>1_2_ - F+ 3G
b. b*% < ,Zn:O >
|L1 — Lo
2b,
>0,

that is, z! # z2. Therefore, (1.1) possesses uncountably many bounded solutions in B(d, D).
This completes the proof. O

Similar to the proofs of Theorems 3.1 and 3.3, we have the following results.

Theorem 3.4. Assume that there exist ny € N, d € R, D, b,,b* € R* \ {0} and two nonnegative
sequernces {Fn}neNn0 and {Gn}neNn0 satisfying (3.2), (3.3), and
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d| > D, <bfb* + bbb bf)D > (b*2 B2 b+ b*b*2> \d],
(3.34)
1<b,<b,<b*, Vn>ny.
Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d, D).
Theorem 3.5. Assume that there exist ny € Ny, d, D € R* \ {0}, b,, b* € R_ and two nonnegative
sequences {Fy} ey, and {Gu},en, satisfying (3.2), (3.3), and
d>D, DR2+b"+b,) <d(b,-b"), b.<b,<b*<-1, VYn>ny. (3.35)

Then, (1.1) has uncountably many bounded positive solutions in B(d, D).

Theorem 3.6. Assume that there exist n; € N, D € R* \ {0}, d,b. € R_\ {0}, b* € R_ and two
nonnegative sequences {Fy},cy, and {Gn},ey, satisfying (3.2), (3.3), and

~d>D, d(* -b)>DQ2+b,+b"), b, <b,<b", ¥n>mn. (3.36)

Then, (1.1) has uncountably many bounded negative solutions in B(d, D).

Theorem 3.7. Assume that there exist ny € N,,, d € R\ {0}, b*,D € R* \ {0} and two negative
sequences {F,,}neNn0 and {Gn}neNn0 satisfying (3.2), (3.3), and

1<@<2_b

<b,<b* > ny. 3.37
D b 0<b,<b*, Vn>m ( )

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d, D).

Theorem 3.8. Assume that there exist ny € N,,,, d € R\ {0}, b, € R_\ {0}, D € R*\ {0} and two
negative sequences {Fy} ey, and {Gn},en, satisfying (3.2), (3.3), and

1<%<b";2, b.<b,<0, Vn>n. (3.38)

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d, D).

Next, we investigate the existence of uncountably bounded nonoscillatory solutions
for (1.1) with the help of the Schauder fixed point theorem under the conditions of b, = +1.

Theorem 3.9. Assume that there exist 1y € N, d € R, D € R*\ {0} and two nonnegative sequences
{Fn}neNnO and {Gn}neNn0 satisfying (3.2), (3.3), and

d|>D, by=1 VYn>n. (3.39)

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d, D).
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Proof. Let L € (d — D,d + D). It follows from (3.3) that there exists T > 1 + ny + ny + 7 + ||
satisfying

ii[p,.+§(cj+|cj|)] <D-|L-d|. (3.40)
i=T

Iail j=ny

Define a mapping Sy, : B(d, D) — lff by

oo n+2st-1 1 i-1
B L+Z Z - f(i,xf“,...,xfki)+Z[g<j,xg”,...,xgkj>—c]-] , n>T,

Srxn = s=li=n+(2s-1)7 " j=ng

Scxr, p<n<T,
(3.41)

for any x = {xn}nezﬁ € B(d, D).
Now, we prove that

Six € B(d,D), |Six| <|L|+D, Vxe€ B(d,D). (3.42)

It follows from (3.2) and (3.39)—(3.41) that for any x = {xn}nezﬁ €B(d,D)andn>T,

i-1

o  n+2s7-1 1
L—d+Z Z ;i{f(i,xf“,...,xfki)+Z[g(j,xgli,...,xgkj>—c]-]}'

s=1li=n+(2s-1)T j=no

|Sp6, — d| =

=3 1 i-1
< IL—dI +Zm [F, + Z(G] + |C]|)]
i=T 171

j=no
<|L-d|+D-|L-d|
=D,

[ee] 1 i-1
|Spxa| < |L|+ ZH [Fi + > (Gj+ |c,-|)] <|L|+D-|L-d|<|L|+D,
i=T 1 j:n(]

(3.43)

which imply (3.42).
Next, we prove that Sy, is continuous and Sy (B(d, D)) is uniformly Cauchy. It follows
from (3.3) that for each ¢ > 0, there exists M > T satisfying (3.11). Let x” = {xﬁ}nezﬂ and
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x = {xXn},ez , € B(d, D) satisfying (3.12). It follows from (3.12) and the continuity of f and g
that there exists V € N satisfying (3.13). Combining (3.11), (3.13), and (3.41), we infer that

[IScx” — Srx||

<Sup{i n+§ 1 |al {|f<1 X7 .,x;ki> —f(i,x}fli,-.-,xfki)

n>T | s=li=n+(2s-1)T
cSsliw, - fx§kf)-8(ffxg1,~/---/xgkf)|}}

J=10

;i;ai{v(z X ,xfk> fl xp,-x5,)

+Z|g<]r 8177 .,x;k])—g<j,xg1]-,---/xgk,'>|}

J=10o

M1
<2 7{|f<1 (Kyees ¥, ) = g 5)

+Z|g<]’ 811 : ’x;kf>_g<j'x81j""'x8kf>|} +2-°° %<E’+§G;>

j=no j=no

<g, Yw>V,
(3.44)

which implies that Sy, is continuous in B(d, D).
By means of (3.11) and (3.41), we get that for any x = {xy},cz, € B(d, D) and t,h > M

|Sth - SLxh| <

S i{f@ e 20) + 35 )]H

s=1 i=t+(2s-1)T J=no

oo h+2sT-1

> 2 ali{f(i,xfli,...,xfk,») - li [g(j,xglj,...,xng _ C]] }‘

s=1li=h+(2s-1)T j=no

+

i= M j=no

<23 [F 3G+ |cj|>]

<g,
(3.45)
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which means that S;(B(d,D)) is uniformly Cauchy, which together with (3.42) and
Lemma 2.1 yields that S;.(B(d, D)) is relatively compact. It follows from Lemma 2.3 that the
mapping S;. has a fixed point x = {x,},cz, € B(d, D); thatis,

oo n+2st-1 1
xn=L+Z Z {f(z,xfh,. xfk1)+2[g<],xg1], ,xgk]> cj]}, n>T,

s=1 i=n+(2s-1)T ai j=no

which give that
AlanA(xy + Xp-z) + f (1, x5, x5,) | +8(M, Xg o X)) =Cn, n2T+T (347)

Thatis, x = {x,},ez 5 € B(d, D) is a bounded nonoscillatory solution of (1.1).

Let Li,L, € (d — D,d + D) and L; #L,. Similarly, we infer that for each I € {1,2},
there exist a constant T; > 1 + ng + n; + 7 + || and a mapping Sy, : B(d,D) — l;;’ satisfying
(3.41), where L,T, and S;, are replaced by Tj, L;, and Si,, respectively, and Sy, has a fixed
point z! € B(d, D), which is a bounded nonoscillatory solution of (1.1); that is,

zln=L1+i "+ziT_1 a%{f(i,z; sz)+_ii[g<j’zlglf""’z«l?kf>_Cj]}’ n2T,

s=1 i=n+(2s-1)T j=no
(3.48)
forl € {1,2}. Note that (3.3) implies that there exists T3 > max{T, T} satisfying (3.19). Using

(3.2), (3.19), and (3.48), we conclude that for any n > T

1 2
2y~ Zp

0 n+ZST 1

=|Li-Lo +Z {[f<l Zfl ijki) _f<i’z§1i""'z§kf>]

s=1 i= n+(2$ 1)7‘
+Z[g<], 847 gm) _g(j’zév"”’zékfﬂ}‘

J="mo

o n+2s7-1 3.49
>|Li- Lo -2, D, ||<F+ZG> (34

s=1 i=n+(2s-1)T J=no

> |Ly - Lo| - 2Z| 1|<F+ZG>

i=T3 J=no

S |L1 — Lo
2

>0,
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which gives that z! # z2. Therefore, (1.1) possesses uncountably many bounded nonoscilla-
tory solutions in B(d, D). This completes the proof. O

Theorem 3.10. Assume that there exist ny € N,,, d € R, D € R* \ {0} and two nonnegative
sequernces {I—‘n}nel\ln0 and {Gn}neNn0 satisfying (3.2),

d|>D, by=-1, Yn>n, (3.50)
®  ® q i1
Z Z Tl max{ F;, 3 max{G;j, |¢j|} } < +c0. (3.51)
s=1 i=ng+st 11 j=no

Then, (1.1) has uncountably many bounded nonoscillatory solutions in B(d, D).

Proof. Let L € (d — D,d + D). It follows from (3.41) that there exists T > 1 + ny + n1 + 7 + ||
satisfying

o) 0 i-1
> > é[z—*i+2(cj+|cj|)] <D-|L-d| (3.52)

s=1i=T+s j=no

Define a mapping Sy : B(d, D) — ZE" by

— L_i i %{f(i’xfli""’xfki)+i§_i|:g<j’xglj"""xgkj>_Cj]}l n>T

Spxy, = s=1 i=n+st "1 j=no
Srxr, psn<T,
(3.53)

for any x = {xn}nezﬂ € B(d, D). It follows from (3.2), (3.52), and (3.53) that for any x =
{%n}pez, € B(d,D)and n 2T

|Spxn, —d| =

L_d_i i ali{f(i,xfli/---/xfki) + i [g(j’xglj""’xgkj> _Cf]}|

s=1 i=n+st j=no

§|L—d|+i i é[Fﬁi_Zl(GjHCiD]

s=1i=T+s j=no
(3.54)
<|L-d|+D-|L-d|
=D

w0 0 1 i-1
ISpaeal <ILI+ D D] [Z (Gj+]ci]) +Fi] <|L|+ D,

s=1i=T+sT |ai| j=no

which imply (3.42).
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Next, we show that S; is continuous and S (B(d, D)) is uniformly Cauchy. It follows
from (3.51) and Lemma 2.4 that for each € > 0, there exists M > 1 + T + 7 satisfying

i(1+7>| [P S +Ic]|>] (3.55)

i=M j=no

Let x¥ = {xZ}neZﬂ and x = {xn}nezﬂ € B(d, D) satisfying (3.12). By means of (3.12) and the
continuity of f and g, we deduce that there exists V' € N satisfying

M-1
—; <1 )|al {'f<l xf1 ’ 'x;ki>_f(i’xflil-'-rxfki)
- (3.56)
+Z‘g<]/ Xgyjre- ,xgkj>—g(j,xg]j,...,xgk]_>|} <§, Yy > V.
J=no
In light of (3.2), (3.53)—(3.56) and Lemma 2.4, we conclude that
I =i <3 5 oo {|f( o) = g 0|
s=1 i= i
+]zn:|g<], G ,xgk))—g(j,xglj,...,xgkj>|}
Si§T<1 >|al {|f< i’ ..’x;ki> _f(irxfu/---,xfki)
+Z|g(1, - x;.k,)—g(j,xglj,...,xgkj)|}
J="o
+]Zn:|g<], LR ,x§k1>—g(j,xglj,...,xgki>|}
+ZZ<1+ ) <F+ZG>
|ail fere
<g Yv>V,
(3.57)

which implies that Sy, is continuous in B(d, D).
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By virtue of (3.53), (3.55), and Lemma 2.4, we get that for any x = {x, }nez,, € B(d, D)
andt,h > M,

|SLxs — Span| <

5.5 st Ehmn) |

=1 i=t J=1o

)

+

£ 5 U o Sl o |

s=1 i=h+st j=no

e = i1 (3.58)
< Z Z 7[Fi+Z(Gf+|Cf|)]

Jj=no

szlg]w(l i) [F+Z(G +|C]|)]

j=no

which means that S;(B(d,D)) is uniformly Cauchy, which together with (3.42) and
Lemma 2.1 yields that Sy (B(d, R)) is relatively compact. It follows from Lemma 2.3 that the
mapping Sy, has a fixed point x = {x, }nez, € B(d, R); that is,

n=L- i i {f(l Xfy - Ika,)+Z[g(J,xgw o Xgy ) - Cj]}, n>T, (359

521 i=nrsr Hi j=no
which means that
AlanA(xpy = Xp—z) + f(n, x50, X5 ) ] + §(M Xg - X)) =Cn, 12T+ (3.60)

Thatis, x = {x,} ¢ ’ is a bounded nonoscillatory solution of (1.1) in B(d, D).

Let Li,L; € (d - D,d + D) and L; # L,. Similarly, we conclude that for each I € {1,2},
there exist a positive integer T; > 1 + ng + n; + 7 + |p| and a mapping S, : B(d,D) — l;c’
satisfying (3.53), where T, L,and S; are replaced by Tj, L;, and Sy, respectively, and Sy, has a
fixed point z! € B(d, D), which is a bounded nonoscillatory solution of (1.1); that is,

zL:Ll—i i l{f(z (22 )+ Z[g(], 2, )—c,-]}, n>T, (3.61)
s=1 i=n+st ! j=no

i i ] l|<F +ZG> L2|, (3.62)
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which together with (3.2), (3.53), and (3.61) gives that

(X)

1—L=> >

s=1 i=n+st

5055
+Z[g<]’ 811 ’ gk}) _g(j’zfzs’lj""’zékfﬂ}‘ (3.63)

j=no

[ee) [ee)
> L - Ly -2 > F+ZG
s=1 i:T3+s1'| l| j=no
|Li = Ly|
>
>0, VTIZTE,,

that is, z! # z%. Therefore, (1.1) possesses uncountably many bounded nonoscillatory solu-
tions in B(d, D). This completes the proof. O

Remark 3.11. Theorems 3.1 and 3.4-3.10 generalize Theorem 1 in [5] and Theorems 2.1-2.7 in
[6, 7], respectively. The examples in Section 4 reveal that Theorems 3.1 and 3.4-3.10 extend
authentically the corresponding results in [5-7].

4. Examples and Applications

Now, we construct ten examples to explain the advantage and applications of the results
presented in Section 3. Note that Theorem 1 in [5] and Theorem 2.1-2.7in [6, 7] are invalid
for Examples 4.1-4.10, respectively.

Example 4.1. Consider the second-order nonlinear neutral delay difference equation

-H*n-1 5n3
A <n6 In n>A<xn + %xn%> + Ljnﬂ X501 X2 s = (n- 1)2, n>2,
n+l n+ X3, 15

(4.1)

where ng =2 and 7 € N are fixed. Letny =6, k=2,d =46,D =5,b=1/3, f = min{2 - 7,-9},
and

V'O e e - S

an:nélnn, b, = a1 » Py
fin=2n+1, fon =3n-15, g(n,u,v) = uon?, Qin = n+1, Qo = 212 +3,

F,=55n%,  G,=121n%, (n,u,v) €N, x[d-D,d+ D]*
(4.2)
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It is easy to show that (3.1)-(3.3) hold. It follows from Theorem 3.1 that (4.1) possesses
uncountably many bounded nonoscillatory solutions in B(d, D).

Example 4.2. Consider the second-order nonlinear neutral delay difference equation

-1 i 212,
Aln?(1 -2n)°A( x, + =) (3.+ sin ) Xp_r | + 3% X 25, | + _Moms n?, n>2,
4 +sinn 1+ 13]x3,3]

(4.3)

where ny = 2and 7 € Nare fixed. Letn; =5, k=2,d=+42,D =11,b=5/6, f = min{2-7,-5},
and

(-1)"*(3 + sinn) )

a, = n2(1 - 2n)3, b, = c,=n", f(n,u,v) = 3nuwv,

4 +sinn

5 2nu

fln =n, f2n = 5nl g(”; u,U) = m/ (44)

gn=2n-9,  g.=3n,
F.=507n%,  G,=26n, (n,u,v) €N, x[d-D,d+D]>

It is clear that (3.2), (3.3), and (3.21) hold. It follows from Theorem 3.2 that (4.3) possesses
uncountably many bounded solutions in B(d, D).

Example 4.3. Consider the second-order nonlinear neutral delay difference equation

-1)" )" (4n® +1 4n’x?
A [<n8 sin —( i) >A<xn + —( ) ( " )xn_T g rz‘lx%nxi3 = n3, n>1,

nd+2n+2 1+nx22
n’-1

(4.5)

where nyp = 1 and 7 € N are fixed. Let ny = 10,k = 2,d = 1, D = 5, b, = 3, b* = 4,
p =min{l-17,-2}, and

-1 3 3
. (=D)" (-1)" (4n’ +1) dnu
R A v roe e L AUt per
fin=n+1, fon = n* -1, g(n,u,v) = n*u’v’, 8in =21, g =n-3, (+6)

F,=864n?>,  G,=7776n*, (n,u,v) €N, x[d-D,d+ D]

It is easy to see that (3.2), (3.3), and (3.22) hold. It follows from Theorem 3.3 that (4.5)
possesses uncountably many bounded solutions in B(d, D).

Example 4.4. Consider the second-order nonlinear neutral delay difference equation
2

-1/(In n) 2 nx 4 _ _1)\"
A[T’l5<sln%> A<xn + M » > n2+3 ] 4 n X3n — ( 1) n 2 2,

Xpor ) +
n2+n+2 1 + ncos?x,, n?+x2 n-1’

(4.7)
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where np =2 and 7 € N are fixed. Letn; =5,k =2,d=44,D=3,b,=2,b*=3,=2-7,and

1\ Vnm 3n? +1 (-1" nu?
5 .
a, =n’( sin — , b= —, Cp = , nu,v)= ————,
" ( n> " n2en+2 " -1 £ ) 1 + ncos?v
4
n —-—u
fin=n*+3,  fo=2n, gnuo)=——s,  gu=3n  gu=n+l,

F,=49n, G,=n*+7, (nu,v)€eN,, x[d-D,d+D]”
(4.8)

It is easy to show that (3.2), (3.3), and (3.34) hold. It follows from Theorem 3.4 that (4.7) has
uncountably many bounded nonoscillatory solutions in B(d, D).

Example 4.5. Consider the second-order nonlinear neutral delay difference equation

1 \>" 6 —2In(1 + n?
: ["6 (1) 2 <x" - ﬁ") : "xz"”xi”] FE R, =2 20

(4.9)

where ng = 0 and 7 € N are fixed. Let n; =10,k =2,d =9,D =7,b, = -2, b* = -17/15,
p = min{-7,-9}, and

p 1 \" 6-2 In(1+n?) ) 4
”":”<“1+n>' b= S Tharay s fuo)=mt,

fin=2n+1, fon=n+2, g(n,u,v) = n*uv’®, Sin = 3n, Qo =4n,

F,=1048576n, G, =65536n%, (n,u,v) € Ny, x [d-D,d+ D]
(4.10)

It is easy to show that (3.2), (3.3), and (3.35) hold. It follows from Theorem 3.5 that (4.9) has
uncountably many bounded positive solutions in B(d, D).

Example 4.6. Consider the second-order nonlinear neutral delay difference equation

3_2nt nt® —n’x2 n?x?
a1 n_1n17 n—4 SA S X 4 3n-19 + n+5 — 1’115, n> 5,
[( ) (n-4) " sin+nt T ) @Bl | 1+ X33 B
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where ng = 5and 7 € N are fixed. Letn; =5,k =2,d =-9,D =7,b, = -2, b* = —%,

p =min{5-7,-4}, and

3-2nt n'® — n’u?
=(-D""""(n-4 5, b= —, = 15, JU0) = ———F",
an = (D" n T (n—4) " 5+n+nt =1 fn,u,0) In(3 + n|v|)
n2u?
f1n=3n_18l f2n=2nl 8(”1”;7))=m/ g1n=n+51 82n=2n+3/

F,=n®+256n",  G,=256n%, (n,u,v)€eN, x[d-D,d+D]
(4.12)

It is easy to show that (3.2), (3.3), and (3.36) hold. It follows from Theorem 3.6 that (4.11) has
uncountably many bounded negative solutions in B(d, D).

Example 4.7. Consider the second-order nonlinear neutral delay difference equation

2 _2n+17 2 n? - x;
A n81n<cos z)A xn+5nz—n+0x,ﬂ _ ng + 23— p2(2-n), n>3,
n 6n2+n+1 n+xj | 1+nxul

(4.13)

where ny = 3and 7 € Nare fixed. Letny =60,k =2,d =+7,D = 6,b* =5/6, f = min{3-71,-3},
and

2 2
8 T _n®-2n+170 9 . nu
a, =n ln<COS;>, bn—m, Ch =M (2—7’1), f(n,u,v)——m,
n® - u’

fin =2n, fon =4n, g(n,u,v) = an,

gin=2n-3, Qn=n-6,

F,=13n, G, =2197+n% (nu,v) €N, x[d-D,d+ D]
(4.14)

Itis clear (3.2), (3.3), and (3.37) hold. It follows from Theorem 3.7 that (4.13) has uncountably
many bounded nonoscillatory solutions in B(d, D).

Example 4.8. Consider the second-order nonlinear neutral delay difference equation

3 2 2 2., .3
1-8nt Wxpq — (n°+1)x2_ n° +x
AlnCA( xp+ ———xpr ) + ( )%u-3 + 20— (-1)"n®, n>4,
1 2 2
3+9n 1+nx2, 2 + n?|x3,-1]

(4.15)
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where ny =4 and 7 € N are fixed. Letn; =4,k =2,d=4+7,D =6,b, = -8/9, p = min{4-7,1},
and

1-8n* ndu— (n* +1)v?
_ 6 _ _ 3 _
A s Py
n? +u’
fin=n+1, fon=n-3, g(n,u,v) = 2+ o] Qin=2n+5, Qn=3n-1,

F, =137 +169(n* +1),  Gu=n?+2197, (mu,v) €Ny x [d-D,d+D],
(4.16)

Itis clear (3.2), (3.3), and (3.38) hold. It follows from Theorem 3.8 that (4.15) has uncountably
many bounded nonoscillatory solutions in B(d, D).

Example 4.9. Consider the second-order nonlinear neutral delay difference equation

1\" —1)2 - 1-1°+ nx? —1)"n?
A n6<1+—> A(Xy + Xp_r) + (n-1) nxi"” + 57"3 _ 3) non>1,
n n?In(3 + nxg,) l+n+nd|x x| n+1

where nyp =1and 7 € Nare fixed. Letn; =1, k=2,d=46,D=2,=1-1,and

1\" (-1)"n? (n-1)%-nu
w=rt(1e3) e S0 = s s,

1-n®+nu? 8

fon=6n,  g(nuv)= gm=7m,  gu=3n,  Fy=1+_,

1+n+ndlvoud|
G,=1+64n+n°, (n,u,v) €N, x [d—D,d+D]2.
(4.18)

Itis clear (3.2), (3.3), and (3.39) hold. It follows from Theorem 3.9 that (4.17) has uncountably
many bounded nonoscillatory solutions in B(d, D).

Example 4.10. Consider the second-order nonlinear neutral delay difference equation

SnX303 _n42

Aln*(1-2n)(2n - 3)2A(xn - Xp-r) + + WP XgpiaXapos =12, n>2, (4.19)

2 + 13| x5543]

where np =2 and 7 € N are fixed. Letn; =2, k=2,d=410,D =6, =2-7,and

5nu

a, =n*(1-2n)(2n-3)%, Cy =12, f(n,u,v) = m,

f1n=3n3—n+2,

fon = 5n° + 3, g(n,u,v) = uvnz, Qin = 3n® + 4, D = 4n® - 5, F, =40n,

G, =256n%, (n,u,v) €N, x[d-D,d+ D]
(4.20)
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It is clear (3.2), (3.50), and (3.51) hold. It follows from Theorem 3.10 that (4.19) possesses
uncountably bounded nonoscillatory solutions in B(d, D).
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