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A new modified Halpern-Mann type iterative method is constructed. Strong convergence of the
scheme to a common element of the set of fixed points of a relatively nonexpansive mapping and
the set of common solutions to a system of equilibrium problems in a uniformly convex real Banach
space which is also uniformly smooth is proved. The results presented in this work improve on the
corresponding ones announced by many others.

1. Introduction

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively. Let E be a Banach space, E∗ the dual space of E, andC a nonempty closed convex
subset of E. Let F : C × C → R be a bifunction. The equilibrium problem is to find x ∈ C such
that

F
(
x, y
) ≥ 0 ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP(F). The equilibrium problems include fixed
point problems, optimization problems, variational inequality problems, and Nash equilib-
rium problems as special cases. Some methods have been proposed to solve the equilibrium
problems (see, e.g., [1, 2]). In 2005, Combettes and Hirstoaga [3] introduced an iterative
scheme of finding the best approximation to the initial data when EP(F) is nonempty, and
they also proved a strong convergence theorem.
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Let E be a smooth Banach space and J the normalized duality mapping from E to E∗.
Alber [4] considered the following functional ϕ : E × E → [0,∞) defined by

ϕ
(
x, y
)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥
∥y
∥
∥2 (

x, y ∈ E
)
. (1.2)

Using this functional, Matsushita and Takahashi [5, 6] studied and investigated the following
mappings in Banach spaces. A mapping S : C → E is relatively nonexpansive if the following
properties are satisfied:

(R1) F(S)/= ∅,
(R2) ϕ(p, Sx) ≤ ϕ(p, x) for all p ∈ F(S) and x ∈ C,

(R3) F(S) = F̂(S),

where F(S) and F̂(S) denote the set of fixed points of S and the set of asymptotic fixed points
of S, respectively. It is known that S satisfies condition (R3) if and only if I − S is demiclosed
at zero, where I is the identity mapping; that is, whenever a sequence {xn} in C converges
weakly to p and {xn−Sxn} converges strongly to 0, it follows that p ∈ F(S). In a Hilbert space
H, the duality mapping J is an identity mapping and ϕ(x, y) = ‖x − y‖2 for all x, y ∈ H.
Hence, if S : C → H is nonexpansive (i.e., ‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ C),
then it is relatively nonexpansive. Several articles have appeared providing methods for
approximating fixed points of relatively nonexpansive mappings (see, e.g., [5–19] and the
references therein). Matsushita and Takahashi [5] introduced the following iteration: a
sequence {xn} defined by

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)JSxn) n = 1, 2, . . . , (1.3)

where x1 ∈ C is arbitrary, {αn} is an appropriate sequence in [0, 1], S is a relatively nonexpan-
sive mapping, andΠC denotes the generalized projection from E onto a closed convex subset
C of E. They proved that the sequence {xn} converges weakly to a fixed point of T . Moreover,
Matsushita and Takahashi [6] proposed the following modification of iteration (1.3):

x1 ∈ C is arbitrary,

yn = J−1(αnJxn + (1 − αn)JSxn),

Cn =
{
z ∈ C : ϕ

(
z, yn

) ≤ ϕ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx1 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx1, n = 1, 2, . . . ,

(1.4)

and proved that the sequence {xn} converges strongly to ΠF(S)x1. The iteration (1.4) is called
the hybrid method. To generate the iterative sequence, we use the generalized metric projection
ontoCn∩Qn for n ∈ N. It always exists, because eachCn∩Qn is nonempty, closed, and convex.
However, in a practical case, it is not easy to be calculated. In particular, as n becomes larger,
the shape of Cn ∩Qn becomes more complicate, and the projection will take much more time
to be calculated.
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In order to overcome this difficulty, Nilsrakoo and Saejung [15]modified Halpern and
Mann’s iterations for finding a fixed point of a relatively nonexpansive mapping in a Banach
space as follows: x ∈ E, x1 ∈ C and

xn+1 = ΠCJ
−1(αnJx + βnJxn + γnJSxn

)
, n = 1, 2, . . . , (1.5)

where {αn}, {βn}, and {γn} are appropriate sequences in [0, 1] with αn + βn + γn ≡ 1, and they
proved that {xn} converges strongly to ΠF(S)x.

Many authors studied the problems of finding a common element of the set of fixed
points for a mapping and the set of common solutions to a system of equilibrium problems
in the setting of Hilbert space and uniformly smooth and uniformly convex Banach space,
respectively (see, e.g., [20–33] and the references therein). In a Hilbert space H, S. Takahashi
andW. Takahashi [34] introduced the iteration as follows: sequence {xn} generated by x, x1 ∈
C,

un ∈ C such that F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnx + (1 − αn)Sun, n = 1, 2, . . . ,

(1.6)

where {αn} is an appropriate sequence in [0, 1], S is nonexpansive, and {rn} is an appropriate
positive real sequence. They proved that {xn} converges strongly to an element in F(S) ∩
EP(F). In 2009, Takahashi and Zembayashi [30] proposed the iteration in a uniformly smooth
and uniformly convex Banach space as follows: a sequence {xn} generated by u1 ∈ E,

xn ∈ C such that F
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C,

un+1 = J−1(αnJxn + (1 − αn)JSxn), n = 1, 2, . . . ,

(1.7)

where S is relatively nonexpansive, {αn} is an appropriate sequence in [0, 1], and {rn} is an
appropriate positive real sequence. They proved that if J is weakly sequentially continuous,
then {xn} converges weakly to an element in F(S) ∩ EP(F). Consequently, there are many
results presented strong convergence theorems for finding a common element of the set of
fixed points for a mapping and the set of common solutions to a system of equilibrium
problems by using the hybrid method. However, Nilsrakoo [35] introduced the Halpern-
Mann iteration guaranteeing the strong convergence as follows: x ∈ C, u1 ∈ E and

xn ∈ C such that F
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C,

yn = ΠCJ
−1(αnJx + (1 − αn)Jxn),

un+1 = J−1
(
βnJxn +

(
1 − βn

)
JSyn

)
, n = 1, 2, . . . ,

(1.8)

and proved that {un} and {xn} converge strongly toΠF(S)∩EP(F)x.
Motivated by Nilsrakoo and Saejung [15] and Nilsrakoo [35], we present a strong

convergence theorem of a new modified Halpern-Mann iterative scheme to find a common
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element of the set of fixed points of a relatively nonexpansivemapping and the set of common
solutions to a system of equilibrium problems in a uniformly convex real Banach space
which is also uniformly smooth. The results in this work improve on the corresponding ones
announced by many others.

2. Preliminaries

We collect together some definitions and preliminaries which are needed in this paper.We say
that a Banach space E is strictly convex if the following implication holds for x, y ∈ E:

‖x‖ =
∥
∥y
∥
∥ = 1, x /=y imply

∥
∥
∥
∥
x + y

2

∥
∥
∥
∥ < 1. (2.1)

It is also said to be uniformly convex if for any ε > 0, there exists δ > 0 such that

‖x‖ =
∥∥y
∥∥ = 1,

∥∥x − y
∥∥ ≥ ε imply

∥∥∥∥
x + y

2

∥∥∥∥ ≤ 1 − δ. (2.2)

It is known that if E is a uniformly convex Banach space, then E is reflexive and strictly
convex. We say that E is uniformly smooth if the dual space E∗ of E is uniformly convex. A
Banach space E is smooth if the limit limt→ 0((‖x+ty‖−‖x‖)/t) exists for all norm one elements
x and y in E. It is not hard to show that if E is reflexive, then E is smooth if and only if E∗ is
strictly convex.

Let E be a smooth Banach space. The function ϕ : E × E → R (see [4]) is defined by

ϕ
(
x, y
)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y
∥∥2 (

x, y ∈ E
)
, (2.3)

where the duality mapping J : E → E∗ is given by

〈x, Jx〉 = ‖x‖2 = ‖Jx‖2 (x ∈ E). (2.4)

It is obvious from the definition of the function ϕ that

(‖x‖ − ∥∥y∥∥)2 ≤ ϕ
(
x, y
) ≤ (‖x‖ + ∥∥y∥∥)2, (2.5)

ϕ
(
x, y
)
= ϕ(x, z) + ϕ

(
z, y
)
+ 2
〈
x − z, Jz − Jy

〉
, (2.6)

for all x, y, z ∈ E. Moreover,

ϕ

(

x, J−1
(

n∑

i=1

λiJyi

))

≤
n∑

i=1

λiϕ
(
x, yi

)
, (2.7)

for all λi ∈ [0, 1] with
∑n

i=1 λi = 1 and x, yi ∈ E.
The following lemma is an analogue of Xu’s inequality [36, Theorem 2] with respect

to ϕ.
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Lemma 2.1 (see [15, Lemma 2.2]). Let E be a uniformly smooth Banach space and r > 0. Then,
there exists a continuous, strictly increasing, and convex function g : [0, 2r] → [0,∞) such that
g(0) = 0 and

ϕ
(
x, J−1

(
λJy + (1 − λ)Jz

)) ≤ λϕ
(
x, y
)
+ (1 − λ)ϕ(x, z) − λ(1 − λ)g

(∥∥Jy − Jz
∥
∥), (2.8)

for all λ ∈ [0, 1], x ∈ E and y, z ∈ Br := {z ∈ E : ‖z‖ ≤ r}.

It is also easy to see that if {xn} and {yn} are bounded sequences of a smooth Banach
space E, then xn − yn → 0 implies that ϕ(xn, yn) → 0.

Lemma 2.2 (see [37, Proposition 2]). Let E be a uniformly convex and smooth Banach space, and
let {xn} and {yn} be two sequences of E such that {xn} or {yn} is bounded. If ϕ(xn, yn) → 0, then
xn − yn → 0.

Remark 2.3. For any bounded sequences {xn} and {yn} in a uniformly convex and uniformly
smooth Banach space E, we have

ϕ
(
xn, yn

) −→ 0 ⇐⇒ xn − yn −→ 0 ⇐⇒ Jxn − Jyn −→ 0. (2.9)

Let C be a nonempty closed convex subset of a reflexive, strictly convex, and smooth
Banach space E. It is known that [4, 37] for any x ∈ E, there exists a unique point x̂ ∈ C such
that

ϕ(x̂, x) = min
y∈C

ϕ
(
y, x
)
. (2.10)

Following Alber [4], we denote such an element x̂ by ΠCx. The mapping ΠC is called the
generalized projection from E onto C. It is easy to see that in a Hilbert space, the mapping ΠC

coincides with themetric projection PC. Concerning the generalized projection, the followings
are well known.

Lemma 2.4 (see [37, Propositions 4 and 5]). Let C be a nonempty closed convex subset of a
reflexive, strictly convex, and smooth Banach space E, x ∈ E and x̂ ∈ C. Then,

(a) x̂ = ΠCx if and only if 〈y − x̂, Jx − Jx̂〉 ≤ 0 for all y ∈ C,

(b) ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x) for all y ∈ C.

Remark 2.5. The generalized projection mapping ΠC above is relatively nonexpansive and
F(ΠC) = C.

Let E be a reflexive, strictly convex, and smooth Banach space. The duality mapping
J∗ from E∗ onto E∗∗ = E coincides with the inverse of the duality mapping J from E onto E∗;
that is, J∗ = J−1. We make use of the following mapping V : E ×E∗ → R studied in Alber [4]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, (2.11)
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for all x ∈ E and x∗ ∈ E∗. Obviously, V (x, x∗) = ϕ(x, J−1(x∗)) for all x ∈ E and x∗ ∈ E∗. We
know the following lemma (see [4] and [38, Lemma 3.2]).

Lemma 2.6. Let E be a reflexive, strictly convex, and smooth Banach space, and let V be as in (2.11).
Then

V (x, x∗) + 2
〈
J−1(x∗) − x, y∗

〉
≤ V
(
x, x∗ + y∗), (2.12)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.7 (see [39, Lemma 2.1]). Let {an} be a sequence of nonnegative real numbers. Suppose
that

an+1 ≤
(
1 − γn

)
an + γnδn (2.13)

for all n ∈ N, where the sequences {γn} in (0, 1) and {δn} in R satisfy conditions: limn→∞γn = 0,∑∞
n=1 γn = ∞, and lim supn→∞δn ≤ 0. Then limn→∞an = 0.

Lemma 2.8 (see [40, Lemma 3.1]). Let {an} be a sequence of real numbers such that there exists a
subsequence {ni} of {n} such that ani < ani+1 for all i ∈ N. Then, there exists a nondecreasing sequence
{mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all (sufficiently large)
numbers k ∈ N:

amk ≤ amk+1, ak ≤ amk+1. (2.14)

In fact,mk = max{j ≤ k : aj < aj+1}.

For solving the equilibrium problem, we usually assume that a bifunction F : C×C →
R satisfies the following conditions (see, e.g., [1, 3, 30]):

(A1) F(x, x) = 0 for all x ∈ C,

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0, for all x, y ∈ C,

(A3) for all x, y, z ∈ C, lim supt→ 0F(tz + (1 − t)x, y) ≤ F(x, y),

(A4) for all x ∈ C, F(x, ·) is convex and lower semicontinuous.

The following lemma is a result which appeared in Blum and Oettli [1, Corollary 1].

Lemma 2.9 (see [1, Corollary 1]). Let C be a closed convex subset of a smooth, strictly convex, and
reflexive Banach space E. Let F : C ×C → R be a bifunction satisfying conditions (A1)–(A4), and let
r > 0 and x ∈ E. Then, there exists z ∈ C such that

F
(
z, y
)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0 ∀y ∈ C. (2.15)

The following lemma gives a characterization of a solution of an equilibrium problem.

Lemma 2.10 (see [30, Lemma 2.8]). LetC be a nonempty closed convex subset of a reflexive, strictly
convex, and uniformly smooth Banach space E. Let F : C × C → R be a bifunction satisfying
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conditions (A1)–(A4). For r > 0, define a mapping TF
r : E → C so-called the resolvent of F as follows:

TF
r (x) =

{
z ∈ C : F

(
z, y
)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0 ∀y ∈ C

}
, (2.16)

for all x ∈ E. Then, the followings hold:

(i) Tr is single-valued,

(ii) Tr is a firmly nonexpansive-type mapping [11], that is, for all x, y ∈ E

〈
TF
r x − TF

r y, JT
F
r x − JTF

r y
〉
≤
〈
TF
r x − TF

r y, Jx − Jy
〉
, (2.17)

(iii) for all x ∈ E and p ∈ EP(F),

ϕ
(
p, TF

r x
)
≤ ϕ
(
z, TF

r x
)
+ ϕ
(
TF
r x, x

)
≤ ϕ
(
p, x
)
, (2.18)

(iv) F(TF
r ) = EP(F),

(v) EP(F) is closed and convex.

Remark 2.11. Some well-known examples of resolvents of bifunctions satisfying conditions
(A1)–(A4) are presented in [3, Lemma 2.15].

Lemma 2.12 (see [8, Lemma 2.3]). Let C be a nonempty closed convex subset of a Banach space E,
F a bifunction from C ×C → R satisfying conditions (A1)–(A4), and z ∈ C. Then, z ∈ EP(F) if and
only if F(y, z) ≤ 0 for all y ∈ C.

Lemma 2.13 (see [6], Proposition 2.4). Let C be a nonempty closed convex subset of a strictly
convex and smooth Banach space E and S : C → E a relatively nonexpansive mapping. Then F(S) is
closed and convex.

3. Main Results

In this section, we introduce a modified Halpern-Mann type iteration without using the gen-
eralized metric projection and prove a strong convergence theorem for finding a common ele-
ment of the set of fixed points of a relatively nonexpansive mapping and the set of solutions
to a system of equilibrium problems in a uniformly convex and uniformly smooth Banach
space.

Theorem 3.1. Let E a uniformly convex and uniformly smooth Banach space, C a nonempty closed
convex subset of E, {Fi}mi=1 be a finite family of a bifunction of C×C into R satisfying conditions (A1)–
(A4), and S : C → E a relatively nonexpansive mapping such that Ω := F(S) ∩ (∩m

i=1EP(Fi))/= ∅.
Let {TFi

ri,n}mi=1 be a finite family of the resolvents of Fi with positive real sequences {ri,n} such that
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lim infn→∞ri,n > 0 for all i = 1, 2, . . . , m. Let {xn} be a sequence generated by x, x1 ∈ E and

xn+1 = J−1
(
αnJx + βnJxn + γnJST

Fm
rm,n

TFm−1
rm−1,n , · · · TF1

r1,nxn

)
(n ≥ 1), (3.1)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,

(iii)
∑∞

n=1 αn = ∞,

(iv) lim infn→∞βn(1 − βn) > 0.

Then, {xn} converges strongly toΠΩx.

Proof. For each n ≥ 1, setting

zkn = TFk
rk,nT

Fk−1
rk1,n · · · TF1

r1,nxn, (k = 1, 2, . . . , m),

yn = J−1
(

βn
1 − αn

Jxn +
γn

1 − αn
JSzmn

)
.

(3.2)

We can see that zkn = TFk

k,nz
k−1
n . Since Ω is nonempty, closed, and convex, we put x̂ = ΠΩx. By

Lemma 2.10(iii), we get

ϕ(x̂, zmn ) ≤ ϕ
(
x̂, zm−1

n

)
− ϕ
(
zmn , z

m−1
n

)

≤ ϕ
(
x̂, zm−2

n

)
− ϕ
(
zm−1
n , zm−2

n

)
− ϕ
(
zmn , z

m−1
n

)

...

≤ ϕ(x̂, xn) −
m∑

k=1

ϕ
(
zkn, z

k−1
n

)
,

(3.3)

where z0n = xn. This together with (2.7) gives

ϕ
(
x̂, yn

) ≤ βn
1 − αn

ϕ(x̂, xn) +
γn

1 − αn
ϕ(x̂, Szmn )

≤ βn
1 − αn

ϕ(x̂, xn) +
γn

1 − αn
ϕ(x̂, zmn )

≤ ϕ(x̂, xn).

(3.4)
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By Lemma 2.6, we obtain

ϕ(x̂, xn+1) = V (x̂, Jxn+1)

≤ V (x̂, Jxn+1 − αn(Jx − Jx̂)) − 2〈xn+1 − x̂,−αn(Jx − Jx̂)〉

= ϕ
(
x̂, J−1

(
αnJx̂ + (1 − αn)Jyn

))
+ 2αn〈xn+1 − x̂, Jx − Jx̂〉

≤ αnϕ(x̂, x̂) + (1 − αn)ϕ
(
x̂, yn

)
+ 2αn〈xn+1 − x̂, Jx − Jx̂〉

≤ (1 − αn)ϕ(x̂, xn) + 2αn〈xn+1 − x̂, Jx − Jx̂〉.

(3.5)

Next, we show that {xn} is bounded. We consider

ϕ(x̂, xn+1) ≤ ϕ
(
x̂, J−1

(
αnJx + βnJxn + γnJSz

m
n

))

= ϕ
(
x̂, J−1(αnJx + (1 − αn)Jyn

)

≤ αnϕ(x̂, x) + (1 − αn)ϕ
(
x̂, yn

)

≤ αnϕ(x̂, x) + (1 − αn)ϕ(x̂, xn)

≤ max
{
ϕ(x̂, x), ϕ(x̂, xn)

}
.

(3.6)

By induction, we have

ϕ(x̂, xn+1) ≤ max
{
ϕ(x̂, x), ϕ(x̂, x1)

}
, (3.7)

for all n ≥ 1. This implies that {xn} is bounded, and so are {xn}, {un}, {yn}, {zmn }, and {Szmn }.
Let g : [0, 2r] → [0,∞) be a function satisfying the properties of Lemma 2.1, where r =
sup{‖xn‖, ‖Szmn ‖ : n ≥ 1}. It follows from (3.3) that

ϕ
(
x̂, yn

) ≤ βn
1 − αn

ϕ(x̂, xn) +
γn

1 − αn
ϕ(x̂, Szmn ) −

βnγn

(1 − αn)2
g(‖Jxn − JSzmn ‖)

≤ βn
1 − αn

ϕ(x̂, xn) +
γn

1 − αn
ϕ(x̂, zmn ) −

βnγn

(1 − αn)2
g(‖Jxn − JSzmn ‖)

≤ ϕ(x̂, xn) −
γn

1 − αn

m∑

k=1

ϕ
(
zkn, z

k−1
n

)
− βnγn

(1 − αn)2
g(‖Jxn − JSzmn ‖).

(3.8)

The rest of the proof will be divided into two cases.

Case 1. Suppose that there exists n0 ∈ N such that {ϕ(x̂, xn)}∞n=n0
is nonincreasing. In this

situation, {ϕ(x̂, xn)} is then convergent. Then,

ϕ(x̂, xn) − ϕ(x̂, xn+1) −→ 0. (3.9)
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Notice that

ϕ(x̂, xn+1) ≤ αnϕ(x̂, x) + (1 − αn)ϕ
(
x̂, yn

)
. (3.10)

From condition (ii),

ϕ(x̂, xn) − ϕ
(
x̂, yn

)
= ϕ(x̂, xn) − ϕ(x̂, xn+1) + ϕ(x̂, xn+1) − ϕ

(
x̂, yn

)

≤ ϕ(x̂, xn) − ϕ(x̂, xn+1) + αn

(
ϕ(x̂, x) − ϕ

(
x̂, yn

)) −→ 0.
(3.11)

It follows from (3.8) that

γn
1 − αn

m∑

k=1

ϕ
(
zkn, z

k−1
n

)
+

βnγn

(1 − αn)2
g(‖Jxn − JSzmn ‖) −→ 0. (3.12)

By the assumptions (i), (ii), and (iv),

ϕ
(
zkn, z

k−1
n

)
−→ 0 (k = 1, 2, . . . , m), g(‖Jxn − JSzmn ‖) −→ 0. (3.13)

By Remark 2.3, we get

zkn − zk−1n −→ 0 (k = 1, 2, . . . , m). (3.14)

From g is continuous strictly increasing with g(0) = 0, we have

zmn − Szmn −→ 0, ϕ(xn, Sz
m
n ) −→ 0. (3.15)

Consequently,

ϕ
(
xn, yn

) ≤ βn
1 − αn

ϕ(xn, xn) +
γn

1 − αn
ϕ(xn, Sz

m
n ) =

γn
1 − αn

ϕ(xn, Sz
m
n ) −→ 0,

ϕ
(
yn, xn+1

) ≤ αnϕ
(
yn, x

)
+ (1 − αn)ϕ

(
yn, yn

)
= αnϕ

(
yn, x

) −→ 0.

(3.16)

This implies that

xn+1 − xn −→ 0. (3.17)

Since {xn} is bounded and E is reflexive, we choose a subsequence {xnj} of {xn} such that
xnj ⇀ w and

lim sup
n→∞

〈xn − x̂, Jx − Jx̂〉 = lim
j→∞

〈
xnj − x̂, Jx − Jx̂

〉
= 〈w − x̂, Jx − Jx̂〉. (3.18)
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Let k = 1, 2, . . . , m be fixed. Then, zknj
⇀ w as j → ∞. From lim infn→∞rk,n > 0 and (3.14), we

have

lim
n→∞

1
rk,n

∥
∥
∥Jzkn − Jzk−1n

∥
∥
∥ = 0. (3.19)

Then,

Fk

(
zkn, y

)
+

1
rk,n

〈
y − zkn, Jz

k
n − Jzk−1n

〉
≥ 0, ∀y ∈ C. (3.20)

Replacing n by nj , we have from (A2) that

1
rk,nj

〈
y − zknj

, Jzknj
− Jzk−1nj

〉
≥ −Fk

(
zknj

, y
)
≥ Fk

(
y, zknj

)
, ∀y ∈ C. (3.21)

Letting j → ∞, we have from (3.19) and (A4) that

Fk

(
y,w

) ≤ 0, ∀y ∈ C. (3.22)

From Lemma 2.12, we have w ∈ EP(Fk). Since S satisfies condition (R3) and zmn − Szmn → 0,
we have w ∈ F(S). It follows that w ∈ Ω. By Lemma 2.4(a), we immediately obtain that

lim sup
n→∞

〈xn+1 − x̂, Jx − Jx̂〉 = lim sup
n→∞

〈xn − x̂, Jx − Jx̂〉 = 〈w − x̂, Jx − Jx̂〉 ≤ 0. (3.23)

It follows from Lemma 2.7 and (3.5) that ϕ(x̂, xn) → 0. Then, xn → x̂.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

ϕ(x̂, xni) < ϕ(x̂, xni+1), (3.24)

for all i ∈ N. Then, by Lemma 2.8, there exists a nondecreasing sequence of positive integer
numbers {
j} such that 
j → ∞,

ϕ
(
x̂, x
j

)
≤ ϕ
(
x̂, x
j+1

)
, ϕ

(
x̂, xj

) ≤ ϕ
(
x̂, x
j+1

)
, (3.25)

for all sufficiently large numbers j. We may assume without loss of generality that α
j > 0 for
all sufficiently large numbers j. Since

ϕ
(
x̂, x
j+1

)
≤ α
jϕ(x̂, x) +

(
1 − α
j

)
ϕ
(
x̂, y
j

)
, (3.26)
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we obtain

ϕ
(
x̂, x
j

)
− ϕ
(
x̂, y
j

)
= ϕ
(
x̂, x
j

)
− ϕ
(
x̂, x
j+1

)
+ ϕ
(
x̂, x
j+1

)
− ϕ
(
x̂, y
j

)

≤ α
j

(
ϕ(x̂, x) − ϕ

(
x̂, y
j

))
−→ 0.

(3.27)

It follows from (3.8) that

γ
j
1 − α
j

m∑

k=1

ϕ
(
zk
j , z

k−1

j

)
+

β
j γ
j
(
1 − α
j

)2 g
(∥∥
∥Jx
j − JSzm
j

∥
∥
∥
)
−→ 0. (3.28)

Using the same proof of Case 1, we also obtain

lim sup
j→∞

〈
x
j+1 − x̂, Jx − Jx̂

〉
≤ 0. (3.29)

From (3.5), we have

ϕ
(
x̂, x
j+1

)
≤
(
1 − α
j

)
ϕ
(
x̂, x
j

)
+ 2α
j

〈
x
j+1 − x̂, Jx − Jx̂

〉
. (3.30)

Since ϕ(x̂, x
j ) ≤ ϕ(x̂, x
j+1), we have

α
jϕ(x̂, xα) ≤ ϕ
(
x̂, x
j

)
− ϕ
(
x̂, x
j+1

)
+ 2α
j

〈
x
j+1 − x̂, Jx − Jx̂

〉

≤ 2α
j

〈
x
j+1 − x̂, Jx − Jx̂

〉
.

(3.31)

In particular, since α
j > 0, we get

ϕ(x̂, xmk) ≤ 2
〈
x
j+1 − x̂, Jx − Jx̂

〉
. (3.32)

It follows from (3.29) that ϕ(x̂, x
j ) → 0. This together with (3.30) gives

ϕ
(
x̂, x
j+1

)
−→ 0. (3.33)

But ϕ(x̂, xj) ≤ ϕ(x̂, x
j+1) for all sufficiently large numbers j, we conclude that xj → x̂.
From the two cases, we can conclude that {xn} converges strongly to x̂ and the proof

is finished.

Setting m = 1, F1 = F ≡ 0, and r1,n ≡ rn in Theorem 3.1, we have the following.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space,C a nonempty closed
convex subset of E, F a bifunction of C × C into R satisfying conditions (A1)–(A4), and S : C → E
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be a relatively nonexpansive mapping such that F(S) ∩ EP(F)/= ∅. Let TF
rn be the resolvent of F with a

positive real sequence {rn} such that lim infn→∞rn > 0. Let {xn} be a sequence generated by x, x1 ∈ E
and

xn+1 = J−1
(
αnJx + βnJxn + γnJST

F
rnxn

)
(n ≥ 1), (3.34)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,

(iii)
∑∞

n=1 αn = ∞,

(iv) lim infn→∞βn(1 − βn) > 0.

Then, {xn} converges strongly toΠF(S)∩EP(F)x.

Setting F1 ≡ 0 and r1,n ≡ 1 in Corollary 3.2, we have the following result.

Corollary 3.3. Let E be a uniformly convex and uniformly smooth Banach space,C a nonempty closed
convex subset of E, and S : C → E a relatively nonexpansive mapping such that F(S)/= ∅. Let {xn}
be a sequence generated by x, x1 ∈ E and

xn+1 = J−1
(
αnJx + βnJxn + γnJSΠCxn

)
(n ≥ 1), (3.35)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,

(iii)
∑∞

n=1 αn = ∞,

(iv) lim infn→∞βn(1 − βn) > 0.

Then {xn} converges strongly toΠF(S)x.

Next, we prove a strong convergence theorem for finding an element of the set of
solutions to a system of equilibrium problems in a uniformly convex and uniformly smooth
Banach space.

Theorem 3.4. Let E be a uniformly convex and uniformly smooth Banach space,C a nonempty closed
convex subset of E, {Fi}mi=1 a finite family of a bifunction of C × C into R satisfying conditions (A1)–
(A4), and ∩m

i=1EP(Fi)/= ∅. Let {TFi
ri,n}mi=1 be a finite family of the resolvents of Fi with positive real se-

quences {ri,n} such that lim infn→∞ri,n > 0 for all i = 1, 2, . . . , m. Let {xn} be a sequence generated
by x, x1 ∈ E and

xn+1 = J−1
(
αnJx + βnJxn + γnJT

Fm
rm,n

TFm−1
rm−1,n , . . . , T

F1
r1,nxn

)
(n ≥ 1), (3.36)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,
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(iii)
∑∞

n=1 αn = ∞,

(iv) lim infn→∞βn(1 − βn) > 0 or lim infn→∞βn = 0.

Then, {xn} converges strongly toΠ∩m
i=1EP(Fi)x.

Proof. For each n ≥ 1, setting

zkn = TFk
rk,nT

Fk−1
rk1,n · · · TF1

r1,nxn, (k = 1, 2, . . . , m),

yn = J−1
(

βn
1 − αn

Jxn +
γn

1 − αn
Jzmn

)
.

(3.37)

Since ∩m
i=1EP(Fi) is nonempty, closed, and convex, we put x̂ = Π∩m

i=1EP(Fi)x. Using the same
proof of Theorem 3.1 when S is the identity operator, we can see that

ϕ
(
x̂, yn

) ≤ ϕ(x̂, xn) −
γn

1 − αn

m∑

k=1

ϕ
(
zkn, z

k−1
n

)
, (3.38)

ϕ(x̂, xn+1) ≤ (1 − αn)ϕ(x̂, xn) + 2αn〈xn+1 − x̂, Jx − Jx̂〉. (3.39)

The rest of the proof will be divided into two cases.

Case 1. Suppose that there exists n0 ∈ N such that {ϕ(x̂, xn)}∞n=n0
is non-increasing. In this

situation, {ϕ(x̂, xn)} is then convergent. Then,

ϕ(x̂, xn) − ϕ(x̂, xn+1) −→ 0. (3.40)

Notice that

ϕ(x̂, xn+1) ≤ αnϕ(x̂, x) + (1 − αn)ϕ
(
x̂, yn

)
. (3.41)

From condition (ii),

ϕ(x̂, xn) − ϕ
(
x̂, yn

)
= ϕ(x̂, xn) − ϕ(x̂, xn+1) + ϕ(x̂, xn+1) − ϕ

(
x̂, yn

)

≤ ϕ(x̂, xn) − ϕ(x̂, xn+1) + αn

(
ϕ(x̂, x) − ϕ

(
x̂, yn

)) −→ 0.
(3.42)

It follows from (3.38) that

γn
1 − αn

m∑

k=1

ϕ
(
zkn, z

k−1
n

)
−→ 0. (3.43)

By the assumptions (i), (ii), and (iv),

ϕ
(
zkn, z

k−1
n

)
−→ 0 (k = 1, 2, . . . , m). (3.44)
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By Remark 2.3, we get

zkn − zk−1n −→ 0 (k = 1, 2, . . . , m). (3.45)

Consequently,

ϕ
(
xn, yn

) ≤ βn
1 − αn

ϕ(xn, xn) +
γn

1 − αn
ϕ(xn, z

m
n ) =

γn
1 − αn

ϕ
(
z0n, z

m
n

)
−→ 0,

ϕ
(
yn, xn+1

) ≤ αnϕ
(
yn, x

)
+ (1 − αn)ϕ

(
yn, yn

)
= αnϕ

(
yn, x

) −→ 0.

(3.46)

This implies that

xn+1 − xn −→ 0. (3.47)

Since {xn} is bounded and E is reflexive, we choose a subsequence {xnj} of {xn} such that
xnj ⇀ w and

lim sup
n→∞

〈xn − x̂, Jx − Jx̂〉 = lim
j→∞

〈
xnj − x̂, Jx − Jx̂

〉
= 〈w − x̂, Jx − Jx̂〉. (3.48)

Let k = 1, 2, . . . , m be fixed. Then, zknj
⇀ w as j → ∞. From lim infn→∞rk,n > 0 and (3.14), we

have

lim
n→∞

1
rk,n

∥∥∥Jzkn − Jzk−1n

∥∥∥ = 0. (3.49)

Then,

Fk

(
zkn, y

)
+

1
rk,n

〈
y − zkn, Jz

k
n − Jzk−1n

〉
≥ 0, ∀y ∈ C. (3.50)

Replacing n by nj , we have from (A2) that

1
rk,nj

〈
y − zknj

, Jzknj
− Jzk−1nj

〉
≥ −Fk

(
zknj

, y
)
≥ Fk

(
y, zknj

)
, ∀y ∈ C. (3.51)

Letting j → ∞, we have from (3.49) and (A4) that

Fk

(
y,w

) ≤ 0, ∀y ∈ C. (3.52)

From Lemma 2.12, we have w ∈ EP(Fk). By Lemma 2.4(a), we immediately obtain that

lim sup
n→∞

〈xn+1 − x̂, Jx − Jx̂〉 = lim sup
n→∞

〈xn − x̂, Jx − Jx̂〉 = 〈w − x̂, Jx − Jx̂〉 ≤ 0. (3.53)

It follows from Lemma 2.7 and (3.39) that ϕ(x̂, xn) → 0. Then, xn → x̂.
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Case 2. Suppose that there exists a subsequence {ni} of {n} such that

ϕ(x̂, xni) < ϕ(x̂, xni+1), (3.54)

for all i ∈ N. Using the same proof of Case 2 in Theorem 3.1, we also conclude that xj → x̂.
From the two cases, we can conclude that {xn} converges strongly to x̂.

Finally, we give two explicit examples validating the assumptions in Theorem 3.1 as
follows.

Example 3.5 (Optimization). Let E be a uniformly convex and uniformly smooth Banach space, C
a nonempty bounded closed convex subset of E, and f : C → R a lower semicontinuous and convex
functional. For instance, let E = R, C = [0, 1] and f : [0, 1] → R be defined dy

f(x) =

⎧
⎨

⎩

0, if x = 0, 1;

x logx + (1 − x) log(1 − x), if x ∈ (0, 1).
(3.55)

Then f is lower semicontinuous and convex. For each i = 1, 2, . . . , m, let Fi : C × C → R be
defined by Fi(x, y) := f(y)−f(x) for all x, y ∈ C. It is known [1, 11] that Fi satisfies conditions
(A1)–(A4), and EP(Fi)/= ∅. Let S = ΠC. Then, S is relatively nonexpansive of E into C (see
[5, 6]) and F(S) = C. Then, Ω := F(S) ∩ (∩m

i=1EP(Fi)) = EP(Fi)/= ∅. Applying Theorem 3.1, we
conclude that the sequence defined by (3.1) converges strongly to ΠΩx.

Example 3.6 (The convex feasibility problem). Let E be a real Hilbert space, let C1, C2, . . . , Cm be
nonempty closed convex subsets of E satisfying C := ∩m

i=1Ci /= ∅ (e.g., C1 = C2 = · · · = Cm = C/= ∅).
Let {Fi}mi=1 be a finite family of bifunctions of E × E into R defined by

Fi

(
x, y
)
=

1
2
〈y − x, x − PCix〉 ∀x, y ∈ E, (3.56)

where PCi is a metric projection from E onto Ci. It is known [3, Lemma 2.15(iv)] that Fi

satisfies conditions (A1)–(A4) and EP(Fi) = Ci. Let S = PC. Then, S is relatively nonexpansive
of E into C (see [5, 6]) and then Ω := F(S) ∩ (∩m

i=1EP(Fi)) = C/= ∅. Applying Theorem 3.1, we
conclude that the sequence defined by (3.1) converges strongly to ΠΩx.

4. Deduced Theorems in Hilbert Spaces

In Hilbert spaces, if S is quasi-nonexpansive such that I − S is demiclosed at zero, then S is
relatively nonexpansive. We obtain the following result.

Theorem 4.1. Let H be a Hilbert space, C a nonempty closed convex subset of H, {Fi}mi=1 a finite
family of a bifunction of C × C into R satisfying conditions (A1)–(A4), and S : C → E a quasi-
nonexpansive mapping such that I − S is demiclosed at zero and Ω := F(S) ∩ (∩m

i=1EP(Fi))/= ∅. Let
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{TFi
ri,n}mi=1 be a finite family of the resolvents of Fi with real sequences {ri,n} such that lim infn→∞ri,n > 0

for all i = 1, 2, . . . , m. Let {xn} be a sequence generated by x, x1 ∈ H and

xn+1 = αnx + βnxn + γnST
Fm
rm,n

TFm−1
rm−1,n , . . . , T

F1
r1,nxn (n ≥ 1), (4.1)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,

(iii)
∑∞

n=1 αn = ∞,

(iv) lim infn→∞βn(1 − βn) > 0.

Then {xn} converges strongly to PΩx.

Applying Theorem 4.1 and using the technique in [41], we have the following result.

Theorem 4.2. Let H be a Hilbert space, C a nonempty closed convex subset of H, f a contraction of
H into itself (i.e., there is a ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ a‖x − y‖ for all x, y ∈ H), {Fi}mi=1
a finite family of a bifunction of C × C into R satisfying conditions (A1)–(A4), and S : C → E be
a nonexpansive mapping such that Ω := F(S) ∩ (∩m

i=1EP(Fi))/= ∅. Let {TFi
ri,n}mi=1 be a finite family of

the resolvents of Fi with real sequences {ri,n} such that lim infn→∞ri,n > 0 for all i = 1, 2, . . . , m. Let
{xn} be a sequence generated by x, x1 ∈ H and

xn+1 = αnf(xn) + βnxn + γnST
Fm
rm,n

TFm−1
rm−1,n , . . . , T

F1
r1,nxn, (n ≥ 1), (4.2)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,

(iii)
∑∞

n=1 αn = ∞,

(iv) lim infn→∞βn(1 − βn) > 0.

Then, {xn} converges strongly to z such that z = PΩf(z).

Proof. Wenote that PΩf is contraction. By Banach contraction principle, let z be the fixed point
of PΩf and {yn} a sequence generated by y1 = x1 ∈ H and

yn+1 = αnf(z) + βnyn + γnST
Fm
rm,n

TFm−1
rm−1,n , . . . , T

F1
r1,nyn, (n ≥ 1). (4.3)
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Using Theorem 4.1, we have yn → z = PΩf(z). Since S and TFk
rk,n(k = 1, 2, . . . , m) are

nonexpansive,

∥
∥yn+1 − xn+1

∥
∥ ≤ αn

∥
∥f(xn) − f(z)

∥
∥ + βn

∥
∥yn − xn

∥
∥

+ γn
∥
∥
∥STFm

rm,n
TFm−1
rm−1,n , . . . , T

F1
r1,nyn − STFm

rm,n
TFm−1
rm−1,n , . . . , T

F1
r1,nxn

∥
∥
∥

≤ αna‖xn − z‖ + (βn + γn
)∥∥yn − nn

∥
∥

≤ αna
(∥∥xn − yn

∥
∥ +
∥
∥yn − z

∥
∥) +

(
βn + γn

)∥∥xn − yn

∥
∥

= (1 − αn(1 − a))
∥
∥yn − xn

∥
∥ + αn(1 − a)

(
a

1 − a

∥
∥yn − z

∥
∥
)
.

(4.4)

Applying Lemma 2.7, yn − xn → 0 and so xn → z = PΩf(z).

Setting m = 1, F1 = F ≡ 0, and r1,n ≡ rn in Theorem 4.1, we have the following.

Corollary 4.3. Let H be a Hilbert space, C a nonempty closed convex subset of H, F a bifunction of
C × C into R satisfying conditions (A1)–(A4), and S : C → E a quasi-nonexpansive mapping such
that I −S is demiclosed at zero and F(S)∩EP(F)/= ∅. Let TF

rn be the resolvent of F with a positive real
sequence {rn} such that lim infn→∞rn > 0. Let {xn} be a sequence generated by x, x1 ∈ H and

xn+1 = αnx + βnxn + γnST
F
rnxn (n ≥ 1), (4.5)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,

(iii)
∑∞

n=1 αn = ∞,

(iv) lim infn→∞βn(1 − βn) > 0.

Then, {xn} converges strongly to PF(S)∩EP(F)x.

Corollary 4.4. Let H be a Hilbert space, C a nonempty closed convex subset of H, f a contraction
of H into itself, F a bifunction of C × C into R satisfying conditions (A1)–(A4), and S : C → E
a nonexpansive mapping such that F(S) ∩ EP(F)/= ∅. Let TF

rn be the resolvent of F with a positive real
sequence {rn} such that lim infn→∞rn > 0. Let {xn} be a sequence generated by x, x1 ∈ H and

xn+1 = αnf(xn) + βnxn + γnST
F
rnxn (n ≥ 1), (4.6)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,

(iii)
∑∞

n=1 αn = ∞,

(iv) lim infn→∞βn(1 − βn) > 0.

Then, {xn} converges strongly to z such that z = PF(S)∩EP(F)f(z).
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Remark 4.5. Corollary 4.4 improves and extends [42, Theorem 5]. More precisely, the condi-
tions limn→∞(rn+1 − rn) = ∞ are removed.

Setting F ≡ 0 and rn ≡ 1 in Corollary 4.3, we have the following.

Corollary 4.6. Let H be a Hilbert space, C a nonempty closed convex subset of H, and S : C → E
a quasi-nonexpansive mapping such that I − S is demiclosed at zero and F(S)/= ∅. Let {xn} be a
sequence generated by x, x1 ∈ H and

xn+1 = αnx + βnxn + γnSPCxn (n ≥ 1), (4.7)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,

(iii)
∑∞

n=1 αn = ∞,

(iv) lim infn→∞βn(1 − βn) > 0.

Then, {xn} converges strongly to PF(S)x.

Applying Theorem 3.4, we have the following result.

Theorem 4.7. Let H be a Hilbert space, C a nonempty closed convex subset of H, {Fi}mi=1 a finite
family of a bifunction of C × C into R satisfying conditions (A1)–(A4), and ∩m

i=1EP(Fi)/= ∅. Let
{TFi

ri,n}mi=1 be a finite family of the resolvents of Fi with positive real sequences {ri,n} such that
lim infn→∞ri,n > 0 for all i = 1, 2, . . . , m. Let {xn} be a sequence generated by x, x1 ∈ H and

xn+1 = αnx + βnxn + γnT
Fm
rm,n

TFm−1
rm−1,n , . . . , T

F1
r1,nxn (n ≥ 1), (4.8)

where {αn}, {βn}, and {γn} are sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn ≡ 1,

(ii) limn→∞αn = 0,

(iii)
∑∞

n=1 αn = ∞,s

(iv) lim infn→∞βn(1 − βn) > 0 or lim infn→∞βn = 0.

Then {xn} converges strongly to P∩m
i=1EP(Fi)x.

Setting m = 1, F1 = F ≡ 0, r1,n ≡ rn, and βn ≡ 0 in Theorem 4.4, we have the following
result.

Corollary 4.8 (see [35, Corollary 4.4]). Let H be a Hilbert space, C a nonempty closed convex
subset of H, F a bifunction of C × C into R satisfying conditions (A1)–(A4), and EP(F)/= ∅. Let
TF
rn the resolvent of F with a positive real sequence {rn} such that lim infn→∞rn > 0. Let {xn} be

a sequence generated by x, x1 ∈ H and

xn+1 = αnx + (1 − αn)TF
rnxn (n ≥ 1), (4.9)
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where {αn} is a sequence in [0, 1] satisfying the following conditions:

(i) limn→∞αn = 0,

(ii)
∑∞

n=1 αn = ∞,

Then, {xn} converges strongly to PEP(F)x.
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