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This paper is devoted to the study of abstract time-fractional equations of the following form:
D" u(t) + X1 ADfu(t) = AD?u(t) + f(t), t > 0,u®(0) = ux, k = 0,..., [a,] =1, where n € N'\ {1},
Aand Ay, ..., Ay are closed linear operators on a sequentially complete locally convex space E, 0 <
a < <ap,0<a<ay, f(t)is an E-valued function, and Df denotes the Caputo fractional deri-
vative of order « (Bazhlekova (2001)). We introduce and systematically analyze various classes of
k-regularized (C;, Cy)-existence and uniqueness (propagation) families, continuing in such a way
the researches raised in (de Laubenfels (1999, 1991), Kosti¢ (Preprint), and Xiao and Liang (2003,
2002). The obtained results are illustrated with several examples.

1. Introduction and Preliminaries

A great number of abstract time-fractional equations appearing in engineering, mathematical
physics, and chemistry can be modeled through the abstract Cauchy problem

n-1
D{"u(t) + D AD{u(t) = ADfu(t) + f(t), >0,
~ (1.1)

u®0)=ur, k=0,...,[a,] -1
For further information about the applications of fractional calculus, the interested reader

may consult the monographs by Baleanu et al. [1], Klafter et al. (Eds.) [2], Kilbas et al. [3],
Mainardi [4], Podlubny [5], and Samko et al. [6]; we also refer to the references [7-19].
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The aim of this paper is to develop some operator theoretical methods for solving the
abstract time-fractional equations of the form (1.1). We start by quoting some special cases.
The study of qualitative properties of the abstract Basset-Boussinesq-Oseen equation:

() — ADMu(t) + u(t) = f(t), t>0, u(0)=0 (ae(0,1)), (1.2)

describing the unsteady motion of a particle accelerating in a viscous fluid under the action of
the gravity, has been initiated by Lizama and Prado in [17]. For further results concerning the
C-wellposedness of (1.2), [20, 21] are of importance. In [12], Karczewska and Lizama have
recently analyzed the following stochastic fractional oscillation equation:

u(t) + f;(t - 5)[AD%u(s) +u(s)|ds=W(t), t>0, (1.3)

where 1 < a < 2, A is the generator of a bounded analytic Cy-semigroup on a Hilbert space
H and W (t) denotes an H-valued Wiener process defined on a stochastic basis (2, ¥, P). The
theory of (a, k)-regularized resolvent families (cf. [12, Theorems 3.1 and 3.2]) can be applied
in the study of deterministic counterpart of (1.3) in integrated form:

1-a
u(t) + J‘ (If(_z ) D Au(s)ds + f (t—s)u(s)ds = f (t-s)f(s)ds, t>0, (1.4)

where I'(-) denotes the Gamma function and f € LIOC([O,oo) : E). Equation (1.4) generalizes
the so-called Bagley-Torvik equation, which can be obtained by plugging a = 3/2 in (1.4),
and models an oscillation process with fractional damping term (cf. [21] for the analysis of
C-wellposedness and perturbation properties of (1.4)). After differentiation, (1.4) becomes,
in some sense,

u"(t) + ADfu(t) + u(t) = f(t), t>0; u(0)=u'(0)=0. (1.5)
Notice also that the periodic solutions for the equation
D"u(t) + BDPu(t) + Au(t) = f(t), te[0,2x], (1.6)

where A and B are closed linear operators defined on a complex Banach space X, 0 < ff < a <
2, f € C([0,2r] : X) and D* denotes the Liouville-Griinwald fractional derivative of order
a, have been studied by Keyantuo and Lizama in [13]. Observe also that Diethelm analyzed
in [22, Chapter 8] scalar-valued multiterm Caputo fractional differential equations. Consider,
for illustration purposes, the following abstract time-fractional equation:

Dfu(t) + Dfu(t) =au(t), t>0; u(0)=ug u'(0)=0, (1.7)
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wherel < a <2,0<f <aand A = ais a certain complex constant. Applying the Laplace
transform (see, e.g., [10, (1.23)]), we get:

(M + Aﬂ>ﬁ(1) - ()ﬂ-l + )J’-l)uo = aii()). (1.8)

Therefore,

DLt Vs

AT (1.9)
Nt AP_g®

i) =

By (24) and (26) in [19], it readily follows that:

u(t) = %(—1)"#*@" [Ezj(la_ ﬂ)nﬂ(at“) + t“*ﬁEZj(la_ " ety (A7) [0, (1.10)
where
& (7"
E' - n 1.11
ap(%) nzzof(na+ﬂ)n! (11D

is the generalized Mittag-Leffler function. Here (y),, = y(y+1) - (y+n-1) (n € N) and (y), =
1. The formula (1.10) shows that it is quite complicated to apply Fourier multiplier theorems
to the abstract time-fractional equations of the form (1.1); for some basic references in this
direction, the reader may consult [16, 23]. Before going any further, we would also like to
observe that Atanackovi¢ et al. considered in [8], among many other authors, the following
fractional generalization of the telegraph equation:

tDfu(t) + Dlu(t) = Dy, x € (0,1), £>0, (1.12)

where 0 < p < a <2, 7> 0and D > 0. In that paper, solutions to signalling and Cauchy
problems in terms of a series and integral representation are given.

In the second section, we continue the analysis from our recent paper [15], where it
has been assumed that Aj=ql for some complex constants cj € C(1<j<n-1); here, and
in the sequel of the second section, I denotes the identity operator on E. We introduce and
clarify the basic structural properties of various types of k-regularized (Cy, C,)-existence and
uniqueness propagation families. This is probably the best concept for the investigation of
integral solutions of the abstract time-fractional equation (1.1) with A; € L(E),1<j<n-1.
If there exists an index j € N, such that A; ¢ L(E), then the vector-valued Laplace transform
cannot be so easily applied (cf. Theorems 2.10-2.11), which implies, however, that there exist
some limitations to the introduced classes of propagation families. The notion of a strong
solution of (1.1) is introduced in Definition 2.1, and the notions of strong and mild solutions
of inhomogeneous equations of the form (2.15) below are introduced in Definition 2.7. The
generalized variation of parameters formula is proved in Theorem 2.8.

On the other hand, the notions of C;-existence families and C,-uniqueness families
for the higher order abstract Cauchy problem (ACP,,) were introduced by Xiao and Liang in
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[24, Definition 2.1]. In the third section, we will introduce more general classes of (local) k-
regularized C;-existence families for (1.1), k-regularized C,-uniqueness families for (1.1), and
k-regularized C-resolvent families for (1.1). Our intention in this section is to transfer results
of [24] to abstract time-fractional equations. In addition, various adjoint type theorems for
k-regularized C-resolvent families are considered in Theorem 3.6.

Throughout this paper, we will always assume that E is a Hausdorff sequentially com-
plete locally convex space over the field of complex numbers, SCLCS for short, and that the
abbreviation ® stands for the fundamental system of seminorms which defines the topology
of E; in this place, we would like to mention in passing that the locally convex spaces are
very important to describe a set of mixed states in quantum theory [2]. The completeness of
E, if needed, will be explicitly emphasized. By L(E) is denoted the space of all continuous
linear mappings from E into E. Let B be the family of bounded subsets of E and let pp(T) :=
sup, zp(Tx), p € ® B € B, T € L(E). Then pp(-) is a seminorm on L(E) and the system
(PB) (p,B)cwxn induces the Hausdorff locally convex topology on L(E). Recall that L(E) is sequ-
entially complete provided that E is barreled. Henceforth A is a closed linear operator acting
on E, L(E) 5 C is an injective operator, and the convolution like mapping * is given by
fxg(t) = fé f(t —s)g(s)ds. The domain, resolvent set and range of A are denoted by D(A),
p(A) and R(A), respectively. Since it makes no misunderstanding, we will identify A with its
graph. Recall that the C-resolvent set of A, denoted by pc(A), is defined by

pe(A) = {)L €C; A— A is injective and (A - A)"'C € L(E) } (1.13)

Suppose F is a linear subspace of E. Then the part of A in F, denoted by Ajr, is a linear
operator defined by D(Ajr) := {x e D(A)NF: Ax € F} and Ajrx := Ax, x € D(Ar).

Define E, := E/p™(0) (p € ®). Then the norm of a class x + p~!(0) is defined by
[|x + p‘1(0)||gp = p(x) (x € E). The canonical mapping ¥, : E — E, is continuous and the
completion of E, under the norm |||, is denoted by E_p. Since no confusion seems likely, we

will also denote the norms on E, and L(E,) (E_,, and L(E_p)) by ||||; Lg (E) denotes the subspace
of L(E) which consists of those bounded linear operators T on E such that, for every p € ®,
there exists ¢, > 0 satisfying p(Tx) < ¢,p(x), x € E.If T € Ly (E) and p € ®, then the operator
T, : E, — Ep, defined by T,(¥,(x)) := ¥,(Tx), x € E, belongs to L(E,). This operator is
uniquely extensible to a bounded linear operator T_p on E_p, and the following holds: ||T,|| =
||T_p||. The function , : E, — Eg, defined by i, (¥, (x)) := ¥;(x), x € E, is a continuous
homomorphism of E, onto E;, and extends therefore, to a continuous linear homomorphism
Trgp of E_,, onto E_q. The reader may consult [25] for the basic facts about projective limits of
Banach spaces (closed linear operators acting on Banach spaces) and their projective limits.
Recall, a closed linear operator A acting on E is said to be compartmentalized (w.r.t. ®) if, for
every p € ®, A, = {(¥p(x),¥,(Ax)) : x € D(A)} is a function. Therefore, T € Lg(E) is a
compartmentalized operator.

Given s € R in advance, set |s| := sup{l € Z : s > I} and [s] :=inf{l € Z : s < I}.
The principal branch is always used to take the powers. Set N; := {1,...,1}, N? =1{0,1,...,1},
0¢:=0, g (t) :==t51/T(g) ({ >0, t>0) and g := the Dirac 6-distribution. If y € (0, ], then we
define Xy := {A € C: 1 #£0,|arg(1)| < y}. We refer the reader to [26] and references cited there
for the basic material concerning integration in sequentially complete locally convex spaces
and vector-valued analytic functions.
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Let a > 0, let § € R, and let the Mittag-Leffler function E, (z) be defined by E, g(z) :=
S0 2" /T(an+p), z € C. In this place, we assume that 1/T(an+f) = 0if an+f € —Ny. Set, for
short, E,;(z) := Ey1(z), z € C. The Wright function @, () is defined by @, (t) := ,K_l(EY(—)L))(t),
t > 0, where £ denotes the inverse Laplace transform. For further information concerning
Mittag-Leffler and Wright functions, we refer the reader to [10, Section 1.3].

The following definition has been recently introduced in [27].

Definition 1.1. Suppose 0 < T < o0, k € C([0,7)), k#0,a € L}OC([O,T)), a#0and A is a closed
linear operator on E.

(i) Then it is said that A is a subgenerator of a (local, if 7 < o) (a, k)-regularized (Cy,
(,)-existence and uniqueness family (Ri(t), Rz (t))e0,r) € L(E) x L(E) if and only if
the mapping f — (R; (t)x, Ro(t)x), t € [0, T) is continuous for every fixed x € E and
if the following conditions hold:

(a) Ri(0) = k(0)C;,i=1,2,
(b) C; is injective,

(c)

AJt a(t—s)Ry(s)xds = Ri(t)x — k(t)Cix, te€][0,7), x €E, (1.14)
0

JA a(t—s)Ry(s)Axds = Ry(t)x —k(t)Cox, te€[0,7), x € D(A). (1.15)
0

(ii) Let (R1(#))pory € L(E) be strongly continuous. Then it is said that A is a sub-
generator of a (local, if 7 < co) (a, k)-regularized Cq-existence family (Ri(t))fo ) if
and only if R;(0) = k(0)C; and (1.14) holds.

(iii) Let (R2(t))sepo,ry S L(E) be strongly continuous. Then it is said that A is a sub-

generator of a (local, if 7 < o) (a, k)-regularized C,-uniqueness family (R (t))e[o)
if and only if R,(0) = k(0)C5, C; is injective and (1.15) holds.

It will be convenient to remind us of the following definitions from [14, 20, 26].

Definition 1.2. (i) Let 0 < 7 < o0, k € C([0,7)), k#0 and let a € Llloc([O, 7)), a#0. A strongly
continuous operator family (R(f))[o) is called a (local, if 7 < oo) (a, k)-regularized C-
resolvent family having A as a subgenerator if and only if the following holds:

(a) R(H))A C AR(t),t € [0,7), R(0) = k(0)C and CA C AC,

(b) R(£)C = CR(#), t € [0,7),

(c) R(t)x = k(t)Cx + fé a(t—s)AR(s)xds, t € [0,7), x € D(A),
(R(#))efo,r) is said to be nondegenerate if the condition R(t)x = 0, t € [0, 7) implies
x =0, and (R(t))g[o,r) is said to be locally equicontinuous if, for every t € (0, 7), the
family {R(s) : s € [0,t]} is equicontinuous. In the case T = oo, (R(t)); is said to be

exponentially equicontinuous (equicontinuous) if there exists w € R (w = 0) such
that the family {e™“'R(t) : t > 0} is equicontinuous.
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(ii) Let p € (0,or] and let (R(t));» be an (a, k)-regularized C-resolvent family. Then
it is said that (R(t));s is an analytic (a, k)-regularized C-resolvent family of angle f, if there
exists a function R : 3 — L(E) satisfying that, for every x € E, the mapping z — R(z)x,
z € Zp is analytic as well as that

(a) R(t) = R(t),t>0and
(b) lim; ¢ zex, R(z)x = k(0)Cx for all y € (0, ) and x € E,

(R(t)) s is said to be an exponentially equicontinuous, analytic (a, k)-regularized
C-resolvent family, respectively, equicontinuous analytic (a, k)-regularized C-
resolvent family of angle §, if for every y € (0, ), there exists w, > 0, respectively,
wy = 0, such that the set {ewlFR(z) : z € 2y} is equicontinuous. Since there is no
risk for confusion, we will identify in the sequel R(-) and R(-).
Definition 1.3. (i) Let k € C([0,)) and a € Llloc([O,oo)). Suppose that (R(t)), is a global
(a, k)-regularized C-resolvent family having A as a subgenerator. Then it is said that (R(t));so
is a quasi-exponentially equicontinuous (g-exponentially equicontinuous, for short) (a, k)-
regularized C-resolvent family having A as subgenerator if and only if, for every p € ®, there
exist M, > 1, wp > 0 and g, € ® such that:

p(R(t)x) < Mye“'q,(x), t>0, x€E. (1.16)

(ii) Let p € (0,r], and let A be a subgenerator of an analytic (a, k)-regularized C-
resolvent family (R(t));so of angle p. Then it is said that (R(t)); is a g-exponentially equi-
continuous, analytic (a, k)-regularized C-resolvent family of angle f, if for every p € ® and
€ € (0, p), there exist M. > 1, wp > 0and g, € ® such that

p(R(z)x) < Mplge“"’ff|z‘qp,g (x), z€ZXp. x€E. (1.17)

For a global (a,k)-regularized (Ci,C;)-existence and uniqueness family (R;(t),
R>(t))1»o having A as subgenerator, it is said that is locally equicontinuous (exponentially
equicontinuous, (g-)exponentially equicontinuous, analytic, (g-)exponentially analytic,...) if
and only if both (R1(t))5 and (R (t)) are.

The reader may consult [26, Theorems 2.7 and 2.8] for the basic Hille-Yosida type the-
orems for exponentially equicontinuous (a, k)-regularized C-resolvent families. The charac-
terizations of exponentially equicontinuous, analytic (a, k)-regularized C-resolvent families
in terms of spectral properties of their subgenerators are given in [26, Theorems 3.6 and
3.7]. For further information concerning g-exponentially equicontinuous (a, k)-regularized
C-resolvent families, we refer the reader to [20, 25].

Henceforth, we assume that k, ki, ky,... are scalar-valued kernels and that a#0 in
Llloc([O, 7)). All considered operator families will be nondegenerate.

The following conditions will be used in the sequel:

(H1) A is densely defined and (R(t)),c[o,r) is locally equicontinuous.
(H2) p(A) #0.

(H3) pc(A) #8, R(C) = E and (R(t))e[o,r) is locally equicontinuous.
(H3) pc(A)#0 and C1AC = A.
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(H4) A is densely defined and (R(t))¢[or) is locally equicontinuous, or pc(A) #0.

(H5) (H1) v (H2) v (H3) v (H3).

(P1) k(t) is Laplace transformable, that is, it is locally integrable on [0, c0) and there
exists f € R so that k(\) = £(k)(1) := limb_mfé’ eMk(t)ydt = [ e Mk(t)dt exists
forall A € C with ;R\ > p. Put abs(k) := inf{}R\ : k(1) exists}.

2. The Main Structural Properties of k-Regularized (C,, C,)-Existence
and Uniqueness Propagation Families

In this section, we will always assume that E is a SCLCS, A and Ay, ..., A, are closed linear
operators actingon E,n € N\ {1},0< a3 <--- <a, and 0 < & < a,,. Our intention is to clarify
the most important results concerning the C-wellposedness of (1.1). Set m; := [a;],1<j < n,
m:=my := [a], Ag ;= A and ag := a.

Definition 2.1. A function u € C™ ([0, ) : E) is called a (strong) solution of (1.1) if and only
if AjD{'u € C([0,00) : E) for0<i<n—1, gm,a, * (u- km=,,0—1 ukQk+1) € C™ ([0, 00) : E) and
(1.1) holds. The abstract Cauchy problem (1.1) is said to be (strongly) C-wellposed if:

(i) for every uo, ..., Um,-1 € ﬂOSan_l C(D(Aj)), there exists a unique solution u(t; u,
oo, Um,-1) of (1.1);

(ii) for every T > 0 and q € ®, there exist ¢ > 0 and r € & such that, for every u,
e Up,—1 € ﬂOS]’gn—l C(D(A))), the following holds:

m,—1
q(u(t;uo, ..., Uum,-1)) < ¢ Z r(C‘luk>, te[0,T]. (2.1)
k=0

In the case of abstract Cauchy problem (ACP,), the definition of C-wellposedness
introduced above is slightly different from the corresponding definition introduced by Xiao
and Liang [28, Definition 5.2, page 116] in the Banach space setting (cf. also [28, Defini-
tion 1.2, page 46] for the case C = I). Recall that the notion of a strong C-propagation family is
important in the study of existence and uniqueness of strong solutions of the abstract Cauchy
problem (ACP,); compare [28, Section 3.5, pages 115-130] for further information in this
direction. Suppose now that u(t) = u(t; uo, ..., Um,-1), t > 0 is a strong solution of (1.1), with
f(t) = 0 and initial values uy, ..., umn,-1 € R(C). Convoluting both sides of (1.1) with gg, (),
and making use of the equality [10, (1.21)], it readily follows that u(t), t > 0 satisfies the
following:

m,—1 n-1 m—1
u() = D kg1 () + D 8ayay * Aj [”(') -2 ”kgk”(')]
k=0 j=1 k=0 (2.2)

m-1
= Quya ¥ A[u(-) - Zukgk+1(')]~

k=0

In the sequel of this section, we will primarily consider various types of solutions of the inte-
gral equation (2.2).



8 Abstract and Applied Analysis

Giveni € N?n,,—l inadvance, set D; := {j € N,_1 : m;—1 > i}. Thenitis clear that D,,,-1 C
-+ C Dy. Plugging u; =0,0 < j <my, -1, j#i,in (2.2), one gets:

[u(/ O/ .. /ui/ ... IO) - uigi+1(')]
+ Zga”’”‘f * Aj [u(‘,' 0, e, Uj, el ,0) - uigi+1(-)]

jED,‘
+ Z [g,xn_a}. * Aju(; O,...,ui,...,O)] (2.3)
jeN,1\D;
| 8ay-a ¥ Au(5; 0,...,u,...,0), m-1<i,
Qup-a * Alu(; 0,...,ui,...,0) —uigin (1)], m-1>i,

where u; appears in the ith place (0 < i < m, — 1) starting from 0. Suppose now 0 < 7 < oo,
0#K € L ([0,7)) and k(t) = fé K(s)ds, t € [0,7). Denote R;(t)C'u; = (K * u(;; 0,...,

ui,...,0))(t), t € [0,7),0 <i < m, — 1. Convoluting formally both sides of (2.3) with K(t),
t € [0, T), one obtains that, for 0 <i <m, - 1:

[ROC i = (k* g) O] + X 8o,y * A [ROC i = (ki g1) (O]

JjeD;
+ Soy-aj * AiR;(-)C My
jeN%\Di [ ! ] (2.4)
) (ayma ¥ AR) ()C My, m-1<i,
| gaa * A[ROC i — (k* &) (], m-12i.

Motivated by the above analysis, we introduce the following definition.

Definition 2.2. Suppose 0 < T < oo, k € C([0,7)), C, C1, C; € L(E), C and C; are injective. A
sequence ((Ro(f))iefo,7)s - - - » (Rm,-1(£) )sepo,r)) Of strongly continuous operator families in L(E)
is called a (local, if T < o0):

(i) k-regularized C;-existence propagation family for (1.1) if and only if R;(0) = (k *
gi)(0)Cy and the following holds:

[Ri()x = (k* ) ()Cix] + > A, [grxn—a,- * (Ri(-)x = (k= gi) (')Clx)]

j€D;
+ jeN%\DiAj <g”5n—"‘j * Ri) (*)x 2.5)
— {A(gﬂn—a*Ri)(')xr m-1<i, x€E,
Algap-a * (Ri()x — (k* g)()Cix)](-), m-1>1i, x€E,

foranyi=0,...,m, - 1.
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(ii) k-regularized C,-uniqueness propagation family for (1.1) if and only if R;(0) = (k *
gi)(0)C, and

[Ri()x = (k * &) (-)Cox] + > ayay * [Ri()Ajx = (K  8i) () C2Ajx]

jeD;
+ jENE\Di (gan—a,- * Ri(')ij> ) (2.6)
_ {(gana * Ri(-)Ax) (), m-1<i,
| gaa * [RIC)Ax = (k% &) ()C2AX] (), m—1>1i,

0
my—1°

for any x € o<,y D(Aj) and i € N

(iii) k-regularized C-resolvent propagation family for (1.1), in short k-regularized C-
propagation family for (1.1), if ((Ro(t))ie[o,r)s - - » (Rim,-1(£))sefo,r)) 1S @ k-regularized
C-uniqueness propagation family for (1.1), and if for every t € [0,7),i € N?nn_l and
j€ Ng_l, one has R;(t)Aj C AjR;(t), Ri(t)C = CR;(t) and CA; C A;C.

The above classes of propagation families can be defined by purely algebraic equations
(cf. [11, 15, 27]). We will not go into further details about this topic here.

As indicated before, we will consider only nondegenerate k-regularized C-resol-
vent propagation families for (1.1). In case k(t) = g¢+1(t), where ¢ > 0, it is also said that
((Ro())tef0,7) - - - » (Rm,-1(£) )sejo,r)) 18 @ G-times integrated C-resolvent propagation family for
(1.1); O-times integrated C-resolvent propagation family for (1.1) is simply called C-resolvent
propagation family for (1.1). For a k-regularized (C;, C;)-existence and uniqueness family
((Ro(1) 0,7y - - - » (Rm,—1(£) ) sepo 7)), it is said that is locally equicontinuous (exponentially equi-
continuous, (g-)exponentially equicontinuous, analytic, (g-)exponentially analytic,...) if and
only if all single operator families (Ro(t));co,7)-- - (Rm,-1(f))iefo) are. The above termi-
nological agreements and abbreviations can be simply understood for the classes of k-
regularized C;-existence propagation families and k-regularized C,-uniqueness propagation
families. The class of k-regularized (C;, C;)-existence and uniqueness propagation families
for (1.1) can be also introduced (cf. Definitions 1.1 and 3.1 below).

In case that A; = ¢;I, where ¢c; € C for 1 < j < n -1, it is also said that the operator
A is a subgenerator of ((Ro(t))eo,r),-- - (Rm,-1(t))iefor))- Now we would like to notice
the following: if A is a subgenerator of a k-regularized C-resolvent propagation family
((Ro(®)tef0,7)r - - - » (Rm,=1(£) ) seqo,ry) for (1.1), then, in general, there do not exist a; € Llloc([O, T)),
i€ N‘fnn_l and k; € C([0,7)) such that (Ri(t))wo) is an (a;, ki)-regularized C-resolvent
family with subgenerator A; the same observation holds for the classes of k-regularized
Ci-existence propagation families and k-regularized C,-uniqueness propagation families.
Despite this fact, the structural results for k-regularized C-resolvent propagation families can
be derived by using appropriate modifications of the proofs of corresponding results for
(a, k)-regularized C-resolvent families. Furthermore, these results can be clarified for any
single operator family (R;(t))[o,r) Of the tuple ((Ro(t))seo,), - - - » (Rimu-1(£))tefo,r))-
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Let ((Ro(t))seqo,)r - - -  (Rmu-1(£))1eo,r)) be a k-regularized C-resolvent propagation fam-

ily with subgenerator A. Then one can simply prove that the validity of condition (HS5)
implies the following functional equation:

n-1
[Ri()x = (k * &) ()Cx] + D ¢j&a,-a, * [Ri()x = (k * 1) ()Cx]
j=1

DI [gar“ﬁi * k] ()Cx 2.7)
jeN,_1\D;
_ A[ga,,—a*Ri] (')x/ m-—1 <i, XEE,
| Algea * (Ri()x - (k% &) ()Cx)], m-1>i, x€E,

for any i = 0,...,m, — 1. The set consisted of all subgenerators of ((RO(t))te[O,T)/"'/
(Rin,-1(t))tefo,r)), denoted by x(R), need not to be finite. Notice that the supposition A €
y(R) obviously implies C"'AC € y(R). The integral generator A of ((Ro(t))seqozy -+ -»
(Rin,-1(t))efo,ry) is defined as the set of all pairs (x,y) € E x E such that, for every i =
0,...,m,—1andt € [0, ), the following holds:

n-1
[Ri()x — (k * g;) (-)Cx] + Zc]-g,xn_,,j * [Ri()x — (k * g;) (-)Cx]
j=1

’ iENZ\D.Cj L Gl (2.8)
_ { [Sz.—a * Ri] ()Y, m-1<i,
Sap-a* [Ri(Dy — (k*g)()Cy], m-1>i.

It is a linear operator on E which extends any subgenerator A € y(R) and satisfies A =
C'AC. We have the following.
(i) Ri()) (L = A)'C = (A = A)'CRi(t), t € [0,7), provided A € y(R), A € pc(A) and
0<i<m,-1.

(ii) Let ((Ro(£))eefo,r) - - - » (Rimy=1(£) ) seqo,r)) be locally equicontinuous. Then:

(a) Ais a closed linear operator.

(b) Ae Y(R),if Ri(t)Ri(s) = Ri(s)Ri(t),0<t,s<T,i€ Ngqu-

() A=C'AC,if A e x(R) and (H5) holds. Furthermore, the condition (H5) can
be replaced by (2.7).

(iii) Let {A, B} C x(R). Then Ax = Bx, x € D(A)ND(B), and A C B & D(A) C D(B).
Assume that (2.7) holds for A, and that (2.7) holds for A replaced by B. Then we
have the following:

(a) C''AC = C'BC and C(D(A)) € D(B).
(b) A and B have the same eigenvalues.
(c) AC B = pc(A) C pe(B).
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Albeit the similar assertions can be considered in general case, we will omit the corresponding
discussion even in the case that A; € L(E) for1<j<n-1.

Proposition 2.3. Let i € ann_l, and let ((Ro(t))tefo,r)s - - - » (Rim,-1(8))sejo,r)) e a locally equicon-
tinuous k-reqularized C-resolvent propagation family for (1.1). If (2.5) holds with C; = C, then the
following holds:

(i) the equality

Ri(t)Ri(S) = Ri(S)Ri(t), 0<t s<rt (29)

holds provided m — 1 < i and the following condition:

(o) any of the assumptions f(t) + Z]‘GD,» Aj(Suy-a; * f)(t) =0, € [0,7), or A(guap—a * f)
(t) =0, for some f € C([0,7) : E), implies f(t) =0,t € [0,T),

(ii) the equality (2.9) holds provided m — 1 > i, N, \ D; #0, and the following condition:

(00) if 3 jen, 1 \Di Aj(8au-a; * f)(t) =0, t € [0,7), for some f € C([0,7) : E), then f(t) =
0,te [0, 7).

Proof. Let x € E and s € [0, T) be fixed. Define u;(t) := R;(t)R;i(s)x — Ri(s)R;(t)x, t € [0,T).
Using (2.5), it is not difficult to prove that

t n-1 pt
AI Qup—a(t =T)u(r)dr = u(t) + ZI Aj (gan_a,, * u> (rydr=0, te]0,71). (2.10)
0 j=1 0

Let m — 1 < i. Convoluting both sides of (2.10) with R;(-), we easily infer that u(t) +
27;11 Aj(Su-a; ¥ u)(t) = 0, € [0,7) and A(gu,—a * u)(t) = 0, t € [0,7). Now the equality
(2.9) follows from (¢). The proof is quite similar in the case m — 1 > i. O

Remark 2.4. The equations (1.1) with a = 0 are much easier to deal with, since in this case,
m=0andm-1<iforallie N?nn_l. In general, (1.1) with & > 0 cannot be reduced to an
equivalent equation of the previously considered form.

Proposition 2.5. Suppose ((Rjo(t))iepo,r)r - » (Rjmu-1(£))iefo,r)) is a locally equicontinuous k-

reqularized C-resolvent propagation family for (1.1), j = 1,2, and 0 < i < m,, — 1. Then we have
the following.

(i) If m -1 <iand (o) holds, then

n-1
(k1 % Ryi)(Hx = (kp % Ri)(H)x, x € (\D(4y), t€[0,7). (2.11)
j=0
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If, additionally,

n-1
ﬂD(A,-) is dense in E, (2.12)
=0

then (2.11) holds for all x € E.

(ii) The equality (2.11) holds provided m—1 > i, N,,_1 \ D; # 0 and (¢o); assuming additionally
(2.12), we have the validity of (2.11) for all x € E.

Proof. We will only prove the second part of proposition. Let x € ﬂ;’;& D(Aj). Then the
functional equation of (R;i(t))s[o ) (j = 1,2) implies:

[(ka * gi) * (Ryi(-)x = (k1 * ) ()Cx)] ()

jeD;

= {Rz,i(') + D Gaya; * [Roi()Aj — (k* gi) ()CA;]

+ Z San-a; * Roi(:)Aj = Qay-a * [Ro,i(-)A = (k % &) () CA] }

j€Di
(2.13)
# [Ryi()x = (k* 81) ()Cx] ()
) {Rz'i(.) + D Gamey * [Roi()A; = (k% 8) OCA}] + D g * Rz,i(')Aj}
je€D; j¢D;
* [Rui() — (k1% gi) (-)Cx] (-)
— [Roi(-)x = (k2 * i) (-)C] * A(Gup-a * [R1,i(-)x — (k1 * &) (-)Cx]) (),
which yields after a tedious computation:
Z Soay—aj * Al[(k2 * Rl,i)(') - (kl * RZ,i)(')] =0. (214)

j¢€D;

In view of (0¢), the above equality shows that (ky * Ry ;) (f)x = (k1 * Rp;)(£)x, t € [0, 7). It can
be simply verified that the condition (2.12) implies that (2.9) holds for all x € E. O

Proposition 2.6. Let ((Ro(t))scjo,7), - - - (Rim,—1(£))teqo,r)) be a locally equicontinuous k-regularized
Ci-existence propagation family (k-regularized Co-unique-ness propagation family, k-reqularized C-
resolvent propagation family) for (1.1), and let b € L}OC([O,T)) be a kernel. Then the tuple(((b *
Ro)())teo,ryr - - - » (b * Riny-1) (£))eqo,r)) 18 @ locally equicontinuous (k x b)-regularized Cq-existence
propagation family ((k * b)-regularized Cy-uniqueness propagation family, (k * b)-regularized C-
resolvent propagation family) for (1.1).
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Suppose now E is complete, (1.1) is C-wellposed, ﬂ;’;ol D(A)) is dense in E and 0 <
i<m,-1.Set Ri(t)x :=u(t; 0,...,Cx,...,0)(t),t >0,x € ﬂ?;ol D(A;), where 0 <i<m, -1
and Cx appears in the ith place in the preceding expression. Since we have assumed that E is
complete, the operator R;(t) (t > 0) can be uniquely extended (cf. also (ii) of Definition 2.1) to
abounded linear operator on E. It can be easily proved that ((Ro(t))se[o,7)/ - - - » (Rim,=1(£))eqo,r))
is a locally equicontinuous C-uniqueness propagation family for (1.1), and that the
assumption CA; C A;C, j € N?l_l implies R;(t)C = CR;(t), t > 0. In case that A; = ¢I,
where ¢; € C for 1 < j < n -1, one can apply the arguments given in the proof of [29,
Proposition 1.1, page 32] in order to see that ((Ro())scjo.z), - - - » (Rm,-1(£))sefo,r)) is a locally
equicontinuous C-resolvent propagation family for (1.1). Regrettably, it is not clear how one
can prove in general case that R;(t)A; C AjR;(t),j € N?l_l, t>0.

The following definition also appears in [15].

Definition 2.7. Let T > 0 and f € C([0,T] : E). Consider the following inhomogeneous equa-
tion:

n—

1
() + 3 (8ur-ay * Aji) (8) = F() + (8,0 * Au)(),  tE[0,T]. (2.15)
1

j=

A function u € C([0,T] : E) is said to be

(i) a strong solution of (2.15) if and only if Aju € C([0,T] : E), j € N’ | and (2.15)
holds for every t € [0,T];

(ii) a mild solution of (2.15) if and only if (ga,-«; *u)(t) € D(A;),t € [0,T],j € N?l_l and

n-1

w(l) + X A (Suyay  u) (1) = F() + A(guyaxu) (), tE[0,T]. (2.16)
=1

It is clear that every strong solution of (2.15) is also a mild solution of the same prob-
lem. The converse statement is not true, in general. One can similarly define the notion of a
strong (mild) solution of the problem (2.2).

Let0< 7 < oo,and letT € (0, 7). Then the following holds:

(a) if ((Ro(t)) yeees (Ri,-1 (1)) ) is a Cy-existence propagation family for (1.1),
te[0,7) n te[0,7) propag y
then the function u(t) = Zzg_l Ri(t)x;, t € [0,T], is a mild solution of (2.2) with u; =
Cixjfor0<i<m,-1;

(b) if (Ro(!))seqozy - - - » (Rimu=1(£))teo,r)) 18 @ Co-uniqueness propagation family for (1.1),
and AjR;(t)x = Ri(t)Ajx, t € [0,T], x € (\}5y D(A;j), i € N), |, j € NJ_|, then the

function u(t) = Zz’é_l Ri(t)Cy'u;, t € [0,T], is a strong solution of (2.2), provided
ui € Co(NZy D(A))) for 0 <i <my, — 1.



14 Abstract and Applied Analysis

Theorem 2.8. Suppose ((Ro(t))sejo,z) - - - » (Rim,=1(£))teqo,r)) is a locally equicontinuous k-regularized
Cy-uniqueness propagation family for (1.1), (2.5) holds, T € (0,7) and f € C([0,T] : E). Then the
following holds:

(i) if m — 1 < i, then any strong solution u(t) of (2.15) satisfies the equality:

(Rix )() = (kg *Cou) (D) + 3 (gan,aj” sk * CZA,-u> ®), (2.17)

jeD;

forany t € [0, T]. Therefore, there is at most one strong (mild) solution for (2.15), provided
that (o) holds,

(ii) if m — 1 > i, then any strong solution u(t) of (2.15) satisfies the equality:

(Rixf)(t) =~ NZ\D <gan_u].+i k¥ czAju) (t), telo,T]. (2.18)
JEN—1\D;j

Therefore, there is at most one strong (mild) solution for (2.15), provided that N,,_1 \ D; #®
and that (o0) holds.

Proof. We will only prove the second part of theorem. Let m —1 > i. Taking into account (2.6),
we get:

N
—_

(.
1l
—_

[Ri— (kxgC)] * f = [Ri— (kxgC)] * {u + <gan_u]_ * Aju> — (Qap-a * Au)}

<gan—aj * A]'u>>

— { [R1 — (k * gIC’)] + Z [gan_aj * (Rl()A]x - (k * gl)()CzA,x)]

jeD;

N
—

]

= [Ri— (k*giC)] * <u+

I
—_

+Z <gﬂn—uj * Ri(')AjX) } * U

j¢D;

=~ Z (gan—a,-+i * ko* CQAle) (t), te]l0,T].

Np-1\D;
(2.19)

This implies the uniqueness of strong solutions to (2.15), provided that N,,_; \ D; # @ and that
(00) holds. The uniqueness of mild solutions in the above case follows from the fact that,
for every such a solution u(t), there exists a sufficiently large ¢ > 0 such that the function
(g * u)(+) is a strong solution of (2.15), with f(-) replaced by (g; * f)(-) therein. O

If ((Ro(£))ss0s - - - » (Rim-1(£))150) is @ (local) k-regularized C-resolvent propagation fam-
ily for (1.1), then Theorem 2.8 shows that there exist certain relations between single operator
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families (Ro(t))sq,-- - and (Ry,,-1(t))so (cf. also [15] and [28, page 116]). It would take too
long to analyze such relations in detail.

The subsequent theorems can be shown by modifying the arguments given in the
proof of [30, Theorem 2.2.1].

Theorem 2.9. Suppose k(t) satisfies (P1), w > max(0,abs(k)), (R;(t)): is strongly continuous,
and the family {e”“'R;(t) : t > 0} is equicontinuous, provided 0 < i < my, — 1. Let A be a closed linear
operator on E, let C1,C, € L(E), and let C, be injective. Set Py := 1*™* + Z;’;ll )J"/"“Aj - A,
AeC\ {0}

(i) Suppose Aj € L(E), j € Ny-1. Then ((Ro(t)) >0/ - - - (Rin,-1())150) is a global k-regula-
rized Cy-existence propagation family for (1.1) if and only if the following conditions hold.

(a) The equality

PAJ‘ e MRi(t)xdt = ATk (N)Crx + DAY k(L) A;Crx, (2.20)
0 jED;

holds provided x € E, i € N?nrl, m-1<iand R\ > w.
(b) The equality

PAJ e M [Ri(t)x — (k* g)()Cix]dt == > A4k () A;Cx, (2.21)
0 jE€N,-1\D;

holds provided x € E, i € N?nn_l, m—-1>iand R\ > w.

(ii) Suppose R;(0) = (k*g;)(0)Cox, x € E\ﬂog;‘gnq D(Aj), i€ N?ﬂn_l. Then ((Ro(t))s>0s- - -
(Rm,-1(t)) o) is a global k-regularized Co-uniqueness propagation family for (1.1) if and
only if, for every A € C with RA > w, and for every x € (\ocj<p1 D(A;), the following
equality holds:

Jm e M[Ri(t)x - (k * &) (t)Cox]dt

0

+ 3 fw e M [Ri(t)x = (k * &) () C2A;x] dt

jeD; 0
- (2.22)
DI f e M R;(H)Ajx dt
jeN,1\D; 0
| A (57 e MR (1) Ax dt, m-1<i,
e [P e MR Ax — (k * &) (HCoAX]dt, m—12i.

Theorem 2.10. Suppose k(t) satisfies (P1), w > max(0,abs(k)), (R;(t)) is strongly continuous,
and the family {e“'R;(t) : t > 0} is equicontinuous, provided 0 < i < m, — 1. Let CA; C A;C,
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j€E Nn 17 A]' S L(E),j € N,_q, AiA]' = A]'A,', i, ] €Ny and A]'A C AAj,j € N,,_1. Assume, addi-
tionally, that the operator A\~ + 3, N A is injective for every i € N) | withm -1 < iand for

every A € C with RA > w and k(\) #0, and that the operator 3 ey, \D, A4t A; is injective for every

i€ NO _, with m — 1 > iand for every A € C with RA > w and k(.)t) #0. Then ((Ro(t))s0, - -
(R, - 1(t))t>0) is a global k-reqularized C-resolvent propagation family for (1.1), and (2.5) holds, zf
and only if the equalities (2.20)-(2.21) are fulfilled.

Keeping in mind Theorem 2.10, one can simply clarify the most important Hille-Yosida
type theorems for exponentially equicontinuous k-regularized C-resolvent propagation
families (cf. also [15] and [26, Theorem 2.8] for further information in this direction). Notice
also that the preceding theorem can be slightly reformulated for k-regularized (C;, Cy)-
existence and uniqueness resolvent propagation families.

The analytical properties of k-regularized C-resolvent propagation families are stated
in the following two theorems whose proofs are omitted (cf. [14, Theorems 2.16-2.17] and
[26, Lemma 3.3, Theorems 3.4, 3.6, and 3.7]).

Theorem 2.11. Suppose p € (0,70/2], ((Ro(£))ss0s- - - » (Rm,-1())150) is an analytic k-regularized
C-resolvent propagation family for (1.1), k(t) satisfies (P1), (2.5) holds, and k(\) can be analytically
continued to a function k:w+ S(r/2+p — C, where w > max(0,abs(k)). Suppose CA; C A;C,

j€ Nn 1 Aj€L(E), j €Ny, AjAj = AjA; i,j €Ny pand AjA C AAj, j € N,y Let the family
{e*Ri(2) : z € )} be equicontinuous, provided i e Ny, _, and y € (0,p), (2.23)

and let the set
{()L —wW)k(MAF i d € w+ 3, /ZM} (2.24)

be bounded provided y € (0, ) and m —1 > i. Set

N; = {)L € W+ Z(n/2)ep : k() <W + Z)J"fAj> is injective}, (2.25)

jED,‘

provided m —1 < i, and

N; = {.A, €W+ X(r/2)4p - ﬁ()u) <)J"" + Z .A,aiA]’> is injective}, (2.26)

j€NR-1\D;

provided m —1 > i. Suppose Nj is an open connected subset of C, and the set Nyn {1 € C: RA > w}
has a limit point in {A € C : RA > w}, forany i € N?nn_l. Then the operator Py is injective for every
LeNjandieN,), |,

lim  Ak(L)P] <A“"‘“‘i + Z)ﬁf‘“-iAj> Cx = (k* g)(0)Cx, (2.27)

A — +o0,leN; jeD;



Abstract and Applied Analysis 17

provided m —1 <iand x € E, and

. 7 -1 aj—a—i —
Aelgr,}teN,’)tk()L)P)‘ _ Z ATACx =0, (2.28)
j€Ny-1\D;

provided m — 1 > i and x € E. Suppose, additionally, that there exists y € C such that P,;lC € L(E).
Then the family

-1
n-1
(A - w)k (L) (A + Y ANA c-lAc>

=1
(2.29)
x </\"‘"“"‘iC + Z )J"f_"“iAjC> : A e NN (W +Z(r/2)4y) }is equicontinuous,
jeD;
provided m — 1 <iand y € (0, ), respectively, the family
-1
—~ n71 .
(A —w)k() [ A+ > A9 %A; -CAC > ATAC
j=1 jEN,1\D;
(2.30)

tA€ Nin (w+Z(r/24y) ¢ 15 equicontinuous,

provided m —1 > iand y € (0, ), the mapping

-1
n-1
A —> <)tan—a + Z)‘aj_aAj _ C—lAC> <)Lan—a—ic + Z)Laj—a—iAjc> x, (2.31)

=1 jeD;

defined for X € Nj, is analytic, provided m — 1 < i and x € E, and the mapping

-1
n-1
L [ g 4 Z)Lu,-—ch]. —ClAC Z A“f‘“"'A]»Cx, AEeN;, (2.32)
=1 jENR-1\D;

is analytic, provided m —1 > iand x € E.

Theorem 2.12. Assume k(t) satisfies (P1), w > max(0,abs(k)), p € (0,ar/2] and, for every i €
N?n,,—l with m—1 > i, the function (k * g;)(t) can be analytically extended to a function k; : £ — C
satisfying that, for every y € (0,p), the set {e™“*ki(z) : z € X} is bounded. Let CA; C A;C,
j € Ng_l, A] € L(E),] € N,_1, AzA; = Ain, l,] € N,1 and A]A C AA],] € N,_1. Assume,

additionally, that for each i € Ngnn_l the set V; := N;n{AL € C : RA > w} contains the set {A €
C:RA> w,l~<(/\) #0}, and that R(A*C + Z]-eDi A5 A;C) C R(Py), provided m -1 <iand A €'V,
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respectively, RAA™ C+3ien, \p, A AjC) € R(Py), provided m—1 > iand \ € V; (cf. the formulation
of preceding theorem). Suppose also that the operator X1+ 3’ ;cpp, A" A; is injective, provided m—1 < i
and X € Vi, and that the operator X1 + 3 ey, \p, A Aj is injective, provided m —1 > iand A € V;.
Let i : w+Z(z/2)+p — L(E) (0 < i < my,—1) satisfy that, for every x € E, the mapping A — g;(1)x,
A € w + X 2)1p 1s analytic as well as that:

gi()x = k()P <A“"‘“‘ic + ZA“f“"‘iA,-C> x, xeE, AeV, (2.33)

jEDi

provided m —1 < i,

gi(Mx=-kWP! S A%TACx, x€E, L€V, (234)
j€Na1\D; '
provided m —1 > i,
the family {(A — w)qi(A) : X € w + Z(r/2)4y } is equicontinuous Vy € (0,p), (2.35)

and, in the case D(A) # E,

(k*g)(0)Cx, x¢& D(A), m-1<i,
lim Ag;(\)x = (2.36)
Ao 0, xé D(A), m—1>i.

Then there exists an exponentially equicontinuous, analytic k-regularized C-resolvent propagation
family ((Ro(£))ss0, - - - » (Rm,~1(£))ss0) for (1.1). Furthermore, the family {e™*R;(z) : z € X} is equi-
continuous for all i € N), _ and y € (0,), (2.5) holds, and Ri(z)Aj C AjRi(z), z € Zp, j €N, _,.

In this paper, we will not consider differential properties of k-regularized C-resolvent
(propagation) families. For more details, the interested reader may consult [30], and espe-
cially, [26, Theorems 3.18-3.20]. Notice also that the assertion of [26, Proposition 3.12] can be
reformulated for k-regularized C-resolvent (propagation) families.

In the following theorem, which possesses several obvious consequences, we consider
g-exponentially equicontinuous k-regularized I-resolvent propagation families in complete
locally convex spaces.

Theorem 2.13. (i) Suppose k(0) #0, ((Ro(t)) 0, - - - » (Rm,-1(t))50) is a g-exponentially equicontin-
uous k-regularized I-resolvent propagation family for (1.1), A; € Lg(E), j € N,_1, and for every
p € ®, there exist M, > 1 and wy > 0 such that

p(Ri(t)x) < M,e“"'p(x), t>0, x€E, 0<i<m,—1. (2.37)

Then A is a compartmentalized operator and, for every seminorm p € ®, ((Rop(t))iso,---,
(Ri,-1,p(t))s50) is an exponentially bounded k-regularized E—resolvent propagation family for (1.1),
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in E_p, with Aj replaced by A_j,p (0 <j <n-1). Furthermore,

Ri,(O|| < Mpe®!, t>0,0<i<m,—-1, (2.38)
|Rin®]| < M,

and ((Rop(t)) 150/ - - - (Rin,-1,p(t))120) 18 @ g-exponentially equicontinuous, analytic k-regularized E-
resolvent propagation family of angle p € (0,r], provided that ((Ro(t))sg,-- -, (Rm,—1()) o) is.
Assume additionally that (2.5) holds. Then, for every p € ®, (2.5) holds with A;j and ((Ro(t))ss, - -+,
(R, -1(8))s0) replaced by Ajp and ((Rop(t))isos- - - (Rimy-1,p(£))10)-

(i1) Suppose k(t) satisfies (P1), E is complete, A is a compartmentalized operator in E, Aj = ¢;1
for some cj € C(1 < j<mn-1)and, for every p € ®, A, is a subgenerator (the integral generator,
in fact) of an exponentially bounded k-regularized E-resolvent propaga-tion family ((Rop(t))so,
oo (Rin1p(8))150) in Ep satisfying (2.38), and (2.5) with A and ((Ro(t))s0,-- -+ (Rim,-1(t))150)
replaced, respectively, by A_p and ((Rop(t))ss0s - -+ » (Rm,-1,p (1)) 150)- Suppose, additionally, that N,,_1 \
Di#0 and 3 ey, ,\p, lcj|* > 0, provided m — 1 > i. Then, for every p € ®, (2.37) holds (0 < i <
my, — 1) and A is a subgenerator (the integral generator, in fact) of a g-exponentially equicontinuous
k-regularized I-resolvent propagation family ((Ro(t))so, - - - » (Rm,-1(t)) 150) satisfying (2.5). Further-
more, ((Ro(t))ss0s- - » (Rim,-1(t))0) is a g-exponentially equicontinuous, analytic k-regularized I-
resolvent propagation family of angle p € (0,sr] provided that, for every p € ®, ((Rop(t))ss0s-- -

(Rim,—1,p(t))ss0) 18 a g-exponentially bounded, analytic k-regularized E-resolvent propagation family
of angle p.

Proof. The proof is almost completely similar to that of [20, Theorem 3.1], and we will only
outline a few relevant facts needed for the proof of (i). Suppose x,y € D(A) and p(x) = p(vy)
for some p € ®. Then (2.6) in combination with (2.37) implies that ¥,(R;(t)A(x - y)) = 0,
t > 0, provided m -1 < i, and ¥,(Ri(t)A(x —y) — (k* g&)()(x —y)) = 0, t > 0, provided
m -1 > i. In any case, ¥, (R;(t)A(x — y)) = 0,t > 0, which implies p(R;(t)A(x - y)) = 0,
t > 0, and in particular p(k(0)A(x — y)) = 0. Since k(0) #0, we obtain p(Ax — Ay) = 0 and
p(Ax) = p(Ay). Therefore, A is a compartmentalized operator. It is clear that (2.38) holds

and that the mapping t — R;,(t)xp, t > 0 is continuous for any x, € E,. This implies by the

standard limit procedure that the mapping t — R;,(t)x,, t > 0 is continuous for any x,, € E_p.
Now we will prove that, for every p € ®, the operator A, is closable for the topology of
E_,,. In order to do that, suppose (x,) is a sequence in D(A) with lim, . ¥,(x,) = 0 and
lim,, ., ¥,(Ax,) = y, in E,. Using the dominated convergence theorem, (2.6) and (2.37), we
get that fé Sup-a(t = $)Rip(s)yds = lim, o fé Sup-a(t = $)Rip(s)¥y(Ax,)ds = 0, for any t > 0.
Taking the Laplace transform, one obtains R;,(t)y = 0, t > 0. Since R;,(0) = k(O)E, we get
that y = 0 and that A, is closable, as claimed. Suppose 0 < i < m,, — 1. It is checked at once
that Ri,(t)Ajp C AjpRip(t), t 20,1 € NO j € Ny_1. The functional equation (2.6) for the

my—17

operators A_,-,p, 0<j<n-1and (Rop(t))isor---r (Rim,-1p(t))s0) can be trivially verified,
which also holds for the functional equation (2.6) in case of its validity for the operators
A;,0<j<n-1,and ((Ro(t))ss0s- - - (Rm,-1(t))s0)- The remaining part of the proof can be
obtained by copying the final part of the proof of [20, Theorem 3.1(i)]. O
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Remark 2.14. In the second part of Theorem 2.13, we must restrict ourselves to the case in
which A; = ¢;I for some ¢; € C (1 < j < n-1). As a matter of fact, it is not clear how one

can prove that the operator )L“"E + Dljep, A A_]-,p is injective, provided m — 1 < i, RA > w and
k(1) #0, as well as that the operator 3’ ey, | \p, )U"fA_j,p is injective, provided m -1 > i, RA > w

and k(\) #0. Then Theorem 2.10 is inapplicable, which implies that the argumentation used
in the proof of [20, Theorem 3.1(ii)] does not work for the proof of fact that, for every i €

N?nn_l and t >0, {R;,(t) : p € ®} is a projective family of operators.

3. k-Regularized (C,, C,)-Existence and Uniqueness Families for (1.1)

Throughout this section, we will always assume that X and Y are sequentially complete
locally convex spaces. By L(Y, X) is denoted the space which consists of all bounded linear
operators from Y into X. The fundamental system of seminorms which defines the topology
on X, respectively, Y, is denoted by ®x, respectively, ®y. The symbol I designates the identity
operator on X.

Let 0 < 7 < oo. A strongly continuous operator family (W ())c[o-) € L(Y, X) is said to
be locally equicontinuous if and only if, for every T € (0,7) and for every p € ®x, there
exist g, € ®y and ¢, > 0 such that p(W(t)y) < c,q,(v), y € Y, t € [0, T]; the notion of equi-
continuity of (W (t))[o ) is defined similarly. Notice that (W (t)),¢(o ) is automatically locally
equicontinuous in case that the space Y is barreled.

Following Xiao and Liang [24], we introduce the following definition.
Definition 3.1. Suppose 0 < T < oo, k € C([0, 7)), C1 € L(Y, X), and C, € L(X) is injective.

(i) A strongly continuous operator family (E(t))cjo,) € L(Y, X) is said to be a (local, if
T < o) k-regularized Ci-existence family for (1.1) if and only if, for every y € Y,
the following holds: E(-)y € C™~1([0,7) : X), E?(0)y = 0 for every i € Ny with
i<my—1, Aj(8a,-a; * E™ D) ()y € C([0,7) : X) for 0< j<n-1,and

n-1

EC D)y + 3 Aj(8uyay * E™ V) )y = A(8aa * E™ )y = k()Cry,  (3.1)
j=1

forany t € [0, 7).

(ii) A strongly continuous operator family (U (f)).[or) S L(X) is said to be a (local, if
T < oo) k-regularized C,-uniqueness family for (1.1) if and only if, for every T €
[0,7) and x € nostn—l D(A)), the following holds:

n-1

UBx+ 3 (8ara * UOAX) () = (a0 ¥ UOAX) By = (k% gn)(DCox. (32)

-

(iii) A strongly continuous family ((E(t))[o,r), (U (£))iefo,r)) € L(Y, X) x L(X) is said to
be a (local, if T < o0) k-regularized (C;,Cy)-existence and uniqueness family for
(1.1) if and only if (E(t))o,r) is @ k-regularized C;-existence family for (1.1), and
(U (1)) tef0,r) is a k-regularized C-uniqueness family for (1.1).
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(iv) Suppose Y = X and C = C; = C,. Then a strongly continuous operator family
(R(t))seqo,r) € L(X) is said to be a (local, if 7 < o0) k-regularized C-resolvent family
for (1.1) if and only if (R(¢))e[or) is a k-regularized C-uniqueness family for (1.1),
R(t)A; C AjR(t),for0<j<n-Tlandte€ [0,7), as well as R(t)C = CR(t), t € [0,7),
and CA; CA;C,for0<j<n-1.

In case k(t) = gz+1(t), where ¢ > 0, it is also said that (E(t))[q ) is a {-times integrated
Ci-existence family for (1.1); O-times integrated C;-existence family for (1.1) is also said to be
a Cy-existence family for (1.1). The notion of (exponential) analyticity of Ci-existence families
for (1.1) is taken in the sense of Definition 1.2(ii); the above terminological agreement can be
simply understood for all other classes of uniqueness and resolvent families introduced in
Definition 3.1.

Integrating both sides of (3.1) sufficiently many times, we easily infer that (cf. [24,
Definition 2.1, page 151; and (2.8), page 153]):

n-1
EO®y + 3 A (8ar-a, * E?) Oy = A(Zaa * EV) By = (k% g, -1i-) OC1y,  (33)
j=1

foranyt € [0,7),y € Yand I € N?ﬂn_l. In this place, it is worth noting that the identity (3.3),
with k(t) =1,1=0,7 = wand a; = j (0 < j <n-1), has been used in [24] for the definition
of a Cy-existence family for (ACP,,). It can be simply proved that this definition is equivalent
with the corresponding one given by Definition 3.1.

Proposition 3.2. Let ((E(t))e[o,r), (U())seqo,r)) be a k-regularized (Cy, Ca)-existence and unique-
ness family for (1.1), and let (U (%)) be locally equicontinuous. If A; € L(X), j € Ny1 or
a <min(ay, ..., a,1), then CE(t)y = U(t)Ciy, t € [0,7), y €Y.

Proof. Let y € Y be fixed. Using the local equicontinuity of (U (t))e[o ), We easily infer that
the mappings t — ((gu,-« * U) * E()y)(t),t € [0,7) and t — (U * (ga,-a * EC)y))(t), t € [0, T)

are continuous and coincide. The prescribed assumptions also imply that, for every j € N,,_y,
te[0,r)andy €Y,

(ga-a* U % A (80,0 *EQY) ) (DY = (8o, * UA; * go,-a x EQOY) By (34)

Keeping in mind (3.2)-(3.3) and the foregoing arguments, we get that

n-1
oo # U = [E(-)y + 3 A (800 * E) Oy - k(-)cly]
j=1
= gan_u * UA * [gan_u * E] ()y (35)

n-1
- [uo + (e * U A}) = k(')Cz] * u-a ¥ EQ)y.
j=1

This, in turn, implies the required equality C,E(t)y = U(t)C1y, t € [0, T). O



22 Abstract and Applied Analysis

Definition 3.3. Suppose 0 < i < my,, — 1. Then we define D} := {j € N’ | : m; -1 > i}, D} :=
N?H \ D; and

D, := {x € (\D(A)) : Aju; e R(Cy),j € D;'}. (3.6)

jeD!

In the first part of subsequent theorem (cf. also [24, Remark 2.2, Example 2.5,
Remark 2.6]), we will consider the most important case k(tf) = 1. The analysis is similar if
k(t) = gu+1(t) for some n € N.

Theorem 3.4. (i) Suppose (E(t))e(or) is a Cr-existence family for (1.1), T € (0, 7), and u; € D; for
0 <i<my,— 1. Then the function

my—1 my—1 )
u(t) = Z uigiv(t) - Z Z <g,xn_,,,]. * E(m"*1*’)>(t)vi,]~
i=0

i=0 jeN, 1 \D;
=0 jet (3.7)

mu—1

+ 3 (e x E ) (vi0, 0<EST,
i=m

is a strong solution of the problem (2.2) on [0, T], where v;; € Y satisfy Aju; = Crv;jfor0 < j <n-1.

(it) Suppose (UL(t))e(o,r) is a locally equicontinuous k-regularized Co-uniqueness family for
(1.1), and T € (0, 7). Then there exists at most one strong (mild) solution of (2.2) on [0,T], with
u;=0,ieN)

m,—1°

Proof. A straightforward computation involving (3.3) shows that

my—1 n-1 mj—1
u() = D uigin () + DA, (ga,,_a,- * [u(‘) - uigm(')] >
=0 =1

i=0

1

- _Wil Z (gvln—aj * R(mnilii)> ()vij + mz_: <8an—a * RWFH)) (1)vio

i=0 jeN,1\D;i i=m
n-1 my—1 m,—1 .
+ DA Saa ¥ 4 D &= D, D <8an—m *R<m”’1"))(')vi,z
=1 i=m; i=0 1eN,1\D;
my—1 )
S CRERT N
i=m

mu=1 my—1
=- Z Z (gan_a]_ * R(mn—l—i)> (Yvij + Z <gan_“ % R(mn—l—i)> ()i
i=m

i=0 jENn_l \D,’

n-1m,—

1 my,—1
+ Z Z Clvi,jgvcn—uj+i+1(’) - Z Z Say—ay

]'Zl i:m/- i=0 [eN, 4 \Di
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* [_R(mn_l_i)(')vi,l + A(ga,,—a * R(m”_l_i)> (o + gi+1(')Clvi,1]
m,—1 . )
+ D 8apa* [—RW”*H) ()vip + A(gan—a * R(m"&*”) ()vio + gi+1(')C10i,o]

m-1
= Qu—a * A[u() - Zuigi+1(')]/

i=0

(3.8)
since

n-1m,-1

my,—1
DD C10ij8ay-arini() = D, D, Ci0ij8ayarin () (3.9)
j:l i=m/- i=0 jENn_1 \D,‘

This implies that u(t) is a mild solution of (2.2) on [0, T]. In order to complete the proof of
(i), it suffices to show that D{"u(t) € C([0,T] : X) and A;D{'u € C([0,T] : X) foralli e N°_,
Towards this end, notice that the partial integration implies that, for every t € [0,T],

mu—1 mu—1
8-y ¥ [u(~) -2 ”igi+1(~)] ()= X (&mu-ari * ™) (H0450
i=0

i=m

1 (3.10)
- D (gmnfafri * E(m"_1)>(f)vi,j-
i=0 ]'Eanl\Di

Therefore, D{"u € C([0,T] : X) and

dmn my—1

Di"u(t) = o {gmn—an * [u(') - > uigi+1(')] (t)}
i=0
1 1 3.11)
= > (8ia E™ ) oo - > S (gia xEM ) (B
i=m i=0 jGNn_l\Di

Suppose, for the time being, i € Ng_l. Then A;u; € R(Cy) for j > m;. Moreover, the inequality

1> ajholds provided 0 < I < m,~1and j € N,_1\Dy, and Aj(ga,-a*E™ 1) (-)y € C([0,T] : X)
for0<j<mn-1and y €Y. Now it is not difficult to prove that

AD{u(:) = rglgj+1—ai(')Aiuj - mi_:l Z [nga,- * Aj <gu,,—zx,~ * E(m"_1)>] (o
j=mi

1=0 jeN,1\D

(3.12)
my,—1
+ 3 [8a* Ai(8aa * E™ )| ()mio € C([0,T] : X),
I=m

23



24 Abstract and Applied Analysis

finishing the proof of (i). The second part of theorem can be proved as follows. Suppose u(t)
is a strong solution of (2.2) on [0,T], with u; =0,i € N?nnfl. Using this fact and the equality

t at-s t ps
f Say—a; (NU(t — 5 — 1) Aju(s)drds = I f Suy—a; (MU (t = 8)Aju(s — r)drds, (3.13)
0Jo 0Jo

forany t € [0,T] and j € N’ |, we easily infer that (for more general results, see [31, Propo-
sition 2.4(i)], and [29, page 155]):

(U % u)(t) = (k * gm,-1Ca * 1) (£)
: J t I [ (UL~ 5 ) Aju(s) = g (ULt - 5 1) Aus)|drds (314)
070

= (k* gm,.1Co*xu)(t) + (U *u)(t), tel[0,T].

Therefore, (k * gm,—1C2 *u)(t) =0,t € [0,T] and u(t) =0,t € [0, T]. O

Before proceeding further, we would like to notice that the solution u(t), given by (3.7),
need not to be of class C'([0,T] : X), in general. Using integration by parts, it is checked at
once that (3.7) is an extension of the formula [24, (2.5); Theorem 2.4, page 152]. Notice, finally,
that the proof of Theorem 3.4(ii) is much simpler than that of [24, Theorem 2.4(ii)].

The standard proof of following theorem is omitted (cf. also [24, Theorem 2.7,
Remark 2.8, Theorem 2.9] and [28, Chapter 1]).

Theorem 3.5. Suppose k(t) satisfies (P1), (E(t));so € L(Y,X), (U(t)) € L(X), w > max(0,

abs(k)), C1 € L(Y, X) and C, € L(X) is injective. Set Py := I + Z;:ll A4 A — N AR > 0.

(i) (a) Let (E(t)) be a k-regularized Cy-existence family for (1.1), let the family {e™'E(t) :
t > 0} be equicontinuous, and let the family {€™' Aj(ga,-a; * E)(t) : t > 0} be equicon-
tinuous (0 < j < n—1). Then the following holds:

PAJ‘ e ME(tydt = k(M)A ™ Cly, yeY, RA>w. (3.15)
0

(b) Let the operator P, be injective for every A > w with k(A) #0. Suppose, additionally, that
there exist strongly continuous operator families (W (t));5o € L(Y, X) and (W;(t));5o C
L(Y, X) such that {e'W (t) : t > 0} and {e™“'W;(t) : t > 0} are equicontinuous (0 < j <
n —1) as well as that

f e MW (t)ydt = k()P Cry,
’ (3.16)

fo e MW (t)ydt = K()AS ™ AP Cry,
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for every A € C with RA > w and k(L) #0, y €Yandje N . Then there exists a k-
regularized Cy-existence family for (1.1), denoted by (E(t))so. Furthermore, E (m=1)(t)y =
Wy, t>0,y €Y and Aj(gu,-o, * E™ ) ()y = Wiy, t 20,y €Y, jeN)_.

(ii) Let the assumptions of (i) hold with k(t) = 1. If m,, > 1, then one suppose additionally that,
for every j € N°__, there exists a strongly continuous operator family (V;(t)),so € L(Y, X)
such that {e”*’th(t) s t > 0} is equicontinuous as well as that

f e MV (tydt = AP A Cry, (3.17)
0

for every A € C with R\ > w, and y € D(A;Cy). Let u; € D;, and let Cyv; = u; for some
v; €Y (0 < i <my —1). Then, for every p € ®x, there exist ¢, > 0 and q, € ®y such that
the corresponding solution u(t) satisfies the following estimate:

m,—1
p(u(t)) < cpe’ Y gp(vi), t20, ifw>0, (3.18)
i=0
m,—1
p(u(t)) < cpgm, () D qp(vi), >0, ifw=0. (3.19)
i=0

(iii) Suppose (U (t)) is strongly continuous and the operator family {e"“'U(t) : t > 0} is
equicontinuous. Then (U (t));q is a k-regularized Cy-uniqueness family for (1.1) if and
only if, for every x € ﬂ;’;ol D(A)), the following holds:

J‘ e MUBPyx dt = kWA ™ Cox, R > w. (3.20)
0

The Hausdorff locally convex topology on E* defines the system (|-|g) gc5 of seminorms
on E*, where |x*|p := sup_g|(x*, x)|, x* € E*, B € B. Let us recall that E* is sequentially com-
plete provided that E is barreled. Following Wu and Zhang [32], we also define on E* the
topology of uniform convergence on compacts of E, denoted by C(E*, E); more precisely,
given a functional x; € E*, the basis of open neighborhoods of xj; with respect to C(E*, E) is
given by N (x{, : K, ¢) := {x* € E* : sup,|(x* — x(, x)| < €}, where K runs over all compacts
of E and ¢ > 0. Then (E*, C(E*, E)) is locally convex, complete and the topology C(E*,E) is
finer than the topology induced by the calibration (| - |g) gep-

Now we focus our attention to the adjoint type theorems for (local) k-regularized C-
resolvent families. The proof of following theorem follows from the arguments given in the
proofs of [26, Theorems 2.14 and 2.15]; because of that, we will omit it.

Theorem 3.6. (i) Suppose X is barreled, { > 0, (R(t))e(o,r) 15 a k-regularized C-resolvent family

for (1.1), and ﬂ;‘;ol D(Aj) = R(C) = X. Then ((g; * R(-)*)(t))se[o,r) is a k-regularized C*-resolvent
family for (1.1), with A; replaced by A; (0 <j<n-1).
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(ii) Suppose X is barreled, (R(t))e(or) is a (local, global exponentially equicontinuous) k-
reqularized C-resolvent family for (1.1), and ﬂ;’;ol D(Aj) =R(C) = X. Put Z := ﬂ?;ol D(A;). Then
éR(t))rz)temlr), is a (local, global exponentially equicontinuous) k-regularized C},-resolvent family for

1.1),in Z.

(iii) Suppose (R(t))iefo,r) is a locally equicontinuous k-regularized C-resolvent family for
(1.1), and ﬂ}:ol D(A;j) = R(C) = X. Then (R(t)*)ie[o,’l') is a locally equicontinuous k-reqularized
C*-resolvent family for (1.1), in (X*, C(X*, X)), with A; replaced by A;.‘ (0 < j <n-1). Furthermore,
if (R(t)) s s exponentially equicontinuous, then (R(t)") s is also exponentially equicontinuous.

Notice here that a similar theorem can be proved for the class of k-regularized C-resol-
vent propagation families.
Let f € C([0,T] : X). Convoluting both sides of (1.1) with g,, (t), we get that

-1 n-1 mj—1

u() = D w1 () + D 8ap-ay * A [u(-) - ukgk+1(‘)]
k=0 =1 k=0

(3.21)

m-1
= Qa,—a* A[u() — Zukgk+1(-)] + (gan * f) (), te]o,T].
k=0

In the subsequent theorem, whose proof follows from a slight modification of the proof
of [24, Theorem 3.1(i)], we will analyze inhomogeneous Cauchy problem (3.21) in more
detail.

Theorem 3.7. Suppose (E(t))e(or) s a locally equicontinuous Cy-existence family for (1.1), T €
(0,7),and u; € D; for 0 <i <my, —1. Let f € C([0,T] : X), let g € C([0,T] : Y) satisfy C1g(t) =
f(t),te[0,T], andlet G € C([0,T] : Y) satisfy (u,-m,+1* ) () = (g1 *G)(t), t € [0,T]. Then the
function

my—1 my—1 )
u(t) = Z Uigi+1 (t) - Z Z <gtx,,—:x]- * E(m"_l_l)> (t)Ui,]'
i=0

i=0 jeN,1\D;
(3.22)

mu—1 t
+ Z <gan_“ * E(’”"‘l‘i)>(t)vi,0 + fo E(t-5s)G(s)ds, 0<t<T

1=m

is a mild solution of the problem (3.21) on [0, T], where v;; € Y satisfy Aju; = Cyv;j for0 <j <n-1.
If, additionally, ¢ € C'([0,T] : Y) and (E("’"’l)(t))te[oﬁ) C L(Y, X) is locally equicontinuous, then
the solution u(t), given by (3.22), is a strong solution of (1.1) on [0,T].

Remark 3.8. Suppose that all conditions quoted in the first part of the above theorem hold,
and the family (E("’"‘l)(t))te[oi) C L(Y, X) is locally equicontinuous. We assume, instead of
condition ¢ € C!([0,T] : Y), that there exists a locally equicontinuous C,-uniqueness family
for (1.1) on [0, T), as well as that there exist functions h; € L'([0,T] : Y) such that Aif(t) =
Cihj(t), t € [0,T],0 < j < n—1 (cf. also the formulation of [24, Theorem 3.1(ii)]). Using
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the functional equation for (E(t))¢[o ), One can simply prove that, for every o € [0,T], the
function

1o(1) = E()&(0) = gm, () f(0)

n-1 (3.23)
+ 3 (8aa, * EO1(0) ) () = (a,-a* EQo(0)) ()
j=
is a mild solution of the problem
n-1
u(t) + 3 A (gan_u]_ * u) (t) = A(gw, o *u)(t) =0, te[0,T]. (3.24)
=1
By the uniqueness of solutions, we have that the following holds:
n-1
E(t—0)8(0) = gm,(t—0) f(0) + D (Suy-e * E()11(0)) (t = 0) (a,-a * E()ho(0)) (t - 0) =0,
I=1
(3.25)

provided 0 < t,0 < T and o < t. Fixi € N_|. Then the above equality implies that, for every
jeNy _ withj<min(|a; +m, - a1 1], |a; +m, —a—1]), one has:

n-1

AED (t = 0)g(0) = gyt = 0)Cihi(0) + X Ai(gay-a * EV (V) ) (£ - 0)
1=1 (3.26)

~ Ai(Zar-a * EV (Vho(0) ) (- 0) = 0,

provided 0 < t, 0 < T and o < t. For such an index j, we conclude from (3.26) that the
mapping t — fé A;EWD(t - 0)g(o)do, t € [0,T] is continuous. Observe now that the condition

a, —a; —my +min(|a; + my — a1 -1}, |ai + my, —a—-1]) >0, ieNgfl,

(3.27)

which holds in the case of abstract Cauchy problem (ACP,), shows that the mapping t +—
AilSuy-ai-my+j * ED « gl(t), t € [0,T] is continuous as well as that the mapping t +—
(d/dt)[E™D x g](t), t € [0,T] is continuous. Hence, the validity of condition (3.27) implies
that the function u(t), given by (3.22), is a strong solution of (1.1) on [0, T].

4. Subordination Principles

The proof of following theorem can be derived by using Theorem 3.5 and the argumentation
given in [10, Section 3].



28 Abstract and Applied Analysis

Theorem 4.1. Suppose C; € L(Y, X), C, € L(X) is injective and y € (0,1).
(i) Let w > max(0,abs(k)), and let the assumptions of Theorem 3.5(i)-(b) hold. Put

Wy (t) := J:D YD, (t7s)W(s)y ds, t>0, yeY, W,(0) := W(0). 4.1)

Define, for every j € N?H and t > 0, W;,(t) by replacing W (t) in (4.1) with W;(t).
Suppose that there exist a number v > 0 and a continuous kernel ky(t) satisfying (P1)
and E(A) = M1K(AY), A > v. Then there exists an exponentially bounded ky-regularized
Cy-existence family (E,(t));s for (1.1), with a; replaced by a;y therein (0 < j < n—1).
Furthermore, the family { (1 + tl1-2) e~ " E (1) : t > 0} is equicontinuous.

(i) Let w > O, let the assumptions of Theorem 3.5(ii) hold, and let k(t) = k,(t) = 1. Define,
forevery j € N°_ and t >0, V;,(t) by replacing W (t) in (4.1) with V;(t). Then, for every

j €N, the family {e=""'V; (t) : t > 0} is equicontinuous,

I eiu‘/]})’ (t)ydt — AﬂjY*aanlplgA]-Cly, (42)
0

for every A € C with R(\Y) > w, and y € D(A;Cy). Let u; € D, (defined in the obvious
way), and let C1v; = u; for some v; € Y (0 <i < [a,y]| — 1). Then, for every p € ®x, there
exist ¢, > 0 and q, € ®y such that the corresponding solution u(t) satisfies the following
estimate:

[anﬂ_l

p(u(t)) < cpe“’mt Z qp(vi), t>0, ifw>0,
i=0
— (4.3)
any|—

pu(t) < cpQay(t) D, gp(vi), t>0, ifw=0.

i=0

(iii) Suppose (U(t));sq is a k-regularized Cy-uniqueness family for (1.1), and the family
{e™'U(t) : t > 0} is equicontinuous. Define, for every t > 0, Uy(t) by replacing W (t)
in (4.1) with U(t). Suppose that there exist a number v > 0 and a continuous kernel k, (t)
satisfying (P1) and E;(/\) = \Y @) =2+ [any] E(M), A > v. Then there exists a ky-regularized
Co-uniqueness family for (1.1), with a; replaced by a;y therein (0 < j < n—1). Furthermore,
the family {e“"l/”lly(t) s t > 0} is equicontinuous.

Remark 4.2. (i) Consider the situation of Theorem 4.1(iii). Then we have the obvious equality
(k * gm,-1)(0) = (ky * gja,y1-1)(0). If 0 > 1, k(t) = go(t) and (0 — 1 +m, = 1)y + 1~ [a,y] >0
(this inequality holds provided o > 2), then ky (t) = g(o-1+m,-1)y+2-[any] (£)-

(ii) Let b € L}OC([O, o)) be a kernel, and let (U(t))c[o ) be a (local) k-regularized Cs-
uniqueness family for (1.1). Then ((b * U)(t));c[or) is @ (b * k)-regularized Cy-uniqueness
family for (1.1).

(iii) Concerning the analytical properties of ky-regularized Ci-existence families in
Theorem 4.1(i), the following facts should be stated.
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(a) The mapping t — E,(t), t > 0 admits an extension to Zmin(((1/y)-1)(r/2),r) and, for
every y € Y, the mapping z — E,(2)y, Z € Zmin(((1/y)-1)(xr/2),7) is analytic.

(b) Let € € (0,min(((1/y) = 1)(,r/2), o)), and let (W(t));, be equicontinuous. Then
(Ey(t))ss0 is an exponentially equicontinuous, analytic ky-regularized C;-existence
family of angle min(((1/y) —1)(or/2), ), and for every p € ®x, there exist M, > 0
and gy € ®y such that

P(Er(2)Y) < Mpedpe () (1+121°717), 2 € Sminit/n-i/2,m-e- (4.4)

(c) (Ey(t))0 is an exponentially equicontinuous, analytic k,-regularized C;-exis-tence
family of angle min(((1/y) - 1)(or/2),/2).

The similar statements hold for the k,-regularized Cy-uniqueness family (U, (t)), in
Theorem 4.1(iii).

The results on k-regularized (Cy, C,)-existence and uniqueness families can be applied
in the study of following abstract Volterra equation:

n-1
u(t) = f(t) + > (aj x Aju)(t), tel0,1), (4.5)
j=0

where 0 < 7 < oo, f € C([0,7) : X), ao,...,an-1 € Llloc([O,T)), and Ay,..., A, are closed
linear operators on X. As in Definition 2.7, by a mild solution, respectively, strong solution,
of (4.5), we mean any function u € C([0, 7) : X) such that A;(a;*u)(t) € C([0,7) : X),j € N?H

and that

n-1
u(t) = f(t) + > Aj(ajxu)(t), tel0,1), (4.6)
j=0

respectively, any function u € C([0,7) : X) such that u(t) € ﬂ;‘;ol D(Aj), t € [0,7) and that
(4.5) holds.
We need the following definition.

Definition 4.3. Suppose 0 < T < oo, k € C([0, 7)), C1 € L(Y, X), and C; € L(X) is injective.

(i) A strongly continuous operator family (E(t))[o ) € L(Y, X) is said to be a (local, if
T < o) k-regularized C;-existence family for (4.5) if and only if

n-1
E(yy =k(t)Ciy + > Aj(ajxE)()y, te€[0,7), yeY. (4.7)

j=0

(ii) A strongly continuous operator family (U (f)):[or) S L(X) is said to be a (local, if
T < o) k-regularized C,-uniqueness family for (4.5) if and only if

n-1 n-1
U(t)x = k(t)Cox + > (a; » AjU) ()x, te[0,7), x €[ D(A)). (4.8)
=0 j=0
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Notice also that one can introduce the classes of k-regularized (C;, C;)-existence
and uniqueness families as well as k-regularized C-resolvent families for (4.5); compare
Definition 3.1. The full analysis of k-regularized (C;,C,)-existence and uniqueness families
for (4.5) falls out from the framework of this paper.

The following facts are clear.

(i) Suppose (E(t))ejo,r) is a k-regularized C;-existence family for (4.5). Then, for every
y €Y, the function u(t) = E(t)y, t € [0, 7), is a mild solution of (4.5) with f(t) =
K(HCry, t € [0,7).

(ii) Let (U (#))ef0,r) be a locally equicontinuous k-regularized Cp-uniqueness family for
(4.5). Then there exists at most one mild (strong) solution of (4.5).

The proof of following subordination principle is standard and therefore omitted (cf.
the proofs of [29, Theorem 4.1, page 101] and [24, Theorem 2.7]).

Theorem 4.4. (i) Suppose there is an exponentially equicontinuous k-regularized Ci-existence family
for (1.1). Let c(t) be completely positive, let c(t), k(t) and ki (t) satisfy (P1), and let wy > O be such
that, for every A > wy with ¢(A) #0 and k(1/c(1)) #0, the following holds:

di(\) = -k (V)EW) = i eN,.,
a;j(L) 1(M)e(V) k(1/¢())) e (4.9)
%m=iMﬁmmﬂaﬁﬁy

Assume, additionally, that there exist a number z € C and a function ky(t) satisfying (P1) so that, for
every A > wy with ¢(A) #0 and k(1/c(1)) #0, one has:

ki (L)

— =z 4 k). (4.10)
k(1/2(X))

Then there exists an exponentially equicontinuous ki-regularized Cy-existence family for (4.5).

(ii) Suppose there is an exponentially equicontinuous k-reqularized Cy-uniqueness family for
(1.1). Let c(t) be completely positive, let c(t), k(t) and ki (t) satisfy (P1), and let wy > 0 be such that,
for every A > wy with ¢(\) #0 and l~<(1 /¢(X)) #0, the following holds:

) =™, jeN k(L) = A-le(x)mn-z’E(L). (4.11)

c(L)

Then there exists an exponentially equicontinuous ki-regularized Co-uniqueness family for (4.5).
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It is not difficult to reformulate Theorem 4.4 for the class of strong C-propagation
families (cf. also Example 5.3 below).

Although our analysis tends to be exhaustive, we cannot cover, in this limited space,
many interested subjects. For example, the characterizations of some special classes of g-
exponentially equicontinuous k-regularized (Ci, Cy)-existence and uniqueness families in
complete locally convex spaces. We also leave to the interested reader the problem of clari-
fying the Trotter-Kato type theorems for introduced classes.

5. Examples and Applications
We start this section with the following example.

Example 5.1. Suppose ¢j € C (1 <j<n-1)and, for everyi € Ngnn_l with m — 1 > i, one has
Npi \ Di#@and X ey, \p, l¢jI* > 0. Let Aj = ¢;T for1 < j<n—1.

(i) (a) Suppose0<6<2,0>1, (r6/2(ay —a))— (or/2) >0, and A is a subgenerator
of an exponentially equicontinuous (gs, gs)-regularized C-resolvent family
(Rs(t))s0 which satisfies the following equality:

Af g5(t —5)Rs(s)x ds = Rs(t)x — g-(1)Cx, x€E, t>0. (5.1)
0

Put o’ := max(1,1+(a,—a)(c-1)671) and 0 := min(or /2, w6 /2(a,—a)— (7 /2)).
By [26, Theorem 2.7], we have that, for every sufficiently small ¢ > 0, there
exists w, > 0 such that w, + Z(z/25- € pc(A) and the family {|A|®=9)/8(1 +
IA[Y/8) (A - A)_lC : A € we + X(r/2)a—e ) is equicontinuous. Notice also that

n-1
arg ()L“"‘“ + ch)u"‘f‘“>
j=1

n-1
= arg <A—an—fl|A|u_((anl+an)/2) T ch)tu,-—uMlu—((un1+0ln)/2)> (52)

j=1

o~ arg<)tara|)t|a*((txn-1+an)/2)>

JC

= (a, —a)arg(l), A — oo, arg() <

a,—a

Due to the choice of 8, we have that, for every sufficiently small € > 0, there
exists w, > 0 such that, for every A € w, + X5 /2)+6-¢, One has:

n-1
arg <A“"‘” + Zc]-)u"‘f‘“> < %6 — €. (5.3)

j=1
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Therefore, we have the following: if the operator A is densely defined, then
the above inequality in combination with Theorem 2.12 indicates that A is a
subgenerator of an exponentially equicontinuous, analytic (0’ — 1)-times inte-
grated C-resolvent propagation family ((Ro(t));sq,---, (Rm,-1(t))ss0) for (1.1),
with 0 being the angle of analyticity; if the operator A is not densely defined,
then the above conclusion continues to hold with ¢’ replaced by any number
o'>0o.

(') Suppose 0 < 6 < 2,0 > 1, (6((wr/2) +v)/(ay —a)) — (/2) > 0, Ais a
subgenerator of an exponentially equicontinuous, analytic (gs, g»)-regulari-
zed C-resolvent family (Rs(t));so of angle y € (0,or/2], and (5.1) holds.
Put o1 := 0 and 6; := min(xr/2,(6((or/2) + y)/(an — a)) — (7/2)). If the
operator A is densely defined, then it follows from [26, Theorem 3.6] and
the above analysis that the operator C"'AC is the integral generator of an
exponentially equicontinuous, analytic (o — 1)-times integrated C-resolvent
propagation family ((Ro(t))ssq, -, (Rm,-1(t))s) for (1.1), with 0; being the
angle of analyticity; if the operator A is not densely defined, then the above
conclusion continues to hold with o7 replaced by any number 0, > ;. Now
we will apply this result to the following fractional analogue of the telegraph
equation:

D?u(t, x) + c1D{'u(t, x) = DAyu(t,x), t>0, x €R", (5.4)

wherec; > 0,D > 0and 0 < a; < ay < 2. Let E be one of the spaces LF(R")
(1 < p < ), Co(R"), Cp(R"), BUC(R") and 0 < [ < n. Put N} := {a € NI :
a1 = -+ = a, = 0} and recall that the space E; (0 < I < n) is defined
by E; == {f € E: f@ € E forall a € Nj}. The totality of seminorms
Ga(f) = If9lle, f € Ei; a € Nj)) induces a Fréchet topology on E;. Let T;
possess the same meaning as in [33], and let A := DA act with its maximal
distributional domain. Suppose first E#L*(R") and E #Cpy(R"). Then the
operator A is the integral generator of an exponentially equicontinuous,
analytic Cyp-semigroup of angle or/2, which implies that A is the integral gene-
rator of an exponentially equicontinuous, analytic I-regularized resolvent pro-
pagation family (Ro(t))so, if a2 < 1, respectively, ((Ro(t))s0, (Ri(t))s0) if
ay > 1, of angle ¢ = min(or/2, (or/az) — (or/2)); the established conclusion also
holds in the Fréchet nuclear space = which consists of those smooth functions
on R" with period 1 along each coordinate axis [26]. In this place, we would
like to observe that it is not clear whether the angle of analyticity of constructed
I-regularized resolvent propagation families, in the case that &1 < a, < 1,
can be improved by allowing that ¢ takes the value min(r, (r/a) — (7r/2)).
Suppose now E = L®(R") or E = C;(R"). Then, for every ¢’ > 1, the operator A
is the integral generator of an exponentially equicontinuous, analytic (¢’ - 1)-
times integrated I-regularized resolvent propagation family (Ro(t));s, if az <
1, respectively, ((Ro(t))s0, (Ri(t))s0) if a2 > 1, of angle min(or/2, (7r/a2) —
(7/2)).

(b) Suppose 0 < 6 < 2,0 > 1, (w6/2(ay —a)) — (r/2) > 0,a >0,b € (0,1),
kap(t) := L7 (exp(—arb))(t), t > 0 and A is a subgenerator of an exponentially
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equicontinuous (gs, kap)-regularized C-resolvent family (R,y(t));o which
satisfies the following equality:

t
AI g5(t —s)Rap(s)x ds = R (t)x —kap(t)Cx, x€E, t>0. (5.5)
0

Let 0 be defined as in (a). Then it is checked at once that (a, — a)b6™! < 1
and (e, — a)b6 1 ((or/2) + 0) < /2. Put ky(t) := kg, p, (t), t > 0, where b :=
(ay — a)b67! and a1 > a(cos((a, — a)b61((7r/2) + 6)))". It is clear that, for
every 0 € (0,0), there exists a sufficiently large wg > 0 such that, for every
A € wo + Xz 2)40,

k)|

T /6
NGl
— n-1
< |k1 (/\)| exp a|)L|b1 + Z'CjHM(u,-—a)b/(S )
j=1

(5.6)

Arguing as in (a), we reveal that A is a subgenerator of an exponen-
tially equicontinuous, analytic ki-regularized C-resolvent propagation family
((Ro (t))tzm e, (R 1 (t))tzo) for (1.1), with 0 being the angle of analyticity.

(b") Suppose 0 < 6 < 2,0 > 1,6(((r/2) +y)/(an —a)) = (r/2) >0, Aj = ¢;I
(1<j<n-1),a>0,be(0,1), Aisasubgenerator of an exponentially equi-
continuous, analytic (gs, kap)-regularized C-resolvent family (Ryp(t));so of
angle y € (0,r/2], and (5.5) holds. Assume, additionally, that b(1 + (2y/r)) <
1. Define 6; as in (a), and ky(f) := Ka,p, (1), t > 0, where by := (a, — a)b6™!
and a, > a(cos((ay — a)b67((7r/2) + 61)))". Then one can simply verify that
(ay —a)b < 6 and (a, — a)b671((;r/2) +y) < /2. Making use of [26, Theo-
rem 3.6] and the foregoing arguments, we obtain that the operator C"1AC is
the integral generator of an exponentially equicontinuous, analytic k,-regula-
rized C-resolvent propagation family ((Ro(t));sg,-- -, (Rm,-1(t))1s0) for (1.1),
with 0 being the angle of analyticity. Before proceeding further, we would
like to recommend for the reader [14, 20, 21, 26, 30, 34] for some examples
of (nondensely defined, in general) differential operators generating various
types of (s, kap)-regularized C-resolvent families.

(ii) Suppose E is complete, 0 < 6 < 2, (w6/2(ay, — a)) — (r/2) > 0, and A is the
densely defined generator of a g-exponentially equicontinuous (gs, g1)-regularized
I-resolvent family (Rs(t)),s, which satisfies that, for every p € ®, there exist M, > 1
and w, > 0 such that p(Rs(t)x) < Mpe“'p(x), t > 0, x € E. By [20, Theorem 3.1],
we infer that A is a compartmentalized operator and that, for every p € ®,
the operator A_,, is the integral generator of an exponentially bounded (gs, g1)-
regularized E—resolvent family in E_p. Then the first part of this example shows
that A_,, is the integral generator of an exponentially bounded, analytic E-resolvent
propagation family, with min(r/2, (x6/2(a, — a)) — (r/2)) being the angle
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of analyticity. By Theorem 2.13(ii), we obtain that A is the integral generator
of a g-exponentially equicontinuous, analytic I-resolvent propagation family
((Ro(1))efo,ryr - - - (Ru-1(8) )sepo,ry) for (1.1), and that the corresponding angle of
analyticity is min(or/2, (x6/2(a, — a)) — (or/2)). It can be simply shown that, for
everyp € ®andi € N?nn_l, there exist M,,; > 1 and w,,; > 0 such that p(R;(t)x) <
Mp,ie“’ﬂlitp(x), t > 0, x € E. In the continuation, we will also present some
other applications of (a, k)-regularized C-resolvent families in the analysis of some
special cases of (1.1); as already mentioned, this theory is inapplicable if some
of initial values wuy,...,u;,,—1 is a non-zero element of E. Consider the abstract
Basset-Boussinesq-Oseen equation (1.2) and assume that E is complete. Set a,(t) :=
LA/ A+ 1)), t >0, ka(t) := e, t > 0and 6, := min(r/2, (ra/2(1 — a))).
Suppose A is the integral generator of a gq-exponentially equicontinuous (g1, g1)-
regularized I-resolvent family (R(t));s, satisfying (2.37); cf. [20, 25] for important
examples of differential operators generating g-exponentially equicontinuous
(g5, g1)-regularized I-resolvent families. Then it has been proved in [20] that A is
the integral generator of a g-exponentially equicontinuous, analytic (ay, ky)-regu-
larized resolvent family of angle §,. Notice, finally, that the choice of function a,(t)
instead of g (¢) has some advantages.
Example 5.2. Suppose 1 < p < oo, E := [P(R), m : R — C is measurable, a; € L*(R),
(Ajf)(x) = aj(x)f(x),x eR, f e E(1<j<n-1)and (Af)(x) := m(x)f(x), x € R, with
maximal domain. Assume s € (1,2), 6 = 1/s, M, = p!® and ks(t) = ﬁ‘l(e‘kﬁ)(t),t > 0.
Denote by M(t) the associated function of the sequence (M) [30] and put Ay, = {L€C:
Reld >y "M(aX) + B}, a >0, >0,y > 0. Clearly, there exists a constant C, > 0 such that
M(A) < CgA|'#, A € C. Hereafter we assume that the following condition holds:

(H) for every 7 > 0, there exist &' > 0, f/ > 0 and d > 0 such that 7 < cos(6r/2)/Csa*
and

n-1
Ao YA (x) —m(x)| > d, x€R, L€ Ay, (5.7)
j=1

Notice that the above condition holds provided n = 2, ay —a = 2, ay — a3 = 1 and m(x) =
(1/4)a3(x) — (1/16)aj(x) — 1, x € R (cf. [31]), and that the validity of condition (H) does
not imply, in general, the essential boundedness of the function m(-). We will prove that A
is the integral generator of a global (not exponentially bounded, in general) ks-regularized
I-resolvent propagation family ((Ro());so,---, (Rm,-1(t))s») for (1.1). Clearly, it suffices to
show that, for every 7 € (0, ), A is the integral generator of a local ks-regularized I-resolvent
propagation family for (1.1) on [0, 7). Suppose that T > 0 is given in advance, and that a’ > 0,
p > 0and d > 0 satisfy (H), for this 7. Let I' denote the upwards oriented boundary of
ultralogarithmic region Ay p 1. Put, forevery t € [0,7), f € Eand x € R,

(5.8)

ol I R R
T

2z a4 SELAG " (x) = m(x)

(Ri(t)f) (%) =
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ifm-1<i,and

(Ri(t)f) (x) =

. A&~y
1 f S a;(x) dl+ (ks x ) (D (), (59)

271'1 Adn=at 4 Z" 1= “aj(x) - m(x)

if m -1 > i. Itis clear that, for every i € Nm 1 Ri(H)A; CAjRi(t),t€[0,7),] € Ng_l and that
(Ri(£)) e oT) C L(E) is strongly continuous. Furthermore, the Cauchy theorem implies that
Ri(0) = 0 = ks(0), i € N . Now we will prove that the identity (2.6) holds provided
m-1<i and Cy =1. Let f € D(A) Then a straightforward computation involving Cauchy
theorem shows that (2.6) holds, with x replaced by f(-) therein, if and only if:

LI M1 [ AT 4 e, A7 la](x)]f(x)

27 )y Aana 4 LAY (x) - m(x)

n-1 ap—a—i a—a—i
+ Z_ J‘ <J‘ 8~ —-aj (t - S)exs ds>e’*5 [)L i Zlea A gl(x)]f(X)

1
i= 2ori A= 3 P Aaa gy (x) - m(x)

Aot 3 A% g () | m(x) f (x)
I _ As —\8 [ ] ]
2.32'1 r<,[ Sy~ u(t S)e dS)e L 4 Zn 1 A a]-(x) _ m(x)

(5.10)

= Zim L et [):i f(x)+ > A9 a;(x) f(x)] d.

jeD;

Using [28, Lemma 5.5, page 23] and the Cauchy theorem, the above equality is equivalent
with:

1 f M [)‘an_a_i + Xjep, AV _“_iﬂ;'(x)]f (x)
r \n—a 4 Z;l:_ll )Laj—aaj (x) - m(x)

"Zl 1 f M AT B, AT “’gz(x)]f(x) m
2ot Jp A7 \awma g SN Na-a gy (x) — m(x)

j=1

27ri

(5.11)

. f Q20 L 4 3 A ()| m(x) £ (x) i

2 Jp A jea e ST g (x) - m(x)

— L MY [)ri flx)+ Y amm i (x) f(x) | dA,

271 jeD;

which is true because the integrands appearing on both sides of this equality are equal
identically. One can similarly prove that the identity (2.6) holds provided m — 1 > i and
Ca =1, so that ((Ro(t))sg, - - - (Rm,-1(t))>0), defined in the obvious way, is a ks-regularized
I-resolvent propagation family for (1.1), with subgenerator A. Notice that the condition (H)
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implies m(-) / (A*~% + Z;’;ll A%7%a;(-) =m(-)) € L*(R) for all € Ay p 1, which has as a further
consequence that R(R;(t)) € D(A), provided t > 0 and m — 1 < i, and that R(R;(t) — (ks *
gi)(t)) € D(A), provided t > 0 and m — 1 > i. The equality (2.5) holds for ((Ro(t))so,---,
(Rm,-1(t))s>0), the integral generator of ((Ro(t));s, - - -, (Rm,-1(t))50), defined similarly as in
the second section, coincides with the operator A, which is the unique subgenerator of
((Ro(t)) g0+ + - » (Rim,-1(t) ) 0)- Notice that, for every compact set K C [0, o), there exists hx > 0
such that

[CRCRZZIG)
< oo (5.12)

sup 5 ,
teK pely,ieN?, p:

and that one can similarly consider the generation of local ki/,-regularized I-resolvent
propagation families which oblige a modification of the property stated above with s = 2.
Now we would like to give an example of ks-regularized I-resolvent propagation family for
(1.1) in which A; € L(E) forsome j € N, 1. Assumen =2, ay~a =2, a1 = 1, a1 (x) = -2x,
x € Rand m(x) = x> — x* — 1, x € R. Define A;, A and R;(-) as before (i = 0,1). Then the
established conclusions continue to hold since, for every T > 0, there exist a’ > 0, ' > 0 and
d > 0 such that (H) holds as well as that:

-2 DTk ea (5.13)
|.)L2 —2x)t+ (x4 _xz + 1)| — " X 4 ﬂ,,p’,l' .

Notice, finally, that it is not so difficult to construct examples of local k-regularized C-
resolvent propagation families which cannot be extended beyond its maximal interval of
existence.

Example 5.3. Suppose 1 < p < o0, X := LP(R),a € R, r > 0,8() € WI*(R),1/2 <y <1,
T>0,feC(0,T] : X), and (d/dt)(goy-1 * (d/dx)f(t,-)) € C([0,T] : X). Put Ay := ad/dx
and Au := rAu—93(-)u with maximal distributional domain. Now we will focus our attention
to the following fractional analogue of damped Klein-Gordon equation:

nyu(t,x) + aiDtyu(t, x) —rAcu(t,x) + d(x)u(t,x) = f(t,x), t>0, x€R,
ox (5.14)

u(0,x) = ¢(x), u(0,x) = ¢(x), x€R.

The case y = 1 has been analyzed in [24, Example 4.1], showing that there exists an expo-
nentially bounded I-uniqueness family for (5.14) and that, for every pg € p(A1), there exists
an exponentially bounded (po—A;) "-existence family for (5.14) with Y = X. Itis worth noting
that the estimates obtained in cited example enables one to simply verify that the conditions
of Theorem 4.1(i)-(ii) hold with k(t) = 1 and C; = (uo - A;)7!, and that the conditions of
Theorem 4.1(iii) hold with k(t) = t and C, = I. This implies that there exists an exponentially
bounded g, -regularized I-uniqueness family (U, (t));s for (5.14) with a; = jy,j =0,1,2,and
that there exists an exponentially bounded (po — A;) -existence family (Ey(t)) for (5.14)
with aj = jy, j = 0,1,2. Applying Theorem 3.7, we obtain that, for every ¢ € W3?(R) and
¢ € W3 (R), there exists a unique mild solution u(t, x) of the corresponding problem (3.21)
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as well as that there exist M > 1 and w > 0 such that the following estimate holds for each
t>0:

t
llse(t, )| 1 ) < Mem[”‘i’”wlr(R) * ”‘F”WLP(R) + fo (t- s)zY_ZHf(S/‘)”U’(R)dS

t
+ f ds]|.
0 [P(R)

It is checked at once that the solution u(t,x) is analytically extensible to the sector
2 ((1/y)-1)(xr/2), provided that f(t, x) = 0. Suppose now &(x) =8 > 0,k > [1/2 - 1/p|, provided
1< p < oo, respectively, x > 1/2, provided p € {1, 00}, C := (1-A)""?*and f(t,x) = 0. Then
there exists a strong C-propagation family {(So(t));o, (S1(t))ss} for the problem (5.14) with
y =1 (cf. [28, Example 5.8, page 130]). Using [10, (1.23), page 12; Theorems 3.1-3.3, pages
40-42] and [28, Proposition 5.3(iii), page 116], it readily follows that, for every ¢ € WPA(R)
and ¢ € WP2(R), the function uy(t,-), t >0, given by

(5.15)
d

(@ 56)

() = [0 [S1(5)9 + S (5)9]ds
‘ (5.16)

t o
+ j g1y (t—5) j sTO(rs™)S(r)pdrds,
0 0

is a unique strong solution of the corresponding integral equation (3.21) with uy = C¢
and u; = Cy; obviously, this solution is analytically extensible to the sector X /y)-1)(r/2)-
Notice also that one can similarly consider (cf. [24, Example 4.2] for more details) the results
concerning the existence and uniqueness of mild solutions of the following time-fractional
equation:

2y (33 62 Y 62
D, u(t, x) + Plas Paa D;u(t,x) + Sy +a(x) )u(t,x) = f(t,x), (5.17)

wO0,x) = d(x),  w(0,%) = g(x), (5.18)

and that Theorem 4.4 can be applied in the analysis of the following integral equation:
t

u(t,x) =a f; ai(t - s)a%u(s,x)ds + fo ax(t — s)[rAyu(s,x) — O(x)u(s, x)]ds + f(t,x),
(5.19)

for certain kernels a; () and a;(t). We leave details to the interested reader.
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Consider now the following slight modification of (5.14):

nyu(t, x) + a%Dtyu(t, x) —re! @I y(t, x) + S(x)u(t,x) = f(t,x), t>0, x€R,

u(0,x) = ¢(x), <Dtyu(t,x)>|t20 = ¢(x), x€eR.
(5.20)

Suppose now that a#0 (for further information concerning the case a = 0, [21, 23] may be
of some importance). Although the equality thyu(t, x) = Dtyu(t, x)Dtyu(t, x) does not hold in
general, we would like to point out that the existence and uniqueness of mild solutions to the
homogeneous counterpart of (5.20) cannot be so easily proved for initial values belonging to
the Sobolev space W*?(R), for some k € N. In order to better explain this, we will introduce
the new function v(t, x) by v(t, x) := Dtyu(t, x). Then (5.20) can be rewritten in the following
equivalent matricial form:

0

D! [u(t,x) v(t,x)]" = _giC2m2 (A)[ut,x) otx)]", t>0, (5.21)

—aix

where A = -id/dx; see, for example, [35, 36]. The characteristic values of associated
polynomial matrix P(x):= [_reuzgy)(ar/z) _;ix] are \1o(x) = (1/2)(—aix + Va2 + 4rei@M@/2),
x € R, which implies that the condition of Petrovskii for systems of abstract time-fractional
equations, that is, supxeRéR(()q,z(x))l/ ) < oo, is not satisfied [36]. Notice, finally, that (1.1)
cannot be converted to an equivalent matrix form, except for some very special values of
aQyen., Oy

Before proceeding further, we would like to observe that several examples of k-times
integrated (Ci, C;)-existence and uniqueness families, acting on products of possibly dif-
ferent Banach spaces (k € N), can be constructed following the consideration given in [37,
Section 7].

Example 54. Lets' > 1,

{feC°°01 ANl = sup”f 'l <oo},
P! (5.22)
A::—%, D(A):={f€E; f'€eE, f(0)=0}.

Then p(A) = C, and for every 17 > 1, |[R(A : A)|| = O(e™), A € C [21]. Consider now the
complex non-zero polynomials Pj(z) = Zl Oaﬂzl z € C aj,#0 (0 <j <n-1),and
define, for every A € C and j € Nn_l, the operator P;(A) by D(P;(A)) = D(A") and
Pi(A)f = Z;ZO aj A'f, f € D(P;j(A)). Our intention is to analyze the smoothing properties
of solutions of the equation (3.21) with A; := p;(A), j € Nn v uk =0,k € NO 1, and
a suitable chosen function f(t). In order to do that, set N := max(dg (P),.. dg (Pn 1)),
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Pi(z) = 1+Z;-’=_11 A%~ Pi(z) =A% Py(z) (A € C\ {0}, z € C), and after that, @ := {L € C\ {0} :
dg (Dy()) = N,P,(0) #0}. Then it is not difficult to prove (cf. [21, Example 2.10]) that, for
every L € C\ {0}, P! = (I + 35 A% A; - A" A)™ € L(E) and that

Pl = (-1)Ng(\)'R(z11: A) - R(znp: A), LeD, (5.23)

where z;,...,2zn, denote the zeroes of Py (z) and g(1) := N!*lﬁiN)

that the following condition holds:

(0), X € @. Suppose now

(H) there exist 0 € (0,1), w > 0 and m > 0 such that, for every j € N° |, one has:
|zja| <mlA]7, L € D, RA > w.

It is well known from the elementary courses of numerical analysis [38] that the

condition:
(Hj) there exist 0 € (0,1), w > 0 and m > 0 such that, for every j € Ng_l, one has:
) 1/(N-j)
N! 0 1
%*)() <sml, Led Ri>w, (5.24)
j'P, 7 (0)

implies (H). The validity of last condition can be simply verified in many concrete situations,
and it seems that slightly better estimates can be obtained only in the case of very special
equations of the form (1.1). We would also like to point out that the condition (H) need
not to be satisfied, in general. Using (5.23), the inequality ||A'R(pu; : A)---R(u : A)|| <
I+ [pall|R(pa = A -+ A+ |pul[|R(par = A)]) T €N, pa, ...,y € C), as well as the continuity of
mappings A — P, RA>wand A — Aijl, RA > w, for 0 < j < n -1, we obtain the existence
of a positive polynomial p(-) such that

|2 + illAfolll <p(lhe™HF, Ri> w. (5.25)
2

In what follows, we will use the following family of kernels. Define, for every I > 0, the entire
function w;(-) by w;(1) := H;":l(l + (IM/p%)), A € C, where s := o7!. Then it is clear that
(V)] > sup Tl + (IA/p°)] > supe TTs-lIM/p° > sup, g (IAD*/p!, A € C, RA > 0.
Hence, wi(1)| 2 eMD, )\ € C, R > 0, where M(A) := sup,, In|A]P/p!*, L € C\ {0} and
M(0) := 0. It is also worth noting that, for every { € (0,7r/2), p € Ny and A € X5 /2)+¢, we have
1+ (IA/p%)| > ISA|/p® = 1(1 + tang)_1|A|/ps, and

Jr

> oM(I(1+tan ¢) M A])
wi(h)] > e ;o se(03

), 150, L€ Sy (5.26)

Put now K;(t) := £7Y(1/wi(1))(t), t > 0,1 > 0. Then, for every I > 0, 0 € supp K;, K;(0) =0
and K;(t) is infinitely differentiable for ¢+ > 0. By Theorem 3.5(i)-(b) and (iii), we easily infer
from (5.25) that there exists k > 0 such that, for every | > k, there exists an exponentially
bounded Kj-regularized I-resolvent family (E;(t)), for (1.1), with Y = X = E. Furthermore,
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the mapping t — E;(t), t > 0 is infinitely differentiable in the uniform operator topology of
L(E) and, for every compact set K C [0, o0) and for every I > k, there exists hx; > 0 such that

lEro]
—_— co.

sup -
p>0,teK p!

(5.27)

One can similarly construct examples of exponentially bounded, analytic K;-regularized I-
resolvent families.
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