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We discuss some algebraic properties of Toeplitz operators on the Bergman space of the polydisk
D". Firstly, we introduce Toeplitz operators with quasihomogeneous symbols and property
(P). Secondly, we study commutativity of certain quasihomogeneous Toeplitz operators and
commutators of diagonal Toeplitz operators. Thirdly, we discuss finite rank semicommutators and
commutators of Toeplitz operators with quasihomogeneous symbols. Finally, we solve the finite
rank product problem for Toeplitz operators on the polydisk.

1. Introduction

Let D be the open unit disk in the complex plane C and its boundary the unit circle T. For
a fixed positive integer n, the unit polydisk D" and the torus T" are the subsets of C" which
are Cartesian products of n copies D and T, respectively. Let dV(z) = dV,(z) denote the
Lebesgue volume measure on the polydisk D", normalized so that the measure of D" equals
1. Let LP = LP(D") denote the usual Lebesgue space. The Bergman space A? = A%(D") is
the Hilbert space consisting of holomorphic functions on D" that are also in L?(D",dV (z)).
Since every point evaluation is a bounded linear functional on A?, there corresponds to every
z = (z1,...,2x) € D" a unique function K. € A? which has the following reproducing

property:

f(z2)=(f,Kz), feA? (1.1)
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where the notation (-,-) denotes the inner product in L?. The function K is the well-known
Bergman kernel and its explicit formula is given by

K.(w) =] [——

. weDn. (1.2)
-1 (1-w;zj)

2/

Here and elsewhere z; denotes the jth component of z. The Bergman projection P is defined
for the Hilbert space orthogonal projection from L? onto A%. Given a function ¢ € L= (D", dV),
the Toeplitz operator T,, : A> — A? is defined by the formula

T,()E) = P@AE = [ Folp)Ro@aV ) (13)

for all f € A% Since the Bergman projection P has norm 1, it is clear that Toeplitz operators
defined in this way are bounded linear operators on A? and || T, || < [|¢]|.

We now consider a more general class of Toeplitz operators. For F € L'(D",dV), in
analogy to (1.3) we define an operator Tr by

Tef () = [ Pleo) ) Ro@)aV ). (1.4)

Since the Bergman projection P can be extended to L' (D", dV), the operator Tr is well
defined on H*, where H* is the space of bounded holomorphic functions on D”. Hence, Tr
is always densely defined on A?(D"). Since P is not bounded on L}(D", dV), it is well known
that Tr can be unbounded in general. This motivates the following definition, which is based
on the definitions on unit ball in [1].

Definition 1.1. Let F € LY(D",dV).

(a) Fis called a T-function if (1.4) defines a bounded operator on A2.

(b) If F is a T-function, one writes Tr for the continuous extension of the operator (it is
defined on the dense subset H* of L?(D")) defined by (1.4). T is called a Toeplitz
operator on AZ.

(c) If there exist r; € (0,1), 1 < j < n, such that F is (essentially) bounded on {z =
(z1,22,...,2n) : 7j <|zj| <1, 1 < j < n}, then one says F is “nearly bounded.”

Notice that the T-functions form a proper subset of L'(D",dV) which contains all
bounded and “nearly bounded” functions. In this paper, the functions which we considered
are all T-functions without special introduction. We denote the semicommutator and
commutator of two Toeplitz operators Ty and T, by

(Ty, Tgl = Trg = TyTg, [Ty, Tg] = TyTg = T, Ty (1.5)
The commuting problem and the finite-rank product problem for Toeplitz operators

on the Hardy and Bergman spaces over various domains are some of the most interesting
problems in operator theory.
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For commuting problem, in 1963, Brown and Halmos [2] showed that two bounded
Toeplitz operators T, and T, on the classical Hardy space commute if and only if (i) both
¢ and ¢ are analytic, (ii) both ¢ and g are analytic, or (iii) one is a linear function of the
other. On the Bergman space of the unit disk, some similar results were obtained for Toeplitz
operators with bounded harmonic symbols or analytic symbols (see [2—4]). The problem of
characterizing commuting Toeplitz operators with arbitrary bounded symbols seems quite
challenging and is not fully understood until now. In recent years, by Mellin transform,
some results with quasihomogeneous symbols (it is of the form e**®, where ¢ is a radial
function) or monomial symbols were obtained (see [5-7]). On the Hardy and Bergman
spaces of several complex variables, the situation is much more complicated. On the unit
ball, Toeplitz operators with pluriharmonic or quasihomogeneous symbols were studied in
[1,8-11]. On the polydisk, some results about Toeplitz operators with pluriharmonic symbols
were obtained in [10, 12-14].

For finite-rank product problem, Luecking recently proved that a Toeplitz operator
with measure symbol on the Bergman space of unit disk has finite rank if and only if
its symbols are a linear combination of point masses (see [15]). In [16], Choe extended
Luecking’s theorem to higher-dimensional cases. Using those results, Le studied finite-rank
products of Toeplitz operators on the Bergman space of the unit disk and unit ball in [17, 18].

Motivated by recent workin [1, 5,7, 17, 18], we define quasihomogeneous functions on
the polydisk and study Toeplitz operators with quasihomogeneous symbols on the Bergman
space of the polydisk. The present paper is assembled as follows. In Section 2, we introduce
Mellin transform, Toeplitz operators with quasihomogeneous symbols and property (P).
In Section 3, we study commutativity of certain quasihomogeneous Toeplitz operators and
commutators of diagonal Toeplitz operators. In Sections 4 and 5, we prove that finite rank
semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols
must be zero operator and we also solve the finite-rank product problem for Toeplitz
operators on the Bergman space of the polydisk.

2. Mellin Transform, Toeplitz Operators with Quasihomogeneous
Symbols and Property (P)

For any multi-index & = (ay, ..., a,) € N" (here N denotes the set of all nonnegative integers),
we write d, = ay - --a,, and z* = z‘fl ~ezytfor z = (zq,...,2,) € D" The standard orthonormal
basis for A% is {e, : @ € N"}, where

eq(z) = \/(m +1)---(a,+1)z%, aeN', zeD" (2.1)

For two n-tuples of integers a = (ay,...,a,) and f = (B1,...,Bn), we define a > p if
aj > P for all 0 < j < n. Similarly, we write a > Bif a; > p; forall1 < j < nand a ¥ f if
otherwise. We also definea L pif i1+ +apfp=0and a—f = (a1 — f1,..., &0 — Pu)-

For any k = (ky,...,k,) € Z", particularly we write El = (ky,..., k1) and put k* =
(Ikl, -+, knl), K™ = (1/2)(k* + k) and k= = (1/2)(k* — k). Then, k*, k= > 0, k = k* — k™, and
k* L k.
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Recall that a function ¢ on D" is radial if and only if ¢(z) depends only on
(|z1l, |z2l, - -, |znl), that is, @(e®z1,e%2z,,..., €% z,) = @(z1,2,,...,2,) for any 64,6,,...,0, €
R. For any function f € L'(D", dV), we define the radicalization of f by

1 27T 27 ) ) )
rad(f)(z1,22,. .., 2n) = Wf j f<€"‘21,e”222,- ..,e’t"zn>dt1 < dty. (2.2)
0 0

Then, f is radial if and only if rad(f) = f. For a € N, we have
<Trad(f)za/ zDﬁ) = <W J‘ e J f<elt1 zl/eltZZZI e /eltnzn>dt1 e dtnza/ Z‘x>
0 0

1 27 27T " " )
=— etizy,e®z,, ..., ez, )z°Z°dV (z)dt; - - - dt,
(2)" J‘o Jo fﬂf< ! ’ ) (z)dh (2.3)
27

1 JAZJZ' f —a
= — dtl dtn (wlle,...,Wn)wuw dV(w)
2m)" Jo 0 D" /
= (Tyz", 2%).
The main tool in this paper will be the Mellin transform. which is defined by the

equation

P(z1,...,24) = f f (p(sl,...,sn)sf"1 527N gy - ds,. (2.4)

0 0

We apply the Mellin transform to functions in LY([0,1]", 7y ---rndry - - - dry,); then,

1 1
o(z1,...,2n) :f f (p(sl,...,sn)sfl_l---sfl"_lds1---dsn. (2.5)
0 0

For convenience, we denote ¢(z1, ..., z,) by ¢"(z1,...,z,) when the form of ¢ is complicated.
It is clear that ¢ is well defined on I,, = {z = (z1,22,...,2,) : Rez; > 2, j =1,2,...,n}. Using
the Hartogs theorem, for any function ¢ € L'([0,1]",7; - - - r,dry - - - dry,), the Mellin transform
of ¢ is a bounded holomorphic function on I,,.

By calculation, we can get

P(z+p) =@(z1+p1, 22+ P2, -, Zn +Pn) = r/F’(\p(zl,zz,. ey Zn) = r/PTp(z), (2.6)

where p = (p1,p2,---,pn) 20,2 =(21,22,...,2n) € Iy, and 1P = rflrgz---rﬁ".

The quasihomogeneous functions have been defined in many spaces (see [5, 7]). In
the following, we give a similar definition on the polydisk D".
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Definition 2.1. Let k € Z". A function f € L1(D",dV) is called a quasihomogeneous function
of degree k if f is of the form ¢k where ¢ is a radial function, that is,

f(rd) = &o(r) 2.7)

for any ¢ in the torus T" and r € [0,1)".

As in [19], for any n-tuple k € Z", let Hy = {f € L?> : f is a quasihomogeneous
function of degree k}. It is clear that Hy is a closed subspace of L2. By Lemma 3.2 in [19],
L% = @D,z Hs. Inparticular, forall z = (11é1,...,1nén) € D, if f € Hy, thatis, f(rié&i,...,7é) =
§kfk(r1,...,rn), then we conclude that L>(D",dV) = EBkeankfk(rl,...,rn), fi € R, where
N ={p:D" — C radial] [, lo(r1, ..., 1) PTTE ridri < +oo}.

Lemma 2.2. Let k,I € Z", and let ¢, ¢ be radial functions on D", such that &k, &g, and gy are
all T-functions. Then, the following equation holds for every a € N™:

0 ifa Yk,
Ty (2%) = ) 2.8)
s 2"aa+k+f¢<2a +k+ 2)2“*", ifa>k,

where a = (1 +k1+1) - (ay,+k,+1) and @(2a+k+§) =pQRa+ki+2,200+ky+2,..., 20, +

kn +2).

a+k+T

Using Lemma 2.2, we can get the following two results:

0 ifa€Ey,
(Tgkq,, ngq,] (%) =4 2", <G <2a +m+ Z) e if @ € ESNES, (2.9)
(2"aa+m+f(ﬁ¢ <20c +m+ .’Z) - A) z¥m if a € By,

where m = k+1, A = 4"a_,, za,,, :FQRa+1+2)pQRa+1) +k+2),Ey = {a: aym},
Er={a:a>l"}n{a:a+1>k}, E{f = N"\ Ej, and E] = N" \ E;. It is easy to check that
EiNnE, =¢

-

0 if @€ FENFE,
[ ]( a) )leu+k+l if a € F1NFS,
Tk, Ta Z7) =3 (2.10)
14 4
s Azl if a € FENFy,
()Ll - .)Lz)Zu+k+l ifae F1NF,,

where Ay =4"a_ ;. 7a,.,,.1FQa+1+2)p(2(a+])+k+2), Ay = 4"a_ , 1a, 1. 7 PQRa+k+2)F(2(a+
kKy+1+2),Fi={a:a>I"}n{a:a+l>k},F,= {fata>k }n{a:a+k >}, Ff =N"\F
and F5 = N"\ F,.
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Let G be a region in complex plane C and f holomorphic on G. If {zx};2; has a limit
point in G, such that f(zx) = 0, then f = 0. For functions of several complex variables,
the above conclusion does not hold. For example, f(z1,22) = z1z is analytic on bidisk
{(z1,22) : |z1| < 1,|z2| < 1}, point sequence {(0,1/k)}, k =2,3,..., has a limit point (0, 0), and
f(0,1/k) = 0, but f is not a zero function on the bidisk. So we need the following definition,
which is given in [9, 17].

Forany 1 < j < n,let 0j : Nx N*1 — N" be the map defined by the formula
oi(s,(a1,...,an1)) = (a1,...,aj1,8,aj,...,a4,1) for all s € Nand (ay,...,a,1) € Ne-1If
M is a subset of N" and 1 < j < n, we define

— - 1
Mj=Ja=(a,...,an1) € N7 Z i w p. (2.11)
seN,aj(s,E)eMS +

Asin [9,17], we say that M has property (P) if one of the following statements holds:

(1) M =49,
(2 M#0,n=1,and >, 1/s < o0, Or
(3) M#0®,n>2,and, forany 1 < j < n, the set FM; has property (P) as a subset of N"1.

Let M and N be two sets that have property (P). It is not difficult to check that the
following statements hold:

(1) MO N and M U N have property (P);
(2) N*\ M do not have property (P).

Lemma 2.3. If ¢ € LY([0,1]",71 -+ r,dry - - - dry) and Z(@) = {a € N" : ¢(a) = 0} does not have
property (P), then ¢ is identically zero.

Proof. By the Miintz theorem, we can prove that it is true when n = 1 (see [7] for more details).
Suppose that the conclusion of the lemma holds whenever n < N, where N is a positive

integer. Consider the case n = N + 1. Since Z(¢p) does not have property (P), there must be
al < j < N+1, such that Z/(Tﬁ) j does not have property (P). Without loss of generality,
taking j = N + 1, then, ZZ/(Z))NH #0. For each 7 € ZE/@NH, Disen, ¢s)=0 1/ (s +1) = o0. So
@(7,zn+1) = 0, for all zn.q € I1. For every A € I, let ¢, (Z') = ¢(Z', 1); then, ¢, is an analytic
function on Iy and Z(¢,) = Z/(/@ ~N41- Which does not have property (P). By the induction
hypothesis, we have ¢(z',1) = 0,z" € In. Thus, ¢(z) = 0 on In,1. Therefore, ¢ is identically
Zero. O

Theorem 2.4. Letp = (p1,p2, - --,pPn) € Z", and let f be a T-function. Then, the following statements
hold.

() If E, = {a;(T;z*F,z%) = 0 forall a > p~} does not have property (P), then (Tz**?,
z%)y=0foralla > p~.

(i) Let E, E' C N" be the sets that have property (P). If (Tyz*,zP) = 0 for all « € N" \ E,
peN"\ E', then f(z) =0 for almost all z € D".

(i) If (Tfz*,2P) =0 for all a+p#p, then f is a quasihomogeneous function of degree p.
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Proof. (i) By direct computation, we have

(Tpz™?, z%)
= f f(z)ZaerEadV(z)
]D)n
_ ij f f(rlei91 r ei9n> n rza,~+lml+1li[<ei9j>mdelmde dri e dr
- yeoosn . ., .
7" J1oa1 J 10,20]" L L
(2.12)
Let
F _ 0, 0.\ TT (6, P e . do )13
R = mﬂﬂf(me R >,-_1 <e ) L. de,. (2.13)

Then, F € L'([0,1]", 71 -+ - rudry -+ - dry). Infact, | F(r1, ..., ra) | 0,11 rivoryctrs-dra) < 1Lf Il @nav)-
Therefore, equality (2.12) shows that FQ2a; + lpil + 2,...,2a, + |pu| +2) = 0 for any a =
(a1,...,a,) € N". That is, Z(F) does not have property (P). Thus, Lemma 2.3 implies that
F=0and (Tfz*?,z%) =0 forall a > p.

(ii) Foreach I = (Iy,...,1,) € N", (Tfz*, z¢y =0 fora € (N*\ E)n (N"\ (E' =1)). Since
E and E’ have property (P), the subset (N" \ E)n (N" \ (E' - 1)) = (N" \ (EU (E’' - 1)) does
not have property (P). By (i), we have (Tyz% z*") = 0 for a € N". It is easy to prove that
(sz‘”l,z“) =0 for @« € N". So (sz"‘,zﬂ) =0forall a, p € N", thatis, Tf = 0 and f(z) =0 for
almost all z € D™

(iii) Since

rad(é’}) (z1,.+.,2n) = ﬁ J‘[Olzﬂ]n <gpf> <eitlzlleit222,. ”/eit,,zn>dt1 cdt,

_ (zl)n f e i te0pn (1 )y o000 g .. it
IT) )02

1 S £ (4 :
= e H&j=1hipj f(rleltl,...,rne”">dt1 - dty,
(2'71-)” J‘[O,Zﬂ']"

(2.14)

we have

f [g"’rad <§’” f)] (2)z°2PdV (z)
Dn
1 f f I ) it "
=—Q e &= VIPITATR re",..., rpe')do;---do,
27)" ) o201 J 10117 J 10,221 f<1 ) ! (2.15)

n
x <Hr;cj+ﬂj+l> e "X P dyy o dr,dty - - dt,.

j=1
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Ifa+p#p, then [}, [§”rad(gpf)] (2)z°Z°dV (z) = 0. Otherwise, if a + p = p, then
Prad (g “zPd
[ lema@r)]@=ave

—1 i 5. n N . . n .
= (2]1')” f J‘ f(rleltl, ceey Tneltn> <Hr;!]+ﬂ]+l> e_l(Zj:1 t]p))drl e drndtl e dtn
[0,2or]™ J [0,1]" -

j=1

= f f(z)2°2dV (z).
’ (2.16)

Thus, we get [, [§”rad(§pf)] (2)z°Z2PdV (z) = Jon f(z)z°2°dV (z) for any a,p € Z". So
§Prad((._§pf) = f, this means that there exists ¢(r) such that gpf(z) = ¢(r), thatis, f(z) = ¢ (r)
is a quasihomogeneous function of degree p. O

Remark 2.5. Let f be as in Theorem 2.4. Then, Ty = 3 oy w(f, @, @ + p)eqsp ® eq, where

w(f,a,a+p) = (Tfeq, €xsp) = \/A,.71/9, ~I Po(r)z°Zz"PdV (z)
(f p) < f P> +1 +p+1 ]D)"g %
= Vi) Gaspsi®P (2“ +tp+ 5>~

(2.17)

Recall that a densely defined operator on A2?(ID") is said to be diagonal if it is diagonal with
respect to the standard orthonormal basis. In particular, for f € L*(D"), T is diagonal if
and only if rad(f) = f. In this case, Tf = X o w(f, a)ea ® €4, where w(f,a) = (Tres, eq) =
a,;fQa+32).

3. Commutativity of Toeplitz Operators

In this section, we study the commutativity of the Toeplitz operators with some special
quasihomogeneous symbols and give the characterizations, respectively.

Theorem 3.1. Let g = ¢Po(r) € L*(D") be a quasihomogeneous function of degree p and f =
Skezn & fi(r1, ..., 1) € L2(D"). Then, TfTy = Ty Ty if and only if Ty, Ty = Ty Ty, for any k € Z".
Moreover, the following statements hold.

@A) IfQr={a:a+pX0}nf{a:a+k>0}Nn{a:a+k+p>0}#0, then, for each a € Q,
PRa+2k +p+2) frRa+k+2) =0.

i) IfQr=fa:a+kX0}n{a:a+p>0}n{a:a+k+p>0}+#0, then, for each a € Qs,
PRa+p+2)frRa+2p+k+2)=0.
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Proof. Note that, for a € N”,

TeTj(e) = X TeTppea= >, 3, (TeTeneaep)ep

kezr kezZm penNt
(3.1)
= Z <TgT§kfk €a, €atk+p >ea+k+p-
kezn
The second equality follows that (T Tk eq,€p) = 0, when p#a + k + p.
Similarly,
TyTy(ea) = >, TypTgea = >, > (ToepTgearep )ep
kezn kezm penNrt
(3.2)
= Z <T§kfkTgear Catk+p >elx+k+p-
kezn

Since {e,} are the standard orthogonal basis and (TgT s ea ep) = (Tep Tgea, ep) = 0 for
p#a+k+p,itis easy to check that the following statements are equal:

(1) T/T, = T,T;;
(D) (Ty Tk f,€a earksp) = (Torp Tolu, Eaiksp), @ € NT;
(1) Ty Tyef,ex = Ty, Tgea, a € N7
(IV) TyTyes, = Toes, T

Furthermore,

<TgT§kfk €a, Catk+p > = <T§kfk €a,Catk > <Tgea+k/ €a+k+p>
0, a+k X0 or a+k+p X0,
. /A, 7+ /aa+k+p+faa+k+f¢<2a +2k+p+ f)fk (sz +k+ §>, a+k>0, a+k+p>0,

<T§kfk Tgear Eatk+p > = <Tgea/ etx+p> <T§kfkea+p/ Catk+p >

0, a+p X0 or a+k+p X0,

- N /“a+k+p+faa+p+ffk<2“ +2p+k+ f)(ﬁ(Za +p+ f), a+p>0, a+k+p>0.
(3.3)
Thus, the statements (i) and (ii) hold. O

Theorem 3.2. Let fi, fo be quasihomogeneous functions of degree p and —s, where p > s > 0. If
[Tf1/sz] = O/ then fl =0or f2 =0.
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Proof. If f1, fo are quasihomogeneous functions of degree p and —s, then there exist radial
functions ¢; and ¢, such that f; = ¢’ and f, = gs(pz. If T, Ty, = T, Ty, (2.10) implies that,
for all « € N*,

a, .72 (2a—s+§>@<2a—25+p+§> = aa+p+f(/p}(2u+p+§>@<2a+2p—s+§>, if a>s,

(3.4)
¢\1<2a+p+§>@<2a+2p—s+§> =0, ifaXs.
We claim that there exist {Ax}{2; with 31/, = oo such that
P12\ +p1+2,2) 2 (2N +2p1 — 51+ 2,2') =0, for any 2’ € I,1. (3.5)

It follows that Z(¢1¢;) do not have property (P). So we can get f; = 0 or f, = 0 by Lemma 2.3.

We only need to prove the claim. Since s > 0, there exists 1 < j < n, such that s; > 1.
Without losing generality, suppose that j = 1. Let g = s; — 1 > 0O; then, a’ = (Ao, ') ¥ s and
PRV +p1+2,a +p' + 5)@(2)@ +p1+2,a +2p -5 + i) =0wherea' € N*1,p' = (pa,...,pn)
and s’ = (s2,...,5). Denote Ey = {2’ € I,.1 : p1(2Ao +p1 +2,2') =0} and Fy = {2z’ € I,,.1 :
p1(2X + p1 +2,2') = 0}. Note that at least one of the sets Ey and F does not have property
(P). Since 91 (2Ao + p1 +2,2') = 0 and 92(2A¢ + p1 + 2,2') = 0 are analytic on I,,_;, Lemma 2.3
shows that EO = In—l or F() = In—l-

Case 1. If Eg = I,,_1, then

@(2(110 + s> +p+§>@<2<a0 +s> +2p—s+§> = %@(2(/)0 +p+§>¢5<2a0 +s+§> =0,
(3.6)

a+p+1

where a’ = (A\g + s5,&') with &’ € N"!. Let \; = Ay + s. Denote by E; = {2/ € I,_1 : p1(2A1 +
p1+2,2') =0} and F1 = {2’ € I,.1 : 91(2\1 + p1 +2,2') = 0}. Then, at least one of the sets E;
and F; does not have property (P). By Lemma 2.3 again, we have E; = I,,_; or F; = I,,_1. Thus
p1(A1, 2)p2(Ay, 2') =0, for any z' € I,4.

Case 2. If Fy = I,,_1, then

(7;\1<2<zx0+p> +p+§>@(2<a0+p> +2p—s+§>
= M@<2a°+3p—25+§>@<2a0+2p—s+§> =0. o7

a+p+l
By the same technique, we can get that (3.5) holds when Ay = Ay + ps.
Similarly, we can find a sequence A, = Ag+u(k)p1+v(k)s1, where the functions u(k) =1

or0,v(k) =1or0,and u(k) + v(k) =1 for k € Z*. Then, (i) A1 > min{p1,s1}, (ii) Dpen 1/ Mk =
+oo, and (iii) for every k > 1, A satisfies (3.5). So we complete the proof. O
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For n = 2, we have the following results.

Theorem 3.3. Let g(r) = r"'ry?, where my > 0 and my > 0. Let f(r1,r2) € L*([O0, 1%, p =
(p1,p2) € N? and py - p, #0. Then, T Tor p = Top s Torg if and only if there exists an analytic function
on C, such that the function ¢((zop1 — z1p2) / (p7 +p5))/ ((z1 + m1) (22 + my)) is bounded on I, and

- ¢ ((zap1 = z1p2) / (p; + P3))

flaz) = (z1 +m1)(z2 + my)

, Vz= (21,22) € I,. (38)

Proof. As in the proof of Theorem 3.2, it is easy to check that Ty o Ty s = Tep f Ty if and only if
(TygTe jeas earap) = (TofTogear €aszp), (3.9)

which is equal to
g(sz +p+ i)f(Za +3p+ i) = f(th +p+ §>§(2a +3p + 5), Ya € N2, (3.10)

Suppose that there is a function ¢ as in this theorem.
Note that

1
(z1 +my)(z2 + ma)

3(z) = J rm+z‘fdr1dr2 = #0, Vzel, (3.11)
[011?

and (2a2+3p2+2)p1— (a1 +3p1+2)p2 = Qax+p2+2)p1— a1 +p1+2)py, forany a = (a1, a2) € N2.
Then, it is easy to check that equality (3.10) holds, that is, TepTerr = Ter fTivg-

Conversely, if Typg and Ty r commute, we will structure an analytic ¢ which satisfies
the conditions in this theorem.

Since g(z) #0 for all z € I, the function f(z) /g(z) is analytic on I,. Note that |[r*1| < 1
forO<rj<1,j=1,2and z € I,. Thus,

7@ < [_1714VE = Wfllgony -

18(=2)] < ”8”L1([o,1]2)'
Fix ap € N?, and let zp = 2ag + p + 2, then,

fz0) _fzo+2p)  _ f(zo+2kp)
8(z0)  g(z0+2p) (20 +2kp)’

k=0,1,2,.... (3.13)
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Combining this with Lemma 2.3, we can get that the above equality holds for any zy € I,. Let
pt = (-p2,p1); then, p L p*. For each zj € I, there exist y1, yo € C such that zg = p1p + pop™.
So

fGaprpap’) _ f(GueDprpwpt) _ f(Qur20prpp) ooy
S(up +papt) (1 +2)p + papt) g((p +2k)p + pap*)
Put

_fOp+uapt)  f(up + popt)

F(\) = = - = ,
S(Ap +papt)  g(ap + papt)

(3.15)

then, F(\) is analytic on {z € C : Re(zp1 — pop2) > 2 and Re(zpy + pop1) > 2} and

[FOI < ||l ([ + Apr = papa| - |mz + Apz + papr | + C1) < || f | 12 (Dl|)t|2 + Dy|A[ + D3>,
(3.16)

where Cy, D1, D,, D3 are all constants. Since F(p; + 2k) = 0 and 3,,%1/2k = +oo, the set
{1 +2k:k=0,1,2,...} € Z(F). Thus F(1) =0. That is

£ L
f(Ap + #2Pl> = %g(w + uzpl>. (3.17)

For each p € C, there exists Ay € C such that Re(lgp1 — pp2) > 2 and Re(Aop2 + pp1) > 2;
then, let ¢r(u) = f (Lop + upt) /g (Aop + pp*). By equality (3.17), we conclude that the function
¢ is well defined. Since the function f/g is analytic on I, we can prove that ¢ is an analytic
function on C. Let

z1 = )tpl — H2p2,

(3.18)
Zy = )LPZ + Hap1,
Then,
1= le; - Z;pz
pitp; (3.19)
_ Z2p1 — Z1p2 .
P+
So (3.17) is equal to
_ 2, 2
flz1,22) = ¢((z2p1 = z1p2) /(i +p2)), (3.20)

(z1 +m1)(z2 + my)
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where |¢((zop1 — zip2)/ (P2 + p3)) / ((z1 + 1) (22 + m2))| < I fllr1(o72) and (z1,22) € L. This

completes the proof.

Corollary 3.4. Let f, g be as in Theorem 3.3 and p € N*; then, the following statements hold:

(1) Toiwor ¢ Toivor ¢ = Toier Toiner o if and only if f = " ¢(ry), where ¢ € L*([0,1]);
(ii) Toiperg Toier f = Toipes ¢ Toiver o if and only if f = 1) ¢p(r1), where ¢ € L*=([0,1]).

Proof. (i) By (3.17) we have

-1_2z-1 Z -1 -1
f(r,r)r] 1y drdr = ¢ = AT A dr,
[01* (011

4

that is,

[ ] somritan-ra(2) [ =tan]iian-o
0111/ [01] 14 [01]

Then,

1
r, 1) dry = ™ (—Zz> :
[0,1]f(1 271, 2 =T P

It follows that there exists ¢ = ¢(r2) € L*([0,1]) such that f = r{"' ¢(r2).
On the other hand, if f = r" ¢(r2), then

-~ e ~~ 1 1
f(2)g(z+2(p,0)) = m o+ z "p(z2) - my +z1 +2p . my+ 2z’
f(z+2(p,0))3(2) = ! - §(z2) - ! :

my+z1+2p mi+z1 mMo+2zp

Thus, we have Tgpngpf = Tgprgpg.
(ii) Can also be proved in the same way.

O

(3.21)

(3.22)

(3.23)

(3.24)

O

In [6], Cutkovi¢ and Rao showed that if f,g € L*(D) and g is a nonconstant radial
function, then T(T, = T,T; implies that f is a radial function. However, this is not true
if f,g € L*(D"), where n > 2. For example, g(z) = g(z1,...,zj-1,1zjl, Zj+1,...,24) and
f(z) = f(zil,...,|zal) only for |z;|, and it is clear that T,Tf = T;T,, but g(z) may not
be a radial function. Let G = {g € L*(D") : g isradial and for f € L*(D"),TfT, =
T Ty implies that f is radial}(if n = 1, this set is exactly the set of all non-constant bounded

radial functions). In the following, we can give a complete description of G.

Theorem 3.5. G = {g(z) is a bounded radial function: for each k = (ki,...,k,) #0, a28(2z) #

A(2z+2K) 8 (22 + 2k), where z € I, and z + k € I,,}.
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Proof. Suppose that f(z) = Syem & fi(r1,...,mm) € L*(D") and g is a radial function.
Lemma 2.2 shows that

TfTe(z) = D) 2"au+T§<2a + f) Ci fx <2a +k+ f) z*k,

kezZn
- (3.25)
T, Tp(z") = 3, Cfic(2a+ k +2)2"%a, 5320 + 2k +2) =,
kezn
where a € N" and
0 ifa ¥k,
Ck = (3.26)
2"a, 0 ifa>k".
It follows that T T, = T, T if and only if
2,13 (2a+2)Cifi(2a+k+2) = Cefi(2a + k +2)a, .18 (20 + 2k +2), (3.27)

forany k € Z". Let Ey = {a : (4,78 — Ay, r,17°8)" (2a +2) = 0} and E; = {a : r/"?k(2a+§) =
0}. Then E; UE; = {a;a > k™}. The commutativity of Ty and T, is equivalent to that at
least one of E; and E, does not have property (P); then, Lemma 2.3 shows that fx = 0 or
a(22)8(22) # a2z4+2k)§(22+2k), where z € I, and z+k € I,,. The rest of the proof is obvious. [

Remark 3.6. In Theorem 3.5, particularly if g is a radial function such that g(z) = IT};g;(z;)
or g(z) = Z;‘:l gj(zj), where each g;(z;)(1 < j < n) is a non-constant radial function, then
for each k = (ki, -+, kn) #0, 202 8(22) # A2z+203(2z + 2k), where z €I, and z+k € I,
so g € G. It follows that G is nonempty.

4. Finite Rank Semicommutators and Commutators

Recall that Cutkovi¢ and Louhichi (see [5]) have found some nonzero finite rank semi-
commutators of quasihomogeneous symbol Toeplitz operators on the Bergman space of unit
disk. In this section, we will show that the finite rank semicommutators and commutators of
Toeplitz operators with quasihomogeneous symbols must be zero on A%(D") with n > 2. Our
idea is mainly from [17].

Theorem 4.1. Let k,I € Z" withn > 2, k+1 = m, and let ¢, ¢ be radial functions such that f1 = §k(p,
fo = &', and &My are all T-functions. If the semicommutator (Ty,, Ty, ] has finite rank, then it must
be zero.

Proof. Let S denote the semicommutator (Ty,, Ty,]. For a € N", if S is finite rank, by equality
(2.9), we have that there exists a’ > k™ + [~ such that

S(z%) = 2y 7 (2" 017 (20 + 1+ 2) (2 + 1) + ke + 2)
(4.1)
—@(20: + m+§>> =0 fora>a’
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which is equivalent to

(rk++l+<p>A<2a +1-k -1+ i) (rk_+l_q;>/\<2(x +1-k -1+ f)

= () ar1-k -1 +3)(Fgy) (2a+1-k -1 +3), )
for a > a?. Combining this with Lemma 2.3, we get
(F9) @ (7 ) @ = (7)) @ (fey) (@), for zel, 4.3)
Hence,
S(z*) =0 Yaek,. (4.4)

In the following, we only need to prove that gg(a) = 0 for all « € E{ N E3.

If E{ N E5#0, thereis a j (0 < j < n) such that m; < I;. Without loss of generality,
assume that j = 1. Then, {(ay, m2 + a2,..., my +a,) :m; <y <1, a;>0,j=2,...,n} CE.
For each m] < ay, let Fy (r2,..., 1) = fol((pqr)(rl,rl,...,rn)rfl_ldrl. Since Z(f;) 2 {(my +
A,...,My+ay): (a,...,a,) € N1} does not have property (P), we have f,; = (. Therefore,
¢@(ay, az, ..., a,) =0for m; < a; <Ij and g; Zm;, j=2,...,n.50S(z% =0fora € E{NES.

This completes the proof. O

We now pass to the commutator of two quasihomogeneous Toeplitz operators. Here
the situation is the same as for the semicommutator.

Theorem 4.2. Let k,I € Z" with n > 2, and let ¢, ¢ be radial functions such that f; = ¢ and
fo = &g are both T-functions. The commutator [Ty, Ty,] has finite rank if and only if it is a zero
operator.

Proof. Let S denote the commutator [Ty, Tf,]. For a € N", if S has finite rank N, by equality
(2.10), we have that there exists a’ > k= + I~ such that

S(Za) = 4nau+k+l+f<au+l+f¢ <2“ +1+ z)@(Z(a + l) +k+ z)

(4.5)
8,920+ k+2) G (2a + k) +1+2) ) (2 = 0
for a > a°. As in the proof of Theorem 4.1, the above equation implies that
(X[o,un)"(z(x +2k + §>¢r<2a +1+ f)(ﬁ(Z(a +)+k+ f)
(4.6)

- (x[olun)%zd 420+ i)(p(za +k+ i)q?(Z(a +k)+1+ i)
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for a € F; N F,. Hence,

S(z") =0 VaeF,. (4.7)

For a € Fi N F5 or a € F{ N F,, following the same way as above, we can also prove that
5(z) =0.
This completes the proof. O

5. Finite Rank Products of Toeplitz Operators

In [17], the author showed that under certain conditions on the bounded operators S; and
S, on A%(B,), if f e L*(B,), such that S,T¢S; is a finite-rank operator, then f must be zero
almost everywhere on B,. On the Bergman space of the polydisk, using the same method
as in [17], we can prove Theorem 5.1. Using Theorem 5.1, we get two useful theorems for
Toeplitz operators with quasihomogeneous symbols.

Theorem 5.1. Let Sy, S, be two bounded operators on A%(D"™). Suppose that there is a set S C N"

which has property (P), such that ker(S,) C Mand N C ran(Sy). Here, M (resp., N) is the linear
subspace of A?(D") spanned by {z™,m € S} (resp., {z™,m € N" \ S}). Suppose that f € L*(D")
such that the operator S;TfSy has finite rank; then f is the zero function.

Theorem 5.2. Let M and W be two positive integers. Let fi,...,fm and gi,...,gw be
quasihomogeneous functions, none of which is the zero function. If f € L* such that the operator
Tfy -+ Ty TfTy,, -~ Tg, has finite rank, then f is the zero function.

Proof. Let Sy = Ty, ---Ty, and Sy = T, ---T,,. Suppose that f; = &ig;(r), 1 < j < M, and
g =¢&Mgi(r), 1 <1<W, where p;,q; € Z". By Lemma 2.2, for a > > q; , we have

w j w
S1(z") = <22"WHaa+z; asi¥ <2<a + Zqz> g+ 2> ) 2™, (5.1)
j=1 - 1=1

Define 2 = {a e N" : a ¥ Z}'Xl q;} U(U}'Zl{a eN": @(2(a+2{21 q) —q; +2) =0}). Since none
of the functions ¢, .. ., g5y is the zero function, the set 2 has property (P).
For a € N\ 2, we see that S;(z%) #0. Suppose that ¢ € A2 such that S;(¢p) = 0; then,

0=5(p) =S ( > <(p,z“>z“> = D (p,z%)S1z% (5.2)

aeN" aeN"

So (5.1) implies that for any a € N" \ 2, (¢,z*) = 0. Therefore ker(S;) is contained in the
closure of the linear span of {z* : a € 2} in A2Z. Now suppose that

O={a:az’gql}U<N"ﬂ<Q+gqj>>. (5.3)
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Then the set 2 has property (P) and, forany a € N*\ 9, f = a — Z}'\:’l g;j belongs to N" \ 2.

Equality (5.1) implies that z* = 2P I s a multiple of S;1z”. So the linear span of {z* :
a € N"\ J} is contained in the range of Si. So there exist subsets 2 and 9 of N” that have
property (P) such that ker(S,) is contained in the closure in A2 of Span({z® : a € 2}) and
Span({z* : @ € N" \ 0} is a subspace of S1(A2). Let S = 2|J 2; then, Theorem 5.1 implies that
f is the zero function. O

Theorem 5.3. Suppose that the function f(z) € L*>(D") has the expansion

f@2) = D& fu(r,....m), (5.4)

k<M

and fM(l) #0 for all | > ly, where ly € N", if there is a function g(z) € L*(D"), such that T,Ty has
finite rank; then g = 0.

Proof. For a € N*,

Tp(z") = D, 2"aa+k+fﬁ<2a +k+ §>z“+k
M>k>-a
(5.5)

=2"a, \ifm <2a + M+ i) 2 My > 2a...ifk <2a +k+ 5) z*k,
Mrk>—a, k#M

By hypothesis, there exists &y € N”, such that, for any a > ay, f MQ2a+ M + i) #0; then,
fmQag+ M + 2) #0. Thus, we have

Z%tM ¢ Span{Tf(z™),z" : 0 < a <ap+ M,a#apg + M}. (5.6)
Considering the same argument, we get, for all [ > 0,
M0t M+ o Span{Tf(zﬂ>,z”‘ tag X PpLag+,0<La<Lag+Ma#ay+ M} (5.7)

Now suppose that T;T; has finite rank, and let {¢1,..., 9N} be the set that spans
T Tf(P), where D is the space of all holomorphic polynomials in the variable z. Then, for
any | € N, we see that ng"’UJ’M*l is a linear combination of {¢, ..., N} U{T¢(z"), where 0 <
a<ay+M and a#ag+ M}, and it follows that Ty is a finite-rank operator. By Theorem 2.4,
we conclude that g is the zero function. O
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