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In this paper, we discuss the properties of the neutral operator (Ax)(t) = x(t)− cx(t− δ(t)), and by
applying coincidence degree theory and fixed point index theory, we obtain sufficient conditions
for the existence, multiplicity, and nonexistence of (positive) periodic solutions to two kinds of
second-order differential equations with the prescribed neutral operator.

1. Introduction

In [1], Zhang discussed the properties of the neutral operator (A1x)(t) = x(t)−cx(t−δ), which
became an effective tool for the research on differential equations with this prescribed neutral
operator, see, for example, [2–5]. Lu and Ge [6] investigated an extension of A1, namely, the
neutral operatorA2x(t) = x(t)−∑n

i=1 cix(t−δi) and obtained the existence of periodic solutions
for a corresponding neutral differential equation.

In this paper, we consider the neutral operator (Ax)(t) = x(t) − cx(t − δ(t)), where
c is constant and |c|/= 1, δ ∈ C1(R,R), and δ is an ω-periodic function for some ω > 0.
Although A is a natural generalization of the operator A1, the class of neutral differential
equation withA typically possesses a more complicated nonlinearity than neutral differential
equationwithA1 orA2. For example, the neutral operatorsA1 andA2 are homogeneous in the
following sense (Aix)

′(t) = (Aix
′)(t) for i = 1, 2, whereas the neutral operator A in general is

inhomogeneous. As a consequence many of the new results for differential equations with the
neutral operator A will not be a direct extension of known theorems for neutral differential
equations.

The paper is organized as follows: in Section 2, we first analyze qualitative properties
of the neutral operator A which will be helpful for further studies of differential equations
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with this neutral operator; in Section 3, by Mawhin’s continuation theorem, we obtain the
existence of periodic solutions for a second-order Rayleigh-type neutral differential equation;
in Section 4, by an application of the fixed point index theoremwe obtain sufficient conditions
for the existence, multiplicity, and nonexistence of positive periodic solutions to second-order
neutral differential equation. Several examples are also given to illustrate our results. Our
results improve and extend the results in [1, 2, 4, 7].

2. Analysis of the Generalized Neutral Operator

LetCω = {x ∈ C(R,R) : x(t+ω) = x(t), t ∈ R}with norm ‖x‖ = maxt∈[0,ω]|x(t)|. Then (Cω, ‖·‖)
is a Banach space. A cone K in Cω is defined by K = {x ∈ Cω : x(t) ≥ α‖x‖, for all t ∈ R},
where α is a fixed positive number with α < 1. Moreover, define operators A,B : Cω → Cω

by

(Ax)(t) = x(t) − cx(t − δ(t)), (Bx)(t) = cx(t − δ(t)). (2.1)

Lemma 2.1. If |c|/= 1, then the operator A has a continuous inverse A−1 on Cω, satisfying

(1)

(
A−1f

)
(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f(t) +
∞∑

j=1

cjf

(

s −
j−1∑

i=1

δ(Di)

)

, for |c| < 1, ∀ f ∈ Cω,

−f(t + δ(t))
c

−
∞∑

j=1

(
1/cj+1

)
f

(

s + δ(t) +
j−1∑

i=1

δ(Di)

)

, for |c| > 1, ∀f ∈ Cω.

(2.2)

(2) |(A−1f)(t)| ≤ ‖f‖/|1 − |c‖, for all f ∈ Cω.

(3)
∫ω
0 |(A−1f)(t)|dt ≤ 1/|1 − |c|| ∫ω0 |f(t)|dt, for all f ∈ Cω.

Proof. We have the following cases

Case 1 (|c| < 1). Let t − δ(t) = s and Dj = s −∑j−1
i=1 δ(Di), j = 1, 2, . . .. Therefore,

Bjx(t) = cjx

(

s −
j−1∑

i=1

δ(Di)

)

,

∞∑

j=0

(
Bjf

)
(t) = f(t) +

∞∑

j=1

cjf

(

s −
j−1∑

i=1

δ(Di)

)

.

(2.3)
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Since A = I − B, we get from ‖B‖ ≤ |c| < 1 that A has a continuous inverse A−1 : Cω → Cω

with

A−1 = (I − B)−1 = I +
∞∑

j=1

Bj =
∞∑

j=0

Bj, (2.4)

where B0 = I. Then

(
A−1f(t)

)
=

∞∑

j=0

[
Bjf

]
(t) =

∞∑

j=0

cjf

(

s −
j−1∑

i=1

δ(Di)

)

, (2.5)

and consequently

∣
∣
∣
(
A−1f

)
(t)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∞∑

j=0

[
Bjf

]
(t)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∞∑

j=0

cjf

(

s −
j−1∑

i=1

δ(Di)

)∣
∣
∣
∣
∣
∣
≤

∥
∥f

∥
∥

1 − |c| . (2.6)

Moreover,

∫ω

0

∣
∣
∣
(
A−1f

)
(t)

∣
∣
∣dt =

∫ω

0

∣
∣
∣
∣
∣
∣

∞∑

j=0

(
Bjf

)
(t)

∣
∣
∣
∣
∣
∣
dt

≤
∞∑

j=0

∫ω

0

∣
∣
∣
(
Bjf

)
(t)

∣
∣
∣dt

=
∞∑

j=0

∫ω

0

∣
∣
∣
∣
∣
cjf

(

s −
j−1∑

i=1

δ(Di)

)∣
∣
∣
∣
∣
dt

≤ 1
1 − |c|

∫ω

0

∣
∣f(t)

∣
∣dt.

(2.7)

Case 2 (|c| > 1). Let

E : Cω −→ Cω, (Ex)(t) = x(t) − 1
c
x(t + δ(t)),

B1 : Cω −→ Cω, (B1x)(t) =
1
c
x(t + δ(t)).

(2.8)

By definition of the linear operator B1, we have

(
B
j

1f
)
(t) =

1
cj
f

(

s +
j−1∑

i=1

δ(Di)

)

, (2.9)
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where Di is defined as in Case 1. Summing over j yields

∞∑

j=0

(
B
j

1f
)
(t) = f(t) +

∞∑

j=1

1
cj
f

(

s +
j−1∑

i=1

δ(Di)

)

. (2.10)

Since ‖B1‖ < 1, we obtain that the operator E has a bounded inverse E−1,

E−1 : Cω −→ Cω, E−1 = (I − B1)−1 = I +
∑

j=1

B
j

1, (2.11)

and for all f ∈ Cω we get

(
E−1f

)
(t) = f(t) +

∞∑

j=1

(
B
j

1f
)
(t). (2.12)

On the other hand, from (Ax)(t) = x(t) − cx(t − δ(t)), we have

(Ax)(t) = x(t) − cx(t − δ(t)) = −c
[

x(t − δ(t)) − 1
c
x(t)

]

, (2.13)

that is,

(Ax)(t) = −c(Ex)(t − δ(t)). (2.14)

Let f ∈ Cω be arbitrary. We are looking for x such that

(Ax)(t) = f(t). (2.15)

that is,

−c(Ex)(t − δ(t)) = f(t). (2.16)

Therefore,

(Ex)(t) = −f(t + δ(t))
c

=: f1(t), (2.17)

and hence

x(t) =
(
E−1f1

)
(t) = f1(t) +

∞∑

j=1

(
B
j

1f1
)
(t) = −f(t + δ(t))

c
−

∞∑

j=1

B
j

1

f(t + δ(t))
c

, (2.18)
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proving that A−1 exists and satisfies

[
A−1f

]
(t) = −f(t + δ(t))

c
−

∞∑

j=1

B
j

1

f(t + δ(t))
c

= −f(t + δ(t))
c

−
∞∑

j=1

1
cj+1

f

(

s + δ(t) +
j−1∑

i=1

δ(Di)

)

,

∣
∣
∣
[
A−1f

]
(t)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
−f(t + δ(t))

c
−

∞∑

j=1

1
cj+1

f

(

s + δ(t) +
j−1∑

i=1

δ(Di)

)∣
∣
∣
∣
∣
∣
≤

∥
∥f

∥
∥

|c| − 1
.

(2.19)

Statements (1) and (2) are proved. From the above proof, (3) can easily be deduced.

Lemma 2.2. If c < 0 and |c| < α, one has for y ∈ K that

α − |c|
1 − c2

∥
∥y

∥
∥ ≤

(
A−1y

)
(t) ≤ 1

1 − |c|
∥
∥y

∥
∥. (2.20)

Proof. Since c < 0 and |c| < α < 1, by Lemma 2.1, we have for y ∈ K that

(
A−1y

)
(t) = y(t) +

∞∑

j=1

cjy

(

s −
j−1∑

i=1

δ(Di)

)

= y(t) +
∑

j≥1 even

cjy

(

s −
j−1∑

i=1

δ(Di)

)

−
∑

j≥1 odd

|c|jy
(

s −
j−1∑

i=1

δ(Di)

)

≥ α
∥
∥y

∥
∥ + α

∑

j≥1 even

cj
∥
∥y

∥
∥ − ∥

∥y
∥
∥

∑

j≥1 odd

|c|j

=
α

1 − c2
∥
∥y

∥
∥ − |c|

1 − c2
∥
∥y

∥
∥

=
α − |c|
1 − c2

∥
∥y

∥
∥.

(2.21)

Lemma 2.3. If c > 0 and c < 1 then for y ∈ K one has

α

1 − c

∥
∥y

∥
∥ ≤

(
A−1y

)
(t) ≤ 1

1 − c

∥
∥y

∥
∥. (2.22)
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Proof. Since c > 0 and c < 1, α < 1, by Lemma 2.1, we have for y ∈ K that

(
A−1y

)
(t) = y(t) +

∑

j≥1
cjy

(

s −
j−1∑

i=1

δ(Di)

)

≥ α
∥
∥y

∥
∥ + α

∥
∥y

∥
∥
∑

j≥1
cj

=
α

1 − c

∥
∥y

∥
∥.

(2.23)

3. Periodic Solutions for Neutral Differential Equation

In this section, we consider the second-order neutral differential equation

(x(t) − cx(t − δ(t)))′′ = f
(
t, x′(t)

)
+ g(t, x(t − τ(t))) + e(t), (3.1)

where τ, e ∈ Cω and
∫ω
0 e(t)dt = 0; f and g are continuous functions defined on R

2 and
periodic in t with f(t, ·) = f(t + ω, ·), g(t, ·) = g(t + ω, ·), f(t, 0) = 0, f(t, u) ≥ 0, or f(t, u) ≤ 0
for all (t, u) ∈ R

2.
We first recall Mawhin’s continuation theorem which our study is based upon. Let X

and Y be real Banach spaces and L : D(L) ⊂ X → Y a Fredholm operator with index zero,
where D(L) denotes the domain of L. This means that ImL is closed in Y and dimKerL =
dim(Y/ ImL) < +∞. Consider supplementary subspaces X1, Y1, of X, Y respectively, such
that X = KerL ⊕ X1, Y = ImL ⊕ Y1, and let P1 : X → KerL and Q1 : Y → Y1 denote the
natural projections. Clearly, KerL ∩ (D(L) ∩ X1) = {0}, thus the restriction LP1 := L|D(L)∩X1 is
invertible. Let L−1

P1
denote the inverse of LP1 .

LetΩ be an open bounded subset of X withD(L)∩Ω/= ∅. A mapN : Ω → Y is said to
be L-compact inΩ ifQ1N(Ω) is bounded and the operator L−1

P1
(I−Q1)N : Ω → X is compact.

Lemma 3.1 (Gaines and Mawhin [8]). Suppose that X and Y are two Banach spaces and L :
D(L) ⊂ X → Y is a Fredholm operator with index zero. Furthermore,Ω ⊂ X is an open bounded set,
and N : Ω → Y is L-compact on Ω. Assume that the following conditions hold:

(1) Lx/=λNx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(2) Nx /∈ ImL, for all x ∈ ∂Ω ∩ KerL;

(3) deg{JQ1N,Ω ∩ KerL, 0}/= 0, where J : Im Q1 → KerL is an isomorphism.

Then the equation Lx = Nx has a solution in Ω ∩D(L).

In order to use Mawhin’s continuation theorem to study the existence of ω-periodic
solutions for (3.1), we rewrite (3.1) in the following form:

(Ax1)′(t) = x2(t),

x′
2(t) = f

(
t, x′

1(t)
)
+ g(t, x1(t − τ(t))) + e(t).

(3.2)



Abstract and Applied Analysis 7

Clearly, if x(t) = (x1(t), x2(t))
� is an ω-periodic solution to (3.2), then x1(t) must be an

ω-periodic solution to (3.1). Thus, the problem of finding an ω-periodic solution for (3.1)
reduces to finding one for (3.2).

Recall that Cω = {φ ∈ C(R,R) : φ(t + ω) ≡ φ(t)} with norm ‖φ‖ = maxt∈[0,ω]|φ(t)|.
Define X = Y = Cω × Cω = {x = (x1(·), x2(·)) ∈ C(R,R2) : x(t) = x(t + ω), t ∈ R} with norm
‖x‖ = max{‖x1‖, ‖x2‖}. Clearly, X and Y are Banach spaces. Moreover, define

L : D(L) =
{
x ∈ C1

(
R,R2

)
: x(t +ω) = x(t), t ∈ R

}
⊂ X −→ Y (3.3)

by

(Lx)(t) =

(
(Ax1)′(t)

x′
2(t)

)

(3.4)

and N : X → Y by

(Nx)(t) =

(
x2(t)

f
(
t, x′

1(t)
)
+ g(t, x1(t − τ(t))) + e(t)

)

. (3.5)

Then (3.2) can be converted to the abstract equation Lx = Nx. From the definition of L, one
can easily see that

KerL ∼= R
2, ImL =

{

y ∈ Y :
∫ω

0

(
y1(s)

y2(s)

)

ds =

(
0

0

)}

. (3.6)

So L is a Fredholm operator with index zero. Let P1 : X → KerL and Q1 : Y → ImQ1 ⊂ R
2

be defined by

P1x =

(
(Ax1)(0)

x2(0)

)

; Q1y =
1
ω

∫ω

0

(
y1(s)

y2(s)

)

ds, (3.7)

then Im P1=KerL, KerQ1=ImL. Setting LP1 = L|D(L)∩KerP1 and L−1
P1

: ImL → D(L) denotes the
inverse of LP1 , then

[
L−1
P1
y
]
(t) =

((
A−1Fy1

)
(t)

(
Fy2

)
(t)

)

,

[
Fy1

]
(t) =

∫ t

0
y1(s)ds,

[
Fy2

]
(t) =

∫ t

0
y2(s)ds.

(3.8)

From (3.5) and (3.8), it is clear that Q1N and L−1
P1
(I − Q1)N are continuous and Q1N(Ω) is

bounded, and then L−1
P1
(I −Q1)N(Ω) is compact for any open bounded Ω ⊂ X which means

N is L-compact on Ω.
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Now we give our main results on periodic solutions for (3.1).

Theorem 3.2. Suppose there exist positive constants K1, D,M, b withM > ‖e‖ such that:
(H1) |f(t, u)| ≤ K1|u| + b, for (t, u) ∈ R × R;
(H2) sgnx · g(t, x) > ‖e‖, for |x| > D;
(H3) g(t, x) ≥ −M, for x ≤ −D and t ∈ R.

Then (3.1) has at least one solution with period ω if 0 < ω1/2(1+ |c|)1/2
√
2K1/(|1− |c|| − |c|δ1) < 1,

where δ1 = maxt∈[0,ω]|δ′(t)|.

Proof. By construction (3.2) has an ω-periodic solution if and only if the following operator
equation

Lx = Nx (3.9)

has an ω-periodic solution. From (3.8), we see that N is L-compact on Ω, where Ω is any
open, bounded subset of Cω. For λ ∈ (0, 1] define

Ω1 = {x ∈ Cω : Lx = λNx}. (3.10)

Then x = (x1, x2)
� ∈ Ω1 satisfies

(Ax1)′(t) = λx2(t),

x′
2(t) = λf

(
t, x′

1(t)
)
+ λg(t, x1(t − τ(t))) + λe(t).

(3.11)

We first claim that there is a constant ξ ∈ R such that

|x1(ξ)| ≤ D. (3.12)

In view of
∫ω
0 (Ax1)

′(t)dt = 0, we know that there exist two constants t1, t2 ∈ [0, ω] such
that (Ax1)

′(t1) ≥ 0, (Ax1)
′(t2) ≤ 0. From the first equation of (3.11), we have x2(t) =

(1/λ)(Ax1)
′(t), so

x2(t1) =
1
λ
(Ax1)′(t1) ≥ 0,

x2(t2) =
1
λ
(Ax1)′(t2) ≤ 0.

(3.13)

Let t3, t4 ∈ [0, ω] be, respectively, a global maximum and minimum point of x2(t). Clearly, we
have

x2(t3) ≥ 0, x′
2(t3) = 0,

x2(t4) ≤ 0, x′
2(t4) = 0.

(3.14)
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Since f(t, x′
1) ≥ 0 or f(t, x′

1) ≤ 0, w.l.o.g., suppose f(t, x′
1) ≥ 0, for (t, x′

1) ∈ [0, ω] × R. Then

−g(t3, x1(t3 − τ(t3))) − e(t3) = f
(
t, x′

1(t3)
) ≥ 0,

g(t3, x1(t3 − τ(t3))) ≤ −e(t3) ≤ ‖e‖.
(3.15)

From (H2) we see that

x1(t3 − τ(t3)) < D. (3.16)

Similarly, we have

g(t4, x1(t4 − τ(t4))) ≥ −e(t4) ≥ −‖e‖, (3.17)

and again by (H2),

x1(t4 − τ(t4)) < −D. (3.18)

Case 1. If x1(t3 − τ(t3)) ∈ (−D,D), define ξ = t3 − τ(t3), obviously |x1(ξ)| ≤ D.

Case 2. If x1(t3 − τ(t3)) < −D, from (3.18) and the fact that x is a continuous function in R,
there exists a constant ξ between x1(t3 − τ(t3)) and x1(t4 − τ(t4)) such that |x1(ξ)| = D. This
proves (3.12).

Choose an integer k and a constant t5 ∈ [0, ω] such that ξ = ωk + t5, then |x1(ξ)| =
|x1(t5)| ≤ D. Hence

|x1(t)| ≤ D +
∫ω

0

∣
∣x′

1(s)
∣
∣ds. (3.19)

Substituting x2(t) = (1/λ)(Ax1)
′(t) into the second equation of (3.11) yields

(
1
λ
(Ax1)(t)

)′′
= λf

(
t, x′

1(t)
)
+ λg(t, x1(t − τ(t))) + λe(t), (3.20)

that is,

((Ax1)(t))′′ = λ2f
(
t, x′

1(t)
)
+ λ2g(t, x1(t − τ(t))) + λ2e(t). (3.21)

Integrating both sides of (3.21) over [0, ω], we have

∫ω

0

[
f
(
t, x′

1(t)
)
+ g(t, x1(t − τ(t)))

]
dt = 0. (3.22)
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On the other hand, multiplying both sides of (3.21) by (Ax1)(t) and integrating over [0, ω],
we get

∫ω

0
((Ax1)(t))′′(Ax1(t))dt = −

∫ω

0

∣
∣(Ax1)′(t)

∣
∣2dt = −λ2

∫ω

0
f
(
t, x′

1(t)
)
(Ax1)(t)dt

− λ2
∫ω

0
g(t, x1(t − τ(t)))(Ax1)(t)dt − λ2

∫ω

0
e(t)(Ax1)(t)dt.

(3.23)

Using (H1), we have

∫ω

0

∣
∣(Ax1)′(t)

∣
∣2dt ≤

∫ω

0

∣
∣f
(
t, x′

1(t)
)∣
∣|[x1(t) − cx1(t − δ(t))]|dt

+
∫ω

0

∣
∣g(t, x1(t − τ(t)))

∣
∣|[x1(t) − cx1(t − δ(t))]|dt

+
∫ω

0
|e(t)||[x1(t) − cx1(t − δ(t))]|dt

≤ (1 + |c|)‖x1‖
[

K1

∫ω

0

∣
∣x′

1(t)
∣
∣dt + bω +

∫ω

0

∣
∣g(t, x1(t − τ(t)))

∣
∣dt +ω‖e‖

]

.

(3.24)

Besides, we can assert that there exists some positive constant N1 such that

∫ω

0

∣
∣g(t, x1(t − τ(t)))

∣
∣dt ≤ 2ωN1 +ωb +K1

∫ω

0

∣
∣x′

1(t)
∣
∣dt. (3.25)

In fact, in view of condition (H1) and (3.22)we have

∫ω

0

{
g(t, x1(t − τ(t))) −K1

∣
∣x′

1(t)
∣
∣ − b

}
dt ≤

∫ω

0

{
g(t, x1(t − τ(t))) − ∣

∣f
(
t, x′

1(t)
)∣
∣
}
dt

≤
∫ω

0

{
g(t, x1(t − τ(t))) + f

(
t, x′

1(t)
)}

dt

= 0.

(3.26)

Define

E1 = {t ∈ [0, ω] : x1(t − τ(t)) > D};

E2 = {t ∈ [0, ω] : |x1(t − τ(t))| ≤ D} ∪ {t ∈ [0, ω] : x1(t − τ(t)) < −D}.
(3.27)
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With these sets we get

∫

E2

∣
∣g(t, x1(t − τ(t)))

∣
∣dt ≤ ωmax

{

M, sup
t∈[0,ω],|x1(t−τ(t))|≤D

∣
∣g(t, x1)

∣
∣

}

.

∫

E1

{∣
∣g(t, x1(t − τ(t)))

∣
∣ −K1

∣
∣x′

1(t)
∣
∣ − b

}
dt

=
∫

E1

{
g(t, x1(t − τ(t))) −K1

∣
∣x′

1(t)
∣
∣ − b

}
dt

≤ −
∫

E2

{
g(t, x1(t − τ(t))) −K1

∣
∣x′

1(t)
∣
∣ − b

}
dt

≤
∫

E2

{∣
∣g(t, x1(t − τ(t)))

∣
∣ +K1

∣
∣x′

1(t)
∣
∣ + b

}
dt,

(3.28)

which yields

∫

E1

∣
∣g(t, x1(t − τ(t)))

∣
∣dt ≤

∫

E2

∣
∣g(t, x1(t − τ(t)))

∣
∣dt +

∫

E1∪E2

(
K1

∣
∣x′

1(t)
∣
∣ + b

)
dt

=
∫

E2

∣
∣g(t, x1(t − τ(t)))

∣
∣dt +ωb +K1

∫ω

0

∣
∣x′

1(t)
∣
∣dt.

(3.29)

That is,

∫ω

0

∣
∣g(t, x1(t − τ(t)))

∣
∣dt =

∫

E1

∣
∣g(t, x1(t − τ(t)))

∣
∣dt +

∫

E2

∣
∣g(x1(t − τ(t)))

∣
∣dt

≤ 2
∫

E2

∣
∣g(t, x1(t − τ(t)))

∣
∣dt +ωb +K1

∫ω

0

∣
∣x′

1(t)
∣
∣dt

≤ 2ωmax

{

M, sup
t∈[0,ω],|x1(t−τ(t))|<D

∣
∣g(t, x1)

∣
∣

}

+ωb +K1

∫ω

0

∣
∣x′

1(t)
∣
∣dt

= 2ωD1 +ωb +K1

∫ω

0

∣
∣x′

1(t)
∣
∣dt,

(3.30)

where N1 = max{M, supt∈[0,ω],|x1(t−τ(t))|<D|g(t, x1)|}, proving (3.25).
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Substituting (3.25) into (3.24) and recalling (3.19), we get

∫ω

0

∣
∣(Ax1)′(t)

∣
∣2dt ≤ (1 + |c|)|x1|0

(

2K1

∫ω

0

∣
∣x′

1(t)
∣
∣dt + 2ωb + 2ωN1 +ωmax

t∈[0,ω]
|e(t)|

)

= (1 + |c|)
(

2K1|x1|0
∫ω

0

∣
∣x′

1(t)
∣
∣dt + 2ωb|x1|0 + 2ωN1|x1|0 +ω|x1|0 max

t∈[0,ω]
|e(t)|

)

≤ (1 + |c|)
[

2K1

(

D +
∫ω

0

∣
∣x′

1(t)
∣
∣dt

)∫ω

0

∣
∣x′

1(t)
∣
∣dt

+
(

2ωb + 2ωN1 +ωmax
t∈[0,ω]

|e(t)|
)(

D +
∫ω

0

∣
∣x′

1(t)
∣
∣dt

)]

= (1 + |c|)
[

2K1D

∫ω

0

∣
∣x′

1(t)
∣
∣dt + 2K1

(∫ω

0

∣
∣x′

1(t)
∣
∣dt

)2

+N2

∫ω

0

∣
∣x′

1(t)
∣
∣dt +N2D

]

= 2K1(1 + |c|)
(∫ω

0

∣
∣x′

1(t)
∣
∣dt

)2

+ (1 + |c|)(N2 + 2K1D)
∫ω

0

∣
∣x′

1(t)
∣
∣dt + (1 + |c|)N2D,

(3.31)

where N2 = 2ωb + 2ωN1 +ω‖e‖. Since (Ax)(t) = x(t) − cx(t − δ(t)), we have

(Ax1)′(t) = (x1(t) − cx1(t − δ(t)))′

= x′
1(t) − cx′

1(t − δ(t)) + cx′
1(t − δ(t))δ′(t)

=
(
Ax′

1

)
(t) + cx′

1(t − δ(t))δ′(t),

(
Ax′

1

)
(t) = (Ax1)′(t) − cx′

1(t − δ(t))δ′(t).

(3.32)

By applying Lemma 2.1, we have

∫ω

0

∣
∣x′

1(t)
∣
∣dt =

∫ω

0

∣
∣
∣
(
A−1Ax′

1

)
(t)

∣
∣
∣dt

≤
∫ω
0

∣
∣
(
Ax′

1

)
(t)

∣
∣dt

|1 − |c||

=

∫ω
0

∣
∣(Ax1)′(t) − cx′

1(t − δ(t))δ′(t)
∣
∣dt

|1 − |c||

≤
∫ω
0

∣
∣
(
Ax′

1

)
(t)

∣
∣dt + |c|δ1

∫ω
0

∣
∣x′

1(t)
∣
∣dt

|1 − |c|| ,

(3.33)



Abstract and Applied Analysis 13

where δ1 = maxt∈[0,ω]|δ′(t)|. Since 0 < ω1/2(1 + |c|)1/2
√
2K1/(|1−|c||−|c|δ1), then |1−|c||−|c|δ1 >

0, so we get

∫ω

0

∣
∣x′

1(t)
∣
∣dt ≤

∫ω
0

∣
∣(Ax1)′(t)

∣
∣dt

|1 − |c|| − |c|δ1 ≤
ω1/2

(∫ω
0

∣
∣(Ax1)′(t)

∣
∣2dt

)1/2

|1 − |c|| − |c|δ1 . (3.34)

Applying the inequality (a + b)k ≤ ak + bk for a, b > 0, 0 < k < 1, it follows from (3.31) and
(3.34) that

∫ω

0

∣
∣x′

1(t)
∣
∣dt

≤ ω1/2

|1 − |c|| − |c|δ1

[

(1 + |c|)1/2
√
2K1

∫ω

0

∣
∣x′

1(t)
∣
∣dt + (1 + |c|)1/2

(∫ω

0

∣
∣x′

1(t)
∣
∣dt

)1/2

×(N2 + 2K1D)1/2 + (1 + |c|)1/2N2D
1/2

]

.

(3.35)

Since ω1/2(1 + |c|)1/2
√
2K1/(|1 − |c|| − |c|δ1) < 1, it is easy to see that there exists a constant

M1 > 0 (independent of λ) such that

∫ω

0

∣
∣x′

1(t)
∣
∣dt ≤ M1. (3.36)

It follows from (3.19) that

‖x1‖ ≤ D +
∫ω

0

∣
∣x′

1(t)
∣
∣dt ≤ D +M1 := M2. (3.37)

By the first equation of (3.11) we have
∫ω
0 x2(t)dt =

∫ω
0 (Ax1)′(t)dt = 0, which implies

that there is a constant t1 ∈ [0, ω] such that x2(t1) = 0, hence ‖x2‖ ≤ ∫ω
0 |x′

2(t)|dt. By the second
equation of (3.11)we obtain

x′
2(t) = λf

(
t, x′

1(t)
)
+ λg(x1(t − τ(t))) + λe(t). (3.38)

So, from (H1) and (3.25), we have

|x2|0 ≤
∫ω

0

∣
∣f
(
t, x′

1(t)
)∣
∣dt +

∫ω

0

∣
∣g(t, x1(t − τ(t)))

∣
∣dt +

∫ω

0
|e(t)|dt

≤ 2K1M1 + 2ωb + 2ωN1 +ω‖e‖ := M3.

(3.39)
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Let M4 =
√
M2

2 +M2
3 + 1, Ω = {x = (x1, x2)

� : ‖x1‖ < M4, ‖x2‖ < M4}, then for all x ∈
∂Ω ∩ KerL

Q1Nx =
1
ω

∫ω

0

⎛

⎝
x2(t)

f
(
t, x′

1(t)
)
+ g(t, x1(t − τ(t))) + e(t)

⎞

⎠dt. (3.40)

If Q1Nx = 0, then x2(t) = 0, x1 = M4 or −M4. But if x1(t) = M4, we know

0 =
∫ω

0
g(M4)dt, (3.41)

that is, g(M4) = 0. From assumption (H2), we know M4 ≤ D, which yields a contradiction,
one can argue similarly if x1 = −M4. We also haveQ1Nx/= 0, that is, for all x ∈ ∂Ω∩KerL, x /∈
ImL, so conditions (1) and (2) of Lemma 3.1 are both satisfied. Define the isomorphism J :
ImQ1 → KerL as follows:

J(x1, x2)� = (x2, x1)�. (3.42)

LetH(μ, x) = μx+ (1−μ)JQ1Nx, (μ, x) ∈ [0, 1]×Ω, then, for all (μ, x) ∈ (0, 1)× (∂Ω∩KerL),

H
(
μ, x

)
=

⎛

⎝μx1(t) +
1 − μ

ω

∫ω

0

[
f
(
t, x′

1(t)
)
+ g(t, x1(t − τ(t))) + e(t)

]
dt

(
μ +

(
1 − μ

))
x2(t)

⎞

⎠. (3.43)

We have
∫ω
0 e(t)dt = 0. So, we can get

H
(
μ, x

)
=

⎛

⎝μx1(t) +
1 − μ

ω

∫ω

0

[
f
(
t, x′

1(t)
)
+ g(t, x1(t − τ(t)))

]
dt

(
μ +

(
1 − μ

))
x2(t)

⎞

⎠,

∀(μ, x) ∈ (0, 1) × (∂Ω ∩ KerL).

(3.44)

From (H2), it is obvious that x�H(μ, x) > 0, for all (μ, x) ∈ (0, 1) × (∂Ω ∩ KerL). Hence

deg{JQ1N,Ω ∩ KerL, 0} = deg{H(0, x),Ω ∩ KerL, 0}

= deg{H(1, x),Ω ∩ KerL, 0}

= deg{I,Ω ∩ KerL, 0}/= 0.

(3.45)

So condition (3) of Lemma 3.1 is satisfied. By applying Lemma 3.1, we conclude that equation
Lx = Nx has a solution x = (x1, x2)

� on Ω ∩ D(L), that is, (3.1) has an ω-periodic solution
x1(t).



Abstract and Applied Analysis 15

By using a similar argument, we can obtain the following theorem.

Theorem 3.3. Suppose there exist positive constants K1, D,M, b withM > ‖e‖ such that:

(H1) |f(t, u)| ≤ K1|u| + b, for (t, u) ∈ R × R;

(H2) sgnx · g(t, x) > ‖e‖, for |x| > D,

(H3) g(t, x) ≤ M, for x ≥ D and t ∈ R,

then (3.1) has at least one solution with period ω if 0 < ω(1 + |c|)1/2
√
2K1/(|1 − |c|| − |c|δ1) < 1.

Remark 3.4. If
∫ω
0 e(t)dt /= 0 and f(t, 0)/= 0, the problem of existence of ω-periodic solutions to

(3.1) can be converted to the existence of ω-periodic solutions to

(x(t) − cx(t − δ(t)))′′ = f1
(
t, x′(t)

)
+ g1(t, x(t − τ(t))) + e1(t), (3.46)

where f1(t, x) = f(t, x) − f(t, 0), g1(t, x) = g(t, x) + (1/ω)
∫ω
0 e(t)dt + f(t, 0), and e1(t) = e(t) −

(1/ω)
∫ω
0 e(t)dt. Clearly,

∫ω
0 e1(t)dt = 0 and f1(t, 0) = 0, and (3.46) can be discussed by using

Theorem 3.2 (or Theorem 3.3).

4. Positive Periodic Solutions for Neutral Equations

Consider the following second-order neutral functional differential equation:

(x(t) − cx(t − δ(t)))′′ = −a(t)x(t) + λb(t)f(x(t − τ(t))), (4.1)

where λ is a positive parameter; f ∈ C(R, [0,∞)), and f(x) > 0 for x > 0; a ∈ C(R, (0,∞))
with max{a(t) : t ∈ [0, ω]} < (π/ω)2, b ∈ C(R, (0,∞)), τ ∈ C(R,R), a(t), b(t), and τ(t) are
ω-periodic functions.

Define the Banach space X as in Section 2, and let C+
ω = {x ∈ C(R, (0,∞)) : x(t + ω) =

x(t)}. Denote

M = max{a(t) : t ∈ [0, ω]}, m = min{a(t) : t ∈ [0, ω]}, β =
√
M,

L =
1

2β sin
(
βω/2

) , l =
cos

(
βω/2

)

2β sin
(
βω/2

) , k = l(M +m) + LM,

k1 =
k −

√
k2 − 4LlMm

2LM
, α =

l[m − (M +m)|c|]
LM(1 − |c|) .

(4.2)

It is easy to see that M,m, β, L, l, k, k1 > 0.
Now we consider (4.1). First let

f0 = lim
x→ 0

f(x)
x

, f∞ = lim
x→∞

f(x)
x

, f
0
= lim

x→ 0

f(x)
x

, f
∞
= lim

x→∞

f(x)
x

, (4.3)
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and denote

i0 = number of 0’s in
(
f0, f∞

)
, i0 = number of 0’s in

(
f
0
, f

∞

)
;

i∞ = number of ∞’s in
(
f0, f∞

)
, i∞ = number of ∞’s in

(
f
0
, f

∞

)
.

(4.4)

It is clear that i0, i0, i∞, i∞ ∈ {0, 1, 2}. We will show that (4.1) has i0 or i∞ positive w-periodic
solutions for sufficiently large or small λ, respectively.

In the following we discuss (4.1) in two cases, namely, the case where c < 0 and c >
−min{k1, m/(M + m)} (note that c > −m/(M + m) implies α > 0; c > −k1 implies |c| < α)
and the case where c > 0 and c < min{m/(M + m), (LM − lm)/((L − l)M − lm)} (note that
c < m/(M +m) implies α > 0; c < (LM − lm)/((L − l)M − lm) implies α < 1). Obviously, we
have |c| < 1 which makes Lemma 2.1 applicable for both cases and also Lemmas 2.2 or 2.3,
respectively.

Let K = {x ∈ X : x(t) ≥ α‖x‖} denote the cone in X as defined in Section 2, where α is
just as defined above. We also use Kr = {x ∈ K : ‖x‖ < r} and ∂Kr = {x ∈ K : ‖x‖ = r}.

Let y(t) = (Ax)(t), then from Lemma 2.1 we have x(t) = (A−1y)(t). Hence (4.1) can be
transformed into

y′′(t) + a(t)
(
A−1y

)
(t) = λb(t)f

((
A−1y

)
(t − τ(t))

)
, (4.5)

which can be further rewritten as

y′′(t) + a(t)y(t) − a(t)H
(
y(t)

)
= λb(t)f

((
A−1y

)
(t − τ(t))

)
, (4.6)

where H(y(t)) = y(t) − (A−1y)(t) = −c(A−1y)(t − δ(t)).
Now we discuss the two cases separately.

4.1. Case I

Assume c < 0 and c > −min{k1, m/(M +m)}.

Lemma 4.1 (see [7]). The equation

y′′(t) +My(t) = h(t), h ∈ C+
ω, (4.7)

has a unique ω-periodic solution

y(t) =
∫ t+ω

t

G(t, s)h(s)ds, (4.8)

where

G(t, s) =
cos β((ω/2) + t − s)

2β sin
(
βω/2

) , s ∈ [t, t +ω]. (4.9)
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Lemma 4.2 (see [7]). One has
∫ t+ω
t G(t, s)ds = 1/M. Furthermore, if max{a(t) : t ∈ [0, ω]} <

(π/ω)2, then 0 < l ≤ G(t, s) ≤ L for all t ∈ [0, ω] and s ∈ [t, t +ω].

Now we consider

y′′(t) + a(t)y(t) − a(t)H
(
y(t)

)
= h(t), h ∈ C+

ω, (4.10)

and define operators T, Ĥ : X → X by

(Th)(t) =
∫ t+ω

t

G(t, s)h(s)ds,
(
Ĥy

)
(t) = M − a(t)y(t) + a(t)H

(
y(t)

)
. (4.11)

Clearly T, Ĥ are completely continuous (Th)(t) > 0 for h(t) > 0 and ‖Ĥ‖ ≤ (M−m+M(|c|/(1−
|c|))).

By Lemma 4.1, the solution of (4.10) can be written in the form

y(t) = (Th)(t) +
(
TĤy

)
(t). (4.12)

In view of c < 0 and c > −min{k1, m/(M +m)}, we have

∥
∥
∥TĤ

∥
∥
∥ ≤ ‖T‖

∥
∥
∥Ĥ

∥
∥
∥ ≤ M −m +m|c|

M(1 − |c|) < 1, (4.13)

and hence

y(t) =
(
I − TĤ

)−1
(Th)(t). (4.14)

Define an operator P : X → X by

(Ph)(t) =
(
I − TĤ

)−1
(Th)(t). (4.15)

Obviously, for any h ∈ C+
ω, if max{a(t) : t ∈ [0, ω]} < (π/ω)2, y(t) = (Ph)(t) is the unique

positive ω-periodic solution of (4.10).

Lemma 4.3. P is completely continuous and

(Th)(t) ≤ (Ph)(t) ≤ M(1 − |c|)
m − (M +m)|c| ‖Th‖, ∀h ∈ C+

ω. (4.16)
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Proof. By the Neumann expansion of P , we have

P =
(
I − TĤ

)−1
T

=
(

I + TĤ +
(
TĤ

)2
+ · · · +

(
TĤ

)n
+ · · ·

)

T

= T + TĤT +
(
TĤ

)2
T + · · · +

(
TĤ

)n
T + · · · .

(4.17)

Since T and Ĥ are completely continuous, so is P . Moreover, by (4.17), and recalling that
‖TĤ‖ ≤ (M −m +m|c|)/M(1 − |c|) < 1, we get

(Th)(t) ≤ (Ph)(t) ≤ M(1 − |c|)
m − (M +m)|c| ‖Th‖. (4.18)

Define an operator Q : X → X by

Qy(t) = P
(
λb(t)f

((
A−1y

)
(t − τ(t))

))
. (4.19)

Lemma 4.4. One has Q(K) ⊂ K.

Proof. From the definition ofQ, it is easy to verify thatQy(t+ω) = Qy(t). For y ∈ K, we have
from Lemma 4.3 that

Qy(t) = P
(
λb(t)f

((
A−1y

)
(t − τ(t))

))

≥ T
(
λb(t)f

((
A−1y

)
(t − τ(t))

))

= λ

∫ t+ω

t

G(t, s)b(s)f
[(

A−1y
)
(s − τ(s))

]
ds

≥ λl

∫ω

0
b(s)f

[(
A−1y

)
(s − τ(s))

]
ds.

(4.20)

On the other hand,

Qy(t) = P
(
λb(t)f

((
A−1y

)
(t − τ(t))

))

≤ M(1 − |c|)
m − (M +m)|c|

∥
∥
∥T

(
λb(t)f

((
A−1y

)
(t − τ(t))

))∥
∥
∥
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= λ
M(1 − |c|)

m − (M +m)|c| max
t∈[0,ω]

∫ t+ω

t

G(t, s)b(s)f
((

A−1y
)
(s − τ(s))

)
ds

≤ λ
M(1 − |c|)

m − (M +m)|c|L
∫ω

0
b(s)f

((
A−1y

)
(s − τ(s))

)
ds.

(4.21)

Therefore,

Qy(t) ≥ l[m − (M +m)|c|]
LM(1 − |c|)

∥
∥Qy

∥
∥ = α

∥
∥Qy

∥
∥, (4.22)

that is, Q(K) ⊂ K.

From the continuity of P , it is easy to verify that Q is completely continuous in X.
Comparing (4.6) to (4.10), it is obvious that the existence of periodic solutions for (4.6) is
equivalent to the existence of fixed points for the operator Q in X. Recalling Lemma 4.4, the
existence of positive periodic solutions for (4.6) is equivalent to the existence of fixed points
of Q in K. Furthermore, if Q has a fixed point y in K, it means that (A−1y)(t) is a positive
ω-periodic solutions of (4.1).

Lemma 4.5. If there exists η > 0 such that

f
((

A−1y
)
(t − τ(t))

)
≥
(
A−1y

)
(t − τ(t))η, for t ∈ [0, ω], y ∈ K, (4.23)

then

∥
∥Qy

∥
∥ ≥ λlη

α − |c|
1 − c2

∫ω

0
b(s)ds

∥
∥y

∥
∥, y ∈ K. (4.24)

Proof. By Lemmas 2.2, 4.2, and 4.3, we have for y ∈ K that

Qy(t) = P
(
λb(t)f

((
A−1y

)
(t − τ(t))

))

≥ T
(
λb(t)f

((
A−1y

)
(t − τ(t))

))

= λ

∫ t+ω

t

G(t, s)b(s)f
((

A−1y
)
(s − τ(s))

)
ds

≥ λlη

∫ω

0
b(s)

(
A−1y

)
(s − τ(s))ds

≥ λlη
α − |c|
1 − c2

∫ω

0
b(s)ds

∥
∥y

∥
∥.

(4.25)
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Hence

∥
∥Qy

∥
∥ ≥ λlη

α − |c|
1 − c2

∫ω

0
b(s)ds

∥
∥y

∥
∥, y ∈ K. (4.26)

Lemma 4.6. If there exists ε > 0 such that

f
((

A−1y
)
(t − τ(t))

)
≤
(
A−1y

)
(t − τ(t))ε, for t ∈ [0, ω], y ∈ K, (4.27)

then

∥
∥Qy

∥
∥ ≤ λε

LM
∫ω
0 b(s)ds

m − (M +m)|c|
∥
∥y

∥
∥, y ∈ K. (4.28)

Proof. By Lemmas 2.2, 4.2, and 4.3, we have

∥
∥Qy(t)

∥
∥ ≤ λ

M(1 − |c|)
m − (M +m)|c|L

∫ω

0
b(s)f

((
A−1y

)
(s − τ(s))

)
ds

≤ λ
M(1 − |c|)

m − (M +m)|c|Lε
∫ω

0
b(s)

(
A−1y

)
(s − τ(s))ds

≤ λε
LM

∫ω
0 b(s)ds

m − (M +m)|c|
∥
∥y

∥
∥.

(4.29)

Define

F(r) = max
{

f(t) : 0 ≤ t ≤ r

1 − |c|
}

,

f1(r) = min
{

f(t) :
α − |c|
1 − c2

r ≤ t ≤ r

1 − |c|
}

.

(4.30)

Lemma 4.7. If y ∈ ∂Kr , then

∥
∥Qy

∥
∥ ≥ λlf1(r)

∫ω

0
b(s)ds. (4.31)

Proof. By Lemma 2.2, we obtain ((α−|c|)/(1−c2))r ≤ (A−1y)(t−τ(t)) ≤ r/(1−|c|) for y ∈ ∂Kr ,
which yields f((A−1y)(t − τ(t))) ≥ f1(r). The lemma now follows analog to the proof of
Lemma 4.5.
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Lemma 4.8. If y ∈ ∂Kr , then

∥
∥Qy

∥
∥ ≤ λ

LM(1 − |c|)F(r)
m − (M +m)|c|

∫ω

0
b(s)ds. (4.32)

Proof. By Lemma 2.2, we can have 0 ≤ (A−1y)(t − τ(t)) ≤ r/(1 − |c|) for y ∈ ∂Kr , which yields
f((A−1y)(t − τ(t))) ≤ F(r). Similar to the proof of Lemma 4.6, we get the conclusion.

We quote the fixed point theorem which our results will be based on.

Lemma 4.9 (see [9]). Let X be a Banach space and K a cone in X. For r > 0, define Kr = {u ∈ K :
‖u‖ < r}. Assume that T : Kr → K is completely continuous such that Tx /=x for x ∈ ∂Kr = {u ∈
K : ‖u‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr , then i(T,Kr,K) = 0.

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr , then i(T,Kr,K) = 1.

Now we give our main results on positive periodic solutions for (4.1).

Theorem 4.10. (a) If i0 = 1 or 2, then (4.1) has i0 positive ω-periodic solutions for λ >
1/f1(1)l

∫ω
0 b(s)ds > 0;

(b) If i∞ = 1 or 2, then (4.1) has i∞ positive ω-periodic solutions for 0 < λ < (m − (M +
m)|c|)/LM(1 − |c|)F(1) ∫ω0 b(s)ds;

(c) If i∞ = 0 or i0 = 0, then (4.1) has no positive ω-periodic solutions for sufficiently small or
sufficiently large λ > 0, respectively.

Proof. (a) Choose r1 = 1. Take λ0 = 1/f1(r1)l
∫ω
0 b(s)ds > 0, then for all λ > λ0, we have from

Lemma 4.7 that

∥
∥Qy

∥
∥ >

∥
∥y

∥
∥, for y ∈ ∂Kr1 . (4.33)

Case 1. If f0 = 0, we can choose 0 < r2 < r1, so that f(u) ≤ εu for 0 ≤ u ≤ r2, where the
constant ε > 0 satisfies

λε
LM

∫ω
0 b(s)ds

m − (M +m)|c| < 1. (4.34)

Letting r2 = (1 − |c|)r2, we have f((A−1y)(t − τ(t))) ≤ ε(A−1y)(t − τ(t)) for y ∈ Kr2 . By
Lemma 2.2, we have 0 ≤ (A−1y)(t − τ(t)) ≤ ‖y‖/(1 − |c|) ≤ r2 for y ∈ ∂Kr2 . In view of
Lemma 4.6 and (4.34), we have for y ∈ ∂Kr2 that

∥
∥Qy

∥
∥ ≤ λε

LM
∫ω
0 b(s)ds

m − (M +m)|c|
∥
∥y

∥
∥ <

∥
∥y

∥
∥. (4.35)

It follows from Lemma 4.9 and (4.33) that

i(Q,Kr2 , K) = 1, i(Q,Kr1 , K) = 0, (4.36)
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thus i(Q,Kr1 \Kr2 , K) = −1 and Q has a fixed point y in Kr1 \Kr2 , which means (A−1y)(t) is
a positive ω-positive solution of (4.1) for λ > λ0.

Case 2. If f∞ = 0, there exists a constant H̃ > 0 such that f(u) ≤ εu for u ≥ H̃, where the
constant ε > 0 satisfies

λε
LM

∫ω
0 b(s)ds

m − (M +m)|c| < 1. (4.37)

Letting r3 = max{2r1, H̃(1 − c2)/(α − |c|)}, we have f((A−1y)(t − τ(t))) ≤ ε(A−1y)(t − τ(t)) for
y ∈ Kr3 . By Lemma 2.2, we have (A−1y)(t − τ(t)) ≥ ((α − |c|)/(1 − c2))‖y‖ ≥ H̃ for y ∈ ∂Kr3 .
Thus by Lemma 4.6 and (4.37), we have for y ∈ ∂Kr3 that

∥
∥Qy

∥
∥ ≤ λε

LM
∫ω
0 b(s)ds

m − (M +m)|c|
∥
∥y

∥
∥ <

∥
∥y

∥
∥. (4.38)

Recalling from Lemma 4.9 and (4.33) that

i(Q,Kr3 , K) = 1, i(Q,Kr1 , K) = 0, (4.39)

then i(Q,Kr3 \Kr1 , K) = 1 and Q has a fixed point y in Kr3 \Kr1 , which means (A−1y)(t) is a
positive ω-positive solution of (4.1) for λ > λ0.

Case 3. If f0 = f∞ = 0, from the above arguments, there exist 0 < r2 < r1 < r3 such that Q has
a fixed point y1(t) in Kr1 \Kr2 and a fixed point y2(t) in Kr3 \Kr1 . Consequently, (A

−1y1)(t)
and (A−1y2)(t) are two positive ω-periodic solutions of (4.1) for λ > λ0.

(b) Let r1 = 1. Take λ0 = (m − (M + m)|c|)/LM(1 − |c|)F(r1)
∫ω
0 b(s)ds > 0; then by

Lemma 4.8 we know if λ < λ0 then

∥
∥Qy

∥
∥ <

∥
∥y

∥
∥, y ∈ ∂Kr1 . (4.40)

Case 1. If f
0
= ∞, we can choose 0 < r2 < r1 so that f(u) ≥ ηu for 0 ≤ u ≤ r2, where the

constant η > 0 satisfies

λlη
α − |c|
1 − c2

∫ω

0
b(s)ds > 1. (4.41)

Letting r2 = (1 − |c|)r2, we have f((A−1y)(t − τ(t))) ≥ η(A−1y)(t − τ(t)) for y ∈ Kr2 . By
Lemma 2.2, we have 0 ≤ (A−1y)(t−τ(t)) ≤ ‖y‖/(1− |c|) ≤ r2 for y ∈ ∂Kr2 . Thus by Lemma 4.5
and (4.41),

∥
∥Qy

∥
∥ ≥ λlη

α − |c|
1 − c2

∫ω

0
b(s)ds

∥
∥y

∥
∥ >

∥
∥y

∥
∥. (4.42)
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It follows from Lemma 4.9 and (4.40) that

i(Q,Kr2 , K) = 0, i(Q,Kr1 , K) = 1, (4.43)

which implies i(Q,Kr1 \Kr2 , K) = 1 andQ has a fixed point y inKr1 \Kr2 . Therefore, (A
−1y)(t)

is a positive ω-periodic solution of (4.1) for 0 < λ < λ0.

Case 2. If f
∞

= ∞, there exists a constant H̃ > 0 such that f(u) ≥ ηu for u ≥ H̃, where the
constant η > 0 satisfies

λlη
α − |c|
1 − c2

∫ω

0
b(s)ds > 1. (4.44)

Letting r3 = max{2r1, H̃(1− c2)/(α− |c|)}, we have f((A−1y)(t− τ(t))) ≥ η(A−1y)(t− τ(t)) for
y ∈ Kr3 . By Lemma 2.2, we have (A−1y)(t − τ(t)) ≥ ((α − |c|)/(1 − c2))‖y‖ ≥ H̃ for y ∈ ∂Kr3 .
Thus by Lemma 4.5 and (4.44), we have for y ∈ ∂Kr3 that

∥
∥Qy

∥
∥ ≥ λlη

α − |c|
1 − c2

∫ω

0
b(s)ds

∥
∥y

∥
∥ >

∥
∥y

∥
∥. (4.45)

It follows from Lemma 4.9 and (4.40) that

i(Q,Kr3 , K) = 0, i(Q,Kr1 , K) = 1. (4.46)

that is, i(Q,Kr3 \Kr1 , K) = −1 and Q has a fixed point y in Kr3 \Kr1 . That means (A−1y)(t) is
a positive ω-periodic solution of (4.1) for 0 < λ < λ0.

Case 3. If f
0
= f

∞
= ∞, from the above arguments, Q has a fixed point y1 in Kr1 \ Kr2 and

a fixed point y2 in Kr3 \ Kr1 . Consequently, (A
−1y1)(t) and (A−1y2)(t) are two positive ω-

periodic solutions of (4.1) for 0 < λ < λ0.

(c) By Lemma 2.2, if y ∈ K, then (A−1y)(t − τ(t)) ≥ ((α − |c|)/(1 − c2))‖y‖ > 0 for
t ∈ [0, ω].

Case 1. If i0 = 0, we have f
0
> 0 and f

∞
> 0. Let b1 = min{f(u)/u; u > 0} > 0, then we obtain

f(u) ≥ b1u, u ∈ [0,+∞). (4.47)

Assume y(t) is a positive ω-periodic solution of (4.1) for λ > λ0, where λ0 = (1 − c2)/lb1(α −
|c|) ∫ω0 b(s)ds > 0. Since Qy(t) = y(t) for t ∈ [0, ω], then by Lemma 4.5, if λ > λ0 we have

∥
∥y

∥
∥ =

∥
∥Qy

∥
∥ ≥ λlb1

α − |c|
1 − c2

∫ω

0
b(s)ds

∥
∥y

∥
∥ >

∥
∥y

∥
∥, (4.48)

which is a contradiction.
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Case 2. If i∞ = 0, we have f0 < ∞ and f∞ < ∞. Let b2 = max{f(u)/u : u > 0} > 0, then we
obtain

f(u) ≤ b2u, u ∈ [0,∞). (4.49)

Assume y(t) is a positive ω-periodic solution of (4.1) for 0 < λ < λ0, where λ0 = (m − (M +
m)|c|)/b2LM

∫ω
0 b(s)ds. Since Qy(t) = y(t) for t ∈ [0, ω], it follows from Lemma 4.6 that

∥
∥y

∥
∥ =

∥
∥Qy

∥
∥ ≤ λb2

LM
∫ω
0 b(s)ds

m − (M +m)|c|
∥
∥y

∥
∥ <

∥
∥y

∥
∥, (4.50)

which is a contradiction.

Theorem 4.11. (a) If there exists a constant b1 > 0 such that f(u) ≥ b1u for u ∈ [0,+∞), then (4.1)
has no positive ω-periodic solution for λ > (1 − c2)/lb1(α − |c|) ∫ω0 b(s)ds.

(b) If there exists a constant b2 > 0 such that f(u) ≤ b2u for u ∈ [0,+∞), then (4.1) has no
positive ω-periodic solution for 0 < λ < (m − (M +m)|c|)/b2LM

∫ω
0 b(s)ds.

Proof. From the proof of (c) in Theorem 4.10, we obtain this theorem immediately.

Theorem 4.12. Assume i0 = i0 = i∞ = i∞ = 0 and that one of the following conditions holds:

(1) f0 ≤ f
∞
;

(2) f
0
> f∞;

(3) f
0
≤ f

∞
≤ f0 ≤ f∞;

(4) f
∞
≤ f

0
≤ f∞ ≤ f0.

If

1 − c2

l(α − |c|) ∫ω0 b(s)ds max
{
f
0
, f0, f∞

, f∞
} < λ <

m − (M +m)|c|
LM

∫ω
0 b(s)ds min

{
f
0
, f0, f∞

, f∞
} , (4.51)

then (4.1) has one positive ω-periodic solution.

Proof. We have the following cases.

Case 1. If f0 ≤ f
∞
, then

1 − c2

f∞l(α − |c|) ∫ω0 b(s)ds
< λ <

m − (M +m)|c|
f
0
LM

∫ω
0 b(s)ds

. (4.52)
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It is easy to see that there exists an 0 < ε < f∞ such that

1 − c2
(
f∞ − ε

)
l(α − |c|) ∫ω0 b(s)ds

< λ <
m − (M +m)|c|

(
f
0
+ ε

)
LM

∫ω
0 b(s)ds

. (4.53)

For the above ε, we choose r1 > 0 such that f(u) ≤ (f
0
+ ε)u for 0 ≤ u ≤ r1. Letting r1 =

(1 − |c|)r1, we have f((A−1y)(t − τ(t))) ≤ (f
0
+ ε)(A−1y)(t − τ(t)) for y ∈ Kr1 . By Lemma 2.2,

we have 0 ≤ (A−1y)(t − τ(t)) ≤ ‖y‖/(1 − |c|) ≤ r1 for K ∈ ∂Kr1 . Thus by Lemma 4.6 we have
for y ∈ ∂Kr1 that

∥
∥Qy

∥
∥ ≤ λ

(
f
0
+ ε

) LM
∫ω
0 b(s)ds

m − (M +m)|c|
∥
∥y

∥
∥ <

∥
∥y

∥
∥. (4.54)

On the other hand, there exists a constant H̃ > 0 such that f(u) ≥ (f∞ − ε)u for u ≥ H̃.
Letting r2 = max{2r1, H̃(1−c2)/(α−|c|)}, we have f((A−1y)(t−τ(t))) ≥ (f∞−ε)(A−1y)(t−τ(t))
for y ∈ Kr2 . By Lemma 2.2, we have (A−1y)(t−τ(t)) ≥ ((α−|c|)/(1−c2))‖y‖ ≥ H̃ for y ∈ ∂Kr2 .
Thus by Lemma 4.5, for y ∈ ∂Kr2

∥
∥Qy

∥
∥ ≥ λl

(
f∞ − ε

)α − |c|
1 − c2

∫ω

0
b(s)ds

∥
∥y

∥
∥ >

∥
∥y

∥
∥. (4.55)

It follows from Lemma 4.9 that

i(Q,Kr1 , K) = 1, i(Q,Kr2 , K) = 0, (4.56)

thus i(Q,Kr2 \Kr1 , K) = −1 and Q has a fixed point y in Kr2 \Kr1 . So (A−1y)(t) is a positive
ω-periodic solution of (4.1).

Case 2. If f
0
> f∞, in this case, we have

1 − c2

f0l(α − |c|) ∫ω0 b(s)ds
< λ <

m − (M +m)|c|
f
∞
LM

∫ω
0 b(s)ds

. (4.57)

It is easy to see that there exists an 0 < ε < f0 such that

1 − c2
(
f0 − ε

)
l(α − |c|) ∫ω0 b(s)ds

< λ <
m − (M +m)|c|

(
f
∞
+ ε

)
LM

∫ω
0 b(s)ds

. (4.58)

For the above ε, we choose r1 > 0 such that f(u) ≥ (f0 − ε)u for 0 ≤ u ≤ r1. Letting r1 =
(1 − |c|)r1, we have f((A−1y)(t − τ(t))) ≥ (f0 − ε)(A−1y)(t − τ(t)) for y ∈ Kr1 . By Lemma 2.2,
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we have 0 ≤ (A−1y)(t − τ(t)) ≤ ‖y‖/(1 − |c|) ≤ r1 for y ∈ ∂Kr1 . Thus we have by Lemma 4.5
that for y ∈ ∂Kr1

∥
∥Qy

∥
∥ ≥ λl

(
f0 − ε

)α − |c|
1 − c2

∫ω

0
b(s)ds

∥
∥y

∥
∥ >

∥
∥y

∥
∥. (4.59)

On the other hand, there exists a constant H̃ > 0 such that f(u) ≤ (f
∞
+ε)u for u ≥ H̃. Letting

r2 = max{2r1, H̃(1 − c2)/(α − |c|)}, we have f((A−1y)(t − τ(t))) ≤ (f
∞
+ ε)(A−1y)(t − τ(t)) for

y ∈ Kr2 . By Lemma 2.2 we have (A−1y)(t − τ(t)) ≥ ((α − |c|)/(1 − c2))‖y‖ ≥ H̃ for y ∈ ∂Kr2 .
Thus by Lemma 4.6, for y ∈ ∂Kr2

∥
∥Qy

∥
∥ ≤ λ

(
f
∞
+ ε

) LM
∫ω
0 b(s)ds

m − (M +m)|c|
∥
∥y

∥
∥. (4.60)

It follows from Lemma 4.9 that

i(Q,Kr1 , K) = 0, i(Q,Kr2 , K) = 1. (4.61)

Thus i(Q,Kr2 \Kr1 , K) = −1 and Q has a fixed point y in Kr2 \Kr1 , proving that (A−1y)(t) is
a positive ω-periodic solution of (4.1).

Case 3. One has f
0
≤ f

∞
≤ f0 ≤ f∞. The proof is the same as in Case 1.

Case 4. One has f
∞
≤ f

0
≤ f∞ ≤ f0. The proof is the same as in Case 2.

4.2. Case II

Assume c > 0 and c < min{m/(M +m), (LM − lm)/(L − l)M − lm}.
Define

f2(r) = min
{

f(t) :
α

1 − c
r ≤ t ≤ r

1 − c

}

. (4.62)

Similarly as in Section 4.1, we get the following results.

Theorem 4.13. (a) If i0 = 1 or 2, then (4.1) has i0 positive ω-periodic solutions for λ >
1/f2(1)l

∫ω
0 b(s)ds > 0.

(b) If i∞ = 1 or 2, then (4.1) has i∞ positive ω-periodic solutions for 0 < λ < (m − (M +
m)c)/LM(1 − c)F(1)

∫ω
0 b(s)ds.

(c) If i∞ = 0 or i0 = 0, then (4.1) has no positive ω-periodic solution for sufficiently small or
large λ > 0, respectively.

Theorem 4.14. (a) If there exists a constant b1 > 0 such that f(u) ≥ b1u for u ∈ [0,+∞), then (4.1)
has no positive ω-periodic solution for λ > (1 − c)/lαb1

∫ω
0 b(s)ds.
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(b) If there exists a constant b2 > 0 such that f(u) ≤ b2u for u ∈ [0,+∞), then (4.1) has no
positive ω-periodic solution for 0 < λ < (m − (M +m)c)/b2LM

∫ω
0 b(s)ds.

Theorem 4.15. Assume i0 = i0 = i∞ = i∞ = 0 hold and that one of the following conditions holds:

(1) f0 ≤ f
∞
;

(2) f
0
> f∞;

(3) f
0
≤ f

∞
≤ f0 ≤ f∞;

(4) f
∞
≤ f

0
≤ f∞ ≤ f0.

If

1 − c

lα
∫ω
0 b(s)ds max

{
f
0
, f0, f∞

, f∞
} < λ <

m − (M +m)c

LM
∫ω
0 b(s)ds min

{
f
0
, f0, f∞

, f∞
} , (4.63)

then (4.1) has one positive ω-periodic solution.

Remark 4.16. In a similar way, one can consider the second-order neutral functional
differential equation (x(t) − cx(t − δ(t)))′′ − a(t)x(t) = −λb(t)f(x(t − τ(t))).

5. Examples

Example 5.1. Consider the following equation:

(

x(t) − 15x
(

t − 1
60

sin 4t
))′′

= x′(t) sin 4t + arctan
(
x(t − sin 4t)
1 + cos3(4t)

)

+ cos 4t. (5.1)

Comparing (5.1) to (3.1), we have ω = π/2, f(t, x) = x(t) sin 4t, g(t, x) = arctan(x/(1 +
cos3(4t))), c = 15, δ(t) = (1/60) sin 4t, τ(t) = sin 4t, e(t) = cos 4t and δ1 = maxt∈[0,ω]|(1/
15) cos 4t| = 1/15, and we can easily choose D > π/2 and M = π/2 such that (H2) and (H3)
holds. Regarding assumption (H1) note that

∣
∣f
(
t, x′(t)

)∣
∣ ≤ ∣

∣x′(t)
∣
∣, (5.2)

that is, (H1) holds with K1 = 1, b = 0, and

ω1/2(1 + |c|)1/2
√
2K1

|1 − |c|| − |c|δ1 =

√
π/2(1 + 15)1/2

√
2

|1 − 15| − (1/15) · 15 =
4
√
π

13
< 1. (5.3)

Hence by Theorem 3.2, (5.1) has at least one π/2-periodic solution.
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Example 5.2. Consider the following neutral functional differential equation:

(

u(t) +
7
30

u(t − sin t)
)′′

+
1
16

u(t) = λ(1 − sin t)u2(t − τ(t))au(t−τ(t)), (5.4)

where λ and 0 < a < 1 are two positive parameters, τ(t + 2π) = τ(t).
Comparing (5.4) to (4.1), we see that δ(t) = sin t, c = −7/30, a(t) ≡ 1/16, b(t) =

1 − sin t, ω = 2π , f(u) = u2au. Clearly, M = 1/16 < (π/2π)2 = 1/4, f0 = 0, f∞ = 0, i0 = 2.
By Theorem 4.10, we easily get the following conclusion: (5.4) has two positive ω-periodic
solutions for λ > 1/4πr1, where r1 = min{f(0.27), f(30/23)}.

In fact, by simple computations, we have

M = m =
1
16

, β =
1
4
, L =

1
2β sin

(
β2π/2

) = 2
√
2, l =

cos
(
β2π/2

)

(
2β sin

(
β2π/2

)) = 2,

k =
2 +

√
2

8
, k1 =

√
2 + 1 − √

3
2

, α =
8
23

√
2,

|c| = 7
30

< min
{

k1,
m

M +m

}

=

√
2 + 1 − √

3
2

, |c| = 7
30

<
8
23

√
2 = α,

f1(1) = min

{

f(t) : 0.27 ≈ (8/23)
√
2 − (7/30)

1 − (7/30)2
≤ t ≤ 30

23

}

= min
{

f(0.27), f
(
30
23

)}

= r1,

1
f1(1)l

∫ω
0 b(s)ds

=
1

4πr1
.

(5.5)
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