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We establish some regularity criteria for a turbulent magnetohydrodynamic model. As a corollary,
we prove that the smooth solution exists globally when the spatial dimension 7 satisfies 3 <n < 8.

1. Introduction

In this paper, we study the following simplified turbulent MHD model [1]:

ov—Av+(u-V)Yu+Vaor=(B-V)B, (1.1)
OH-AH +u-V)B-(B-V)u=0, (1.2)
U= <1—a2A>u, H = (1—a2A>B, a>0, (1.3)
divo=divu=divH =divB =0, (1.4)
(v,H)(0) = (vo, Hp) inR" (n>3). (15)

Here v is the fluid velocity field, u is the “filtered” fluid velocity, o is the pressure, H is the
magnetic field, and B is the “filtered” magnetic field. a > 0 is the length scale parameter that
represents the width of the filter. For simplicity we will take & = 1.

When n = 3, the global well-posedness of the problem has been proved in [1]. When
H = B =0, (1.1) and (1.4) is the well-known Bardina model. Very recently, the authors
[2] have proved that the Bardina model has a unique global-in-time weak solution when
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3 < n < 8. Here we wold like to point out that by the same arguments, we can prove the
following.

Theorem 1.1. Let 3 < n < 8. Let (ug, By) € H' (R") with divuy = div By = 0 in R™. Then for any
T > 0, the problem (1.1)—(1.5) has a unique weak solution satisfying

1 T
5 f u* +|Vul* + B? + |VB[*dx + f J |Vul?> + |Aul® + |VB* + |AB[*dx dt
0
(1.6)

1
<3 Jué +|Vuo|* + B2 +|VBy|*dx.

The proof for Theorem 1.1 is similar to that for the Bardina model in [2], so we omit it
here.
The aim of this paper is to study the regularity of the weak solutions. We will prove

Theorem 1.2. Let n > 3. Let (vy, Hy) € H*(R") with s > 1 and divoy = div Hy = 0 in R". Let
(v, H) be a local smooth solution to the problem (1.1)—(1.5) satisfying

(v, H) € L*(0, T; H%) N L2 (0, T; HS”), (1.7)

for any fixed T > 0. Then (v, H) can be extended beyond T > 0 provided that one of the following
condition is satisfied:

<gq<m, (1.8)

(1.9)

By (1.6) and (1.8), as a corollary, we have the following

Corollary 1.3. Let 3 < n < 8. Let (vo, Hp) € H*(R") with s > 1 and div vy = div Hy = 0 in R".
Then for any T > 0O, the problem (1.1)—(1.5) has a unique smooth solution (v, H) satisfying (1.7).

When n = 9 or 10, we can get a better result as follows.

Theorem 1.4. Let n =9 or 10 and let (vy, Hy) € L*>(R") and div vy = div Hy = 0 in R™. Let (v, H)
be a local smooth solution to the problem (1.1)—(1.5) satisfying

(v,H) € L* (o, T; L2> N L2 (0, T; H1>, (1.10)
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for any fixed T > 0. Then (v, H) can be extended beyond T > 0 if one of the following conditions is
satisfied:

W ue c([o,:r];L"/3), (1.11)
) ue LP(0,T;L7) with §+g:3, g<q§n, (1.12)
(3) Vue c<[o,T];L"/4), (1.13)
2 n n n
p K 1 4 = 1 — —
(4) Vue LP(0,T; L7) wzthp+q 4w1th4<q§2. (1.14)

Remark 1.5. If we delete the harmless lower order terms 0;u — Au and 0;B — AB in (1.1) and
(1.2), then we have

—0yAu+ A?u+ (u-Vyu+ Vo= (B-V)B,
(1.15)
~0/AB+A’B+ (u-V)B—(B-V)u=0,

then the system (1.15) has the following property: if (1, B, ) is a solution of (1.15), then for
allA >0,

(uy, By, ) (x, 1) = ()éu, A3B, A%) ()Lx, )&t) (1.16)

is also a solution. In this sense, our conditions (1.8) and (1.11)—(1.14) are scaling invariant
(optimal). Equations (1.8) and (1.12) do not hold true for g > n. But we also can establish
regularity criteria for 4 > n in nonscaling invariant forms.

In Section 2, we will prove Theorem 1.2. In Section 3, we will prove Theorem 1.4.

2. Proof of Theorem 1.2

Since it is easy to prove that the problem (1.1)—(1.5) has a unique local smooth solution, we
only need to establish the a priori estimates. The proof of the case n < 4 is easier and similar
and thus we omit the details here, we only deal with the case n > 5.

Testing (1.1) by u, using (1.3) and (1.4), we find that

1d

S f 2 4 |Vul*dx + f |Vul? + |Aufdx = f(B -V)B - udx. (2.1)
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Testing (1.2) by B, using (1.3) and (1.4), we see that

1d

zdth2+|VB|2dx+J|VB| +|AB[dx = I(B V)u-Bdx = - I(B V)B-udx. (22)

Summing up (2.1) and (2.2), we easily get (1.6).
(I) Let (1.8) hold true.

In the following calculations, we will use the product estimates due to Kato and Ponce

[3]:
1A (£ e < CAA Fll o N8l o + 1LF s 1A°8 ] 22) (23)

withs >0, A := (—A)l/2 and1/p=1/p1+1/q1 =1/p2+1/q.

The proof of the case g = n is easier and similar, we omit the details here. Now we
assume n/3 < g < mn.

Applying A® to (1.1), testing by A°v, using (1.4), we deduce that

1d 5,12
ZdtflA ] dx+f

Astly |dx I(AS((B-V)B)—AS((u.V)u))Asvdx

(2.4)
= IAS div(B® B-u®u)A°vdx.
Similarly, applying A® to (1.2), testing by A°H, using (1.4), we infer that
2 % f IASH dx+J‘ AS+1H| dx = J‘AS curl(u x B) - ASH dx. (2.5)

Summing up (2.4) and (2.5), using (2.3), we get

2
I|Asv| +|ASH| dx+j Ay | + |AS+1H| dx

1d
2 dt
= IAS div(B® B-u®u)AN°vdx + IAS curl(u x B) - A°H dx

< C(IIBlls

1
AB| o+ i

A, Jiacol

+C(Jlull

1
AB] |, + 1Bl

S
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< Cllullgs + 1Bl |

As+1u“ + |
Lh

AB|| YUl + AT H]p )

= C||(w, B) I

A=Y, B)|| , IA* (0, H)

1.1 1 2n n
—+—+—=1,2<t< <t <
g b b n-2 n-4

< Cli(u, B) |1

Ao, H)|| A (0, Dl

< Cll(u, B) |l 1A (v, H)||1,

o, || 1A o, F %

91 +92

= Cl|(u, Bl |A° (v, H) |57 | A5 (0,

Llas -61-62) [ A5
<A@ |+ clw B >||A (v, H)|[,

(2.6)
which implies
(@, Dl 0,71y + 1 (@, ED) [l 20,7510y < C- (2.7)
Here we have used the following Gagliardo-Nirenberg inequalities:
||AS-1(v,H) ||L < C||IA% (o, H) |15 ]| A% (o,
(-a-(-3)0(-)
(2.8)

IA* (0, H) || < CIIA® (0, H)||15*

(F-0-0)a(-3)

As+1 (U/

(IT) Let (1.9) hold true.

In the following calculations, we will use the following commutator estimates due to
Kato and Ponce [3]:

Asl

14 (£8) = A8l < C(IV A 1Al Nl ). (29)

Ln

withs>0and 1/p=1/p1+1/q1 =1/p2+1/q.
The proof of the case g = n/2 is easier and similar, we omit the details here. Now we
assume n/4 <q<mn/2.
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Applying A® to (1.1), testing by A°u, and using (1.3) and (1.4), we deduce that

2
AS+2u| dx

Ay dx+j

AS+1 |

2dt,[|Au| +

=— I[As(u -Vu) —u- VA u]lA’udx + I[AS(B -VB) - B- VA°B]A°udx (2.10)

+ I(B -V)A®B - A°udx.

Applying A® to (1.2), testing by A°B, using (1.3) and (1.4), we infer that

1d

S |ASBJ + AS“B|2 + |AS+2B|2dx

2
AS“B' dx +j

=- I[As(u . VB) - uVA*B]A*Bdx + I[AS(B -Vu) - B- VA*u] A°Bdx (2.11)

+ I(B -V)A’u- A°Bdx.

Summing up (2.10) and (2.11), noting that the last terms of (2.10) and (2.11)
disappeared, and using (2.9), we obtain

Zdtfw P [astu + AP +

g

- I[As(u -Vu) —u- VA ulA°udx + I[AS(B -VB) - B-VA°B]A°udx

A5+1B| dx

2 2 2 2
AS+1u| + AS+2u| + A5+1B| +|AS+2B| dx

- I[As(u -VB) —u-VA*B]A*Bdx + I[AS(B -Vu) - B- VA*u] A°Bdx
(2.12)
< ClIVauel| o AUl 236y + CHV B o | A Bl 20 [|A 2] 20700

2 2
+C||VB||14 ||ASB||L2q/<q71> + C”Vu“m||ASB||L24/(LH)

< ClI(Vat, VB) s IA° (4, B) 7200

s+1 2(1-6)
< ClIV, VBl [[A B, |

< o||a2w B}, + v VB A
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which yields
1, B)|| o= 0,725y + 11 (1, B) |2 0,7 11502) < C. (2.13)

Here we have used the following Gagliardo-Nirenberg inequality:

s s+l =00 s 0
1A, B)llzien < Cl|a @ B, A2 B . (2.14)

with

—%n: (1—9)(1—%) +0(2- g)

(2.15)

This completes the proof.

3. Proof of Theorem 1.4

We only need to prove the a priori estimates.
Testing (1.1) and (1.2) by (v, H), using (1.3) and (1.4), and summing up the results,
we have

1d ( 2 2 2
5317 +H dx+j|Vv| +|VH| dx

:J(u-V)u-Audx—f(B-V)B-Audx+j(u-V)B-Ade—f(B-V)u-Ade

=hL+DL+1I3+ 14

(3.1)
Using (1.4), we see that
L=) J'uia,-ua]?u dx=-) f 0ju;0;udju dx,
ij i
I2 = —Z J Bia,-Bajz.u dx = Z J ajBial-Baju dx — Z f BiajBaia]'u dx,
ij ij i
(3.2)

I3 = Z J‘ulalBafB dx = —Z J' a]ulalBa/B dx,
i,j ij

Iy = —Z JBia,-ua]z-B dx = Z J ajB,-aiuajB dx + Z I BiajBaiaju dx.
L L] i,j
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Inserting the above estimates into (3.1), noting that the last term of I, and I, disap-
peared, we have

1d

EE J“Uz + H%dx + f |V‘()|2 + |VH|2dx = —Z f aiual-uajui dx + Z J‘ ajuiaiBajBi dx
L] i,j

— Z fa]u,alBa]B dx + Z J a,ua]Ba]B, dx
ij ij

=]

(3.3)

The proofs of the cases (1.11) and (1.13) are similar, we omit the details here.

(I) Let (1.14) hold true,

J < ClIVull IV (4, B[y
-6
< ClIVullyll A, B)lIs " 1AV (u, B[

(3.4)

2(1-0
< CIVull 0, H)I 21V (0, H) |2

1/(1-6
< S|V (0, H)|2 + ClIVull ;2 (o, H) |

N =

Inserting the above estimates into (3.3) and using the Gronwall inequality yields
(v, Bl 0,712y + [0, H) 20,7501y < C- (3.5)
Here we have used the Gagliardo-Nirenberg inequality:
l[ellzaan < CIIVll° Al (3.6)
with

% a-0)(1-2)+0(2-1),

(3.7)
2n 2q 2n
< < .
n-2-"qg-1"n-4

(I) Let (1.12) hold true.
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Integrating by parts, using (1.4) we have
] = Z fuaiajuajui dx — Z J‘ uia]' (aiBa]‘Bi)dx + Z J‘ uiaj (aiBa]‘B)dx - Z fuaiajBajBi dx
ij ij i i

1 1 1

SCllulla IV, Bl 1A, B, ( =+ -+ =1
qg h b

< CllullallA G, B[ VA, B (u, B) [ * VA (w, B3

= Cllull | A, B) |7 ||V Au, B) |55

< Cllullgsll(o, F)IZ" 1V (v, H) |72

1 —0,-
< 51V @ H)Ilg: + Cllulzs* "o, B2,
(3.8)
which yields (3.5).
Here we have used the Gagliardo-Nirenberg inequalities:
1900 Bl < CllAG@, B VAW B,
n n n
(2=a-o-2)sae-9)
(3.9)

IAGw, Bl < ClIA(, B)I|1.*IIVA(, B)||%,

(f=0-ma()r00-2)

This completes the proof.
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