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We study the following two-order differential equation, (Φp(x′))′+f(x, t)Φp(x′)+g(x, t) = 0,where
Φp(s) = |s|(p−2)s, p > 0. f(x, t) and g(x, t) are real analytic functions in x and t, 2aπp− periodic
in x, and quasi-periodic in t with frequencies (ω1, . . . , ωm). Under some odd-even property of
f(x, t) and g(x, t), we obtain the existence of invariant curves for the above equations by a variant
of small twist theorem. Then all solutions for the above equations are bounded in the sense of
supt∈R|x′(t)| < +∞.

1. Introduction

The Kolmogorov-Arnold-Moser (KAM) theory was developed for conservative (Hamilto-
nian) dynamical systems that are nearly integrable. Integrable systems in their phase space
contain lots of invariant tori, and KAM theory establishes persistence of such tori, which carry
quasi-periodic motions, whereas parallel results exist for other classes of dynamical systems
as well. In particular, the reversible KAM theory (starting with Moser’s paper [1]) is to a
great extent parallel to the Hamiltonian ones, see [2–6] and references therein. In the case of
reversible diffeomorphisms, however, some special effects are exhibited [7], and the weakly
reversible KAM theory has been developed in [8, 9].

In this paper, we will consider the P -Laplace equations with quasi-periodic reversible
structure. Firstly, we give some concepts of reversible system, a mechanical system of s
particles with the interaction forces which are independent of velocities or even functions
in velocities; such a system ruled by the Newton equation, d2r/dt2 = F(r, v), r ∈ R3s, v =
dr/dt, F(r,−v) ≡ F(r, v), is time reversible, that is, reversing all the velocities v reverses all
the trajectories in the configuration space R3s. More generally, an autonomous differential
equation du/dt = V (u) and the corresponding vector field V are said to be reversible if there
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exists a phase space involution G (a mapping which G2 = Id) that reverses the direction of
time: TG ◦V = −V ◦G, where TG is the differential of G; that is, G transforms the field V into
the opposite field −V . This u(t), in addition to G(u(−t)), is a solution of the equation.

In the above example, G : (r, v) �→ (r,−v). A system

dx

dt
= f(x, t),

dy

dt
= g(x, t), x ∈ Rp, y ∈ Rq, (1.1)

is reversible with respect to the involution

G :
(
x, y

) −→ (−x, y) (1.2)

if and only if f is even in x and g is odd in x.
We can refer to [2, 8–11] for more detailed concepts of reversibility. Side by side with
reversible vector fields, there are reversible diffeomorphisms. A mapping A is said to be
reversible if there exists an involutionG that conjugatesAwith its inverseA−1, that is, AGA =
G. The flow map of a reversible vector field for each fixed time is reversible with respect to
the same involution, and vice versa.

In [12] Liu considered the following quasi-periodic mappings:

A :
(
x, y

) −→ (
x +ω + y + f

(
x, y

)
, y + g

(
x, y

))
, (1.3)

where f and g are quasi-periodic in x with frequencies μ1, . . . , μm and real analytic in x and
y, the variable y ranges in a neighborhood of the origin of the real line R, and ω is a positive
constant. He supposes that the mapping A is reversible with the involution R : (x, y) �→
(−x, y), that is, RAR = A−1. Such a map is often met when the vector field is quasi-periodic
in time and reversible with respect to the involution R. In fact, the phase flow induces such a
map on a cross-section transversal to the vector field.

The invariant curve theorem of reversible systemswas first obtained byMoser [1]who
then developed it [13] (for continuous systems), it was also developed by Sevryuk [9] (for
both continuous and discrete system). In [1], the author also studied the existence of invariant
tori of a reversible system depending quasi-periodically on time. In [12] Liu obtained an
invariant curve theorem for reversible quasi-periodic mappings, as application, he studies
the existence of quasi-periodic solutions and the boundedness of solutions for a pendulum-
type equation

x′′ + f(x, t)x′ + g(x, t) = 0 (1.4)

and an asymmetric oscillator depending quasi-periodically on time. By some theorems in
[12], in this paper, we consider two-order differential equations

(
Φp

(
x′))′ + f(x, t)Φp

(
x′) + g(x, t) = 0, (1.5)

where Φp(s) = |s|(p−2)s, p > 0, ω > 0; if p = 2, it becomes (1.4).
Our main result is the following theorem.
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2. Main Result

We first give some definitions [12].

Definition 1. A function f : R → R is called real analytic quasi-periodic with frequencies
μ1, . . . , μm if it can be represented as a Fourier series of the type

f(t) =
∑

k

fke
〈k,μ〉t, (2.1)

where k = (k1, . . . , km), μ = (μ1, . . . , μm), 〈k, μ〉 =
∑
kjμj /= 0; if k /= 0, the coefficients fk

decay exponentially with |k| = |k1| + · · · + |km|.

Definition 2. The vector μ = (μ1, . . . , μm) satisfies the Diophantine condition if:

∣∣〈k, μ
〉∣∣ ≥ c

|k|σ , c, σ > 0 (2.2)

for all integer vector k /= 0.

For our study of (1.5), where f(x, t) and g(x, t) are real analytic in x and t, 2aπp

periodic in x, and quasi-periodic in t with frequencies (ω1, . . . , ωm), where the number πp

is defined by

πp = 2
∫ (p−1)1/p

0

ds
[
1 − sp/

(
p − 1

)]1/p . (2.3)

Moreover, we assume

f(−x,−t) = f(x, t), g(−x,−t) = g(x, t). (2.4)

Theorem 2.1. Suppose that (ω1, . . . , ωm) satisfy the Diophantine condition

∣∣〈k, μ
〉∣∣ ≥ c0

|k|σ0
, for k ∈ Zm \ {0}, (2.5)

where c0, σ0 are positive constants. Then there are infinitely many quasi-periodic solutions with large
amplitude, and the solutions of (1.5) satisfy

sup
t∈R

∣∣x′(t)
∣∣ < +∞. (2.6)

3. Coordination Transformation

In this section we first make a coordination transformation then study the boundedness of all
solutions of the new system.
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Equation (1.5) is equivalent to the planar system:

x′ = Φq

(
y
)
,

y′ = −f(x, t)y − g(x, t).
(3.1)

It is easy to verify that planar system (3.1) is reversible with respect to the involution R :
(x, y) �→ (−x, y).

Since we are concerned with the boundedness of solutions and the existence of quasi-
periodic solutions with large amplitude, we may assume |y| ≥ 1. Instead of considering
planar system (3.1), we are concerned with the following system:

dt

dx
=

1
Φq

(
y
) ,

dy

dx
= −f(x, t)y

Φq

(
y
) − g(x, t)

Φq

(
y
) .

(3.2)

We will prove that if (t(x), y(x)) is a solution of system (3.2), then |y| is bounded.

4. Poincaré Map

In this section, we first introduce new action variable then give an expression for the Poincaré
map of the new system.

Introduce a new action variable v and a small parameter ε as follows:

y =
1

Φp(ε)v
, v ∈

[
1
γ
, γ

]
, γ > 1. (4.1)

So system (3.2) is changed into the following form:

dt

dx
= εΦq(v),

dv

dx
= ε|v|qf(x, t) + |ε|pvq+1g(x, t).

(4.2)

It is easy to verify that system (4.2) is reversible with respect to the involution (t, v) �→ (−t, v).
We make the ansatz that the solution (t(x, v0, t0, ε), ρ(x, v0, t0, ε)) has the following form:

t = t0 + εT(x, v0, t0; ε), v = V0 + εV (x, v0, t0; ε). (4.3)
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The functions T and V satisfy

dT

dx
= Φq(V0 + εV ) = Φq(V0) +O(ε),

dV

dx
= f(x, t0 + εT)|V0 + εV |q + Φp(ε)|V0 + εV |q+1g(x, t0 + εT)

= f(x, t0)V
q

0 +O(ε).

(4.4)

Denote by P the Poincaré map of (4.2); then, from the above equations, it is easy to see that

P(t0, V0) =

(

t0 + 2aπpεΦq(v0) +O
(
ε2
)
, V0 + εV

q

0

∫2aπp

0
f(x, t0)dx +O

(
ε2
))

. (4.5)

5. The Proof of Theorem 2.1

In this part, we will prove the map P has an invariant curve, and then boundedness
of solutions of (1.5) follows from the standard arguments [14–18]. In the following, we
will apply the invariant curves of quasi-periodic reversible mapping theorem to prove our
conclusion.

Now we state Liu’s result [12].
Consider the map

Mδ :
(
x, y

) −→ (
x + α + δL

(
x, y

)
+ δf

(
x, y, δ

)
, y + δM

(
x, y

)
+ δg

(
x, y, δ

))
, (5.1)

where L,M, f, g are quasi-periodic in x with the frequencies μ1, . . . , μm, f(x, y, 0) =
g(x, y, 0) = 0.

We also assume that these functions are real analytic in a complex neighborhood of the
domain R × [a1, b1]. The functions L and M can be represented in the form

L
(
x, y

)
:= L̃

(
x, y

)
+ L

(
x, y

)
=

∑

k∈Zm\K
Lk

(
y
)
ei〈k,μ〉x +

∑

k∈K
Lk

(
y
)
ei〈k,μ〉x,

M
(
x, y

)
:= M̃

(
x, y

)
+M

(
x, y

)
=

∑

k∈Zm\K
Mk

(
y
)
ei〈k,μ〉x +

∑

k∈K
Mk

(
y
)
ei〈k,μ〉x.

(5.2)

Note that

ei〈k,μ〉α − 1/= 0, for k ∈ Zm \K,

L(x + α) ≡ L(x), M(x + α) ≡ M(x).
(5.3)

Lemma 5.1 ([12, Theorem 4]). Suppose the function L satisfies

L
(
x, y

)
> 0,

∂L

∂y
> 0, (5.4)
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and there is a real analytic function I(x, y) = I(x + α, y) satisfying

∂I

∂y
> 0,

L
(
x, y

) ∂I
∂x

(
x, y

)
+M

(
x, y

) ∂I
∂y

(
x, y

) ≡ 0.

(5.5)

Moreover, suppose that there are two numbers ã and b̃ such that a1 < ã < b̃ < b1 and

IM(a1) < Im(ã) ≤ IM(ã) < Im
(
b̃
)

≤ IM
(
b̃
)
< Im(b1), (5.6)

where

IM
(
y
)
= max

x∈R
I
(
x, y

)
, Im

(
y
)
= min

x∈R
I
(
x, y

)
. (5.7)

Then there exist ε > 0 and Δ > 0 such that if δ < Δ and

∥∥f(·, ·, δ)∥∥ +
∥∥g(·, ·, δ)∥∥ < ε, (5.8)

the mappingMδ has an invariant curve which is of the form y = φ(x), and φ is quasi-periodic
in xwith frequencies μ1, . . . , μm. The constants ε andΔ depend on a, ã, b̃, b, L, M, and I. In
particular, ε is independent of δ. If α = 0, the conclusion also holds; in this case,K = Zm, L̃ =
M̃ = 0, L = L, and M = M.

For the Poincaré map P(t0, V0) of (4.2), let

I(t0, V0) = V0e
−(1/2aπp)

∫ t0
0

∫2aπp
0 f(x,t)dx dt. (5.9)

Since f(−t,−x) = −f(t, x), we know that I(t0, V0) is even and quasi-periodic in t0 with
frequencies μ1, . . . , μm. And it is easy to see that

∂I

∂V0
= e−(1/2aπp)

∫ t0
0

∫2aπp
0 f(x,t)dx dt > 0,

L(V0, t0)
∂I

∂t0
(V0, t0) +M(V0, t0)

∂I

∂V0
(V0, t0)

= 2aπpΦq(v0) · V0

(

− 1
2aπp

)∫2aπp

0
f(x, t0)dx · e−(1/2aπp)

∫ t0
0

∫2aπp
0 f(x,t)dx dt

+ V
q

0

∫2aπp

0
f(x, t0)dx · e−(1/2aπp)

∫ t0
0

∫2aπp
0 f(x,t)dx dt
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= V
q

0

∫2aπp

0
f(x, t0)dx · e−(1/2aπp)

∫ t0
0

∫2aπp
0 f(x,t)dx dt

− V
q

0

∫2aπp

0
f(x, t0)dx · e−(1/2aπp)

∫ t0
0

∫2aπp
0 f(x,t)dx dt = 0.

(5.10)

Moreover, if we define α and β by

I(t0, V0) = V0e
−(1/2aπp)

∫ t0
0

∫2aπp
0 f(x,t)dx dt,

α = min
t0∈R

exp

(

− 1
2aπp

∫ t0

0

∫2aπp

0
f(x, t)dx dt

)

, β = max
t0∈R

exp

(

− 1
2aπp

∫ t0

0

∫2aπp

0
f(x, t)dx dt

)

,

(5.11)

then β 
 α > 0. Now we choose the constants γ, γ1, γ2 as

γ =
(
2
β

α

)3

> 1, γ1 =
(
2
β

α

)−1
, γ2 =

(
2
β

α

)
. (5.12)

Then

IM

(
1
γ

)
=

1
γ
max
t0∈R

exp

(

− 1
2aπp

∫ t0
0

∫2aπp

0 f(x, t)dx dt

)

=
α3

8β2
,

Im
(
γ
)
= γ min

t0∈R
exp

(

− 1
2aπp

∫ t0
0

∫2aπp

0 f(x, t)dx dt

)

=
8β3

α2
,

Im
(
γ1
)
= γ1 min

t0∈R
exp

(

− 1
2aπp

∫ t0
0

∫2aπp

0 f(x, t)dx dt

)

=
α2

2β
,

IM
(
γ1
)
= γ1 max

t0∈R
exp

(

− 1
2aπp

∫ t0
0

∫2aπp

0 f(x, t)dx dt

)

=
α

2
,

Im
(
γ2
)
= γ2 min

t0∈R
exp

(

− 1
2aπp

∫ t0
0

∫2aπp

0 f(x, t)dx dt

)

= 2β,

IM
(
γ2
)
= γ2 max

t0∈R
exp

(

− 1
2aπp

∫ t0
0

∫2aπp

0 f(x, t)dx dt

)

= −2β
2

α
.

(5.13)

We have already demonstrated that the map P satisfies all the conditions in
Lemma 5.1; hence, P has an invariant curve; thus, all solutions of (1.5) are bounded.
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