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We introduce new implicit and explicit algorithms for finding the fixed point of a k-strictly
pseudocontractive mapping and for solving variational inequalities related to the Lipschitzian and
stronglymonotone operator inHilbert spaces.We establish results on the strong convergence of the
sequences generated by the proposed algorithms to a fixed point of a k-strictly pseudocontractive
mapping. Such a point is also a solution of a variational inequality defined on the set of fixed
points. As direct consequences, we obtain the unique minimum-norm fixed point of a k-strictly
pseudocontractive mapping.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be a
nonempty closed convex subset of H and S : C → C a self-mapping on C. We denote by
Fix(S) the set of fixed points of S. We recall that a mapping T : C → H is said to be k-strictly
pseudocontractive if there exists a constant k ∈ [0, 1) such that

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + k

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C. (1.1)

Note that the class of k-strictly pseudocontractive mappings includes the class of
nonexpansive mappings T on C (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C) as a subclass.
That is, T is nonexpansive if and only if T is 0-strictly pseudocontractive. Recently, many
authors have been devoting their studies to the problems of finding fixed points for k-strictly
pseudocontractive mappings; see [1–5] and the references therein.

Variational inequalities have been studied widely and are being used as a mathemat-
ical programming tool in modeling a wide class of problems arising in several branches
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of pure and applied sciences; see [6–8]. For general variational inequalities and extended
general variational inequalities, we can refer to [9–13] and references therein.

A variational inequality (VI) is formulated as finding a point x̃ with the property

x̃ ∈ C such that
〈

Fx̃, p − x̃
〉 ≥ 0, ∀p ∈ C, (1.2)

where F : C → H is a nonlinear mapping. It is well known that VI (1.2) is equivalent to the
fixed point equation

x̃ = PC(I − λF)x̃, (1.3)

where λ > 0 and PC is the the metric projection of H onto C, which assigns, to each x ∈ H,
the unique point in C, denoted by PCx, such that

‖x − PCx‖ = inf
{∥
∥x − y

∥
∥ : y ∈ C

}

. (1.4)

Therefore, fixed point algorithms can be applied to solve VI (1.2). It is also well known
that if F is ρ-Lipschitzian and η-strongly monotone with constants ρ, η > 0 (i.e., there exist
ρ, η ≥ 0 such that ‖Fx − Fy‖ ≤ ρ‖x − y‖ and 〈Fx − Fy, x − y〉 ≥ η‖x − y‖2, x, y ∈ C, resp.),
then, for small enough λ > 0, the mapping PC(I − λF) is a contractive mapping on C and so
the sequence {xn} of Picard iterates, given by xn = PC(I −λF)xn−1 (n ≥ 1), converges strongly
to the unique solution of VI (1.2).

This sort of VI (1.2) where F is ρ-Lipschitzian and η-strongly monotone and where
solutions are sought from the set of fixed points of a nonexpansive mapping is originated
from Yamada [14], who provided the hybrid method for solving VI (1.2). In order to find
solutions of ceratin variational inequality problems defined on the set of fixed points of
nonexpansive mappings, several iterative algorithms were studied bymany authors; see [15–
24] and the references therein.

In this paper, we investigate the following variational inequality (VI) as a special
form of VI (1.2), where the constraint set is the fixed points of a k-strictly pseudocontractive
mapping T : finding a point x̃ with property

x̃ ∈ Fix(T) such that
〈(

μF − γV
)

x̃, p − x̃
〉 ≥ 0, ∀p ∈ Fix(T), (1.5)

where T : C → C is a k-strictly pseudocontractive mapping with Fix(T)/= ∅ for some k ∈
[0, 1), F : C → H is a ρ-Lipschitzian and η-strongly monotone mapping with constants
ρ, η > 0, and V : C → H is an l-Lipschitzian mapping with constant l ≥ 0 and μ, γ > 0.
Indeed, variational inequalities of form (1.5) cover several topics recently considered in the
literature, including monotone inclusions, convex optimization, and quadratic minimization
over fixed point sets; see [2–4, 15, 18, 19, 21, 22, 24] and the references therein. For some
iterative methods and some results related to our approach about VI (1.5), we can refer to
[25–31] and references therein.

The main purpose of the present paper is to further study the hierarchical fixed point
approach to the VI of form (1.5). First, we introduce new implicit and explicit algorithms
for finding the fixed point of the k-strictly pseudocontractive mapping T . Then, we establish
results on the strong convergence of the sequences generated by the proposed algorithms
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to a fixed point of the mapping T , which is also a solution of VI (1.5) defined on the set of
fixed points of T . As direct consequences, we obtain the unique minimum-norm fixed point
of T . Namely, we find the unique solution of the quadratic minimization problem: ‖x̃‖2 =
min{‖x‖2 : x ∈ Fix(T)}.

2. Preliminaries and Lemmas

Throughout this paper, when {xn} is a sequence inH, xn → x (resp., xn ⇀ x) denotes strong
(resp., weak) convergence of the sequence {xn} to x.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that f :
C → H is called a contractive mapping with constant α ∈ (0, 1) if there exists a constant
α ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ α‖x − y‖, for all x, y ∈ C.

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such
that

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ C. (2.1)

PC is called the metric projection of H to C. It is well known that PC is nonexpansive and that,
for x ∈ H,

z = PCx ⇐⇒ 〈

x − z, y − z
〉 ≤ 0, ∀y ∈ C. (2.2)

In a Hilbert space H, we have

∥
∥x − y

∥
∥
2 = ‖x‖2 + ∥

∥y
∥
∥
2 − 2

〈

x, y
〉

, ∀x, y ∈ H. (2.3)

We need the following lemmas for the proof of our main results.

Lemma 2.1. In a real Hilbert spaceH, the following inequality holds:

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, x + y
〉

, ∀x, y ∈ H. (2.4)

Lemma 2.2 (see [32]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnδn, ∀n ≥ 0, (2.5)

where {λn} ⊂ (0, 1) and {δn} satisfy the following conditions:

(i) limn→∞ λn = 0,

(ii)
∑∞

n=0 λn = ∞,

(iii) lim supn→∞δn ≤ 0 or
∑∞

n=0 λnδn < ∞.

Then, limn→∞ sn = 0.
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Lemma 2.3 (see [33]). Let {xn} and {zn} be bounded sequences in a Banach space E and {γn} a
sequence in [0, 1] that satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1. (2.6)

Suppose that xn+1 = γnxn + (1 − γn)zn for all n ≥ 0 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (2.7)

Then, limn→∞‖zn − xn‖ = 0.

Lemma 2.4 (Demiclosedness principle [34]). Let C be a nonempty closed convex subset of a real
Hilbert spaceH and S : C → C a nonexpansive mapping with Fix(S)/= ∅. If {xn} is a sequence in C
weakly converging to x and {(I − S)xn} converges strongly to y, then (I − S)x = y; in particular, if
y = 0, then x ∈ Fix(S).

Lemma 2.5 (see [14, 16]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Assume that the mapping G : C → H is monotone and weakly continuous along segments, that is,
G(x + ty) → G(x) weakly as t → 0. Then, the variational inequality

x̃ ∈ C,
〈

Gx̃, p − x̃
〉 ≥ 0, ∀p ∈ C, (2.8)

is equivalent to the dual variational inequality

x̃ ∈ C,
〈

Gp, p − x̃
〉 ≥ 0, ∀p ∈ C. (2.9)

Lemma 2.6 (see [5]). Let H be a real Hilbert space and C a closed convex subset of H. If T is a k-
strictly pseudocontractive mapping on C, then the fixed point set Fix(T) is closed convex, so that the
projection PFix(T) is well defined.

Lemma 2.7 (see [5]). Let H be a Hilbert space, C a closed convex subset of H, and T : C → H a
k- strictly pseudocontractive mapping. Define a mapping S : C → H by Sx = λx + (1 − λ)Tx for all
x ∈ C. Then, as λ ∈ [k, 1), S is a nonexpansive mapping such that Fix(S) = Fix(T).

The following lemma can be easily proven, and, therefore, we omit the proof.

Lemma 2.8. Let H be a real Hilbert space. Let V : H → H be an l-Lipschitzian mapping with
constant l ≥ 0 and F : H → H a ρ-Lipschitzian and η-strongly monotone mapping with constants
ρ, η > 0. Then, for 0 ≤ γl < μη,

〈(

μF − γV
)

x − (

μF − γV
)

y, x − y
〉 ≥ (

μη − γl
)∥
∥x − y

∥
∥
2
, ∀x, y ∈ C. (2.10)

That is, μF − γV is strongly monotone with constant μη − γl.

The following lemma is an improvement of Lemma 2.9 in [4] (see also [14]).
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Lemma 2.9. Let H be a real Hilbert space H. Let F : H → H be a ρ-Lipschitzian and η-strongly
monotone mapping with constants ρ, η > 0. Let 0 < μ < 2η/ρ2 and 0 < t < ξ ≤ 1. Then, R := ρI −
tμF : H → H is a contractive mapping with constant ξ − tτ , where τ = 1 −

√

1 − μ(2η − μρ2) < 1.

Proof. First we show that I − μF is strictly contractive. In fact, by applying the ρ-Lipschitz
continuity and η-strongly monotonicity of F and (2.3), we obtain, for x, y ∈ H,

∥
∥
(

I − μF
)

x − (

I − μF
)

y
∥
∥
2 =

∥
∥
(

x − y
) − μ

(

Fx − Fy
)∥
∥
2

=
∥
∥x − y

∥
∥
2 − 2μ

〈

Fx − Fy, x − y
〉

+ μ2∥∥Fx − Fy
∥
∥
2

≤ ∥
∥x − y

∥
∥
2 − 2μη

∥
∥x − y

∥
∥
2 + μ2ρ2

∥
∥x − y

∥
∥
2

=
(

1 − μ
(

2η − μρ2
))∥

∥x − y
∥
∥
2
,

(2.11)

and so

∥
∥
(

I − μF
)

x − (

I − μF
)

y
∥
∥ ≤

√

1 − μ
(

2η − μρ2
)∥
∥x − y

∥
∥. (2.12)

Now, noting that R := ξI − tμF = (ξ − t)I − t(μF − I), from (2.12), we have, for x, y ∈ H,

∥
∥Rx − Ry

∥
∥ =

∥
∥(ξ − t)

(

x − y
) − t

((

μF − I
)

x − (

μF − I
)

y
)∥
∥

≤ (ξ − t)
∥
∥x − y

∥
∥ + t

∥
∥
(

μF − I
)

x − (

μF − I
)

y
∥
∥

≤ (ξ − t)
∥
∥x − y

∥
∥ + t

√

1 − μ
(

2η − μρ2
)∥
∥x − y

∥
∥

=
(

ξ − t

(

1 −
√

1 − μ
(

2η − μρ2
)
))

∥
∥x − y

∥
∥

= (ξ − tτ)
∥
∥x − y

∥
∥.

(2.13)

Hence, R is a contractive mapping with constant ξ − tτ .

3. Iterative Algorithms

Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let T : C → C
be a k-strictly pseudocontractive mapping with Fix(T)/= ∅ for some 0 ≤ k < 1, F : C → H a
ρ-Lipschitzian and η-strongly monotone mapping with constants ρ, η > 0, and V : C → H
an l-Lipschitzian mapping with constant l ≥ 0. Let 0 < μ < 2η/ρ2 and 0 < γl < τ , where

τ = 1 −
√

1 − μ(2η − μρ2) < 1. Let S : C → C be a mapping defined by Sx = kx + (1 − k)Tx
and PC a metric projection ofH onto C.

In this section, we introduce the following algorithm that generates a net {xt}t∈(0,1) in
an implicit way:

xt = SPC

[

tγVxt +
(

I − tμF
)

xt

]

. (3.1)
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We prove the strong convergence of {xt} as t → 0 to a fixed point x̃ of T , which is a solution
of the following variational inequality:

〈(

μF − γV
)

x̃, p − x̃
〉 ≥ 0, ∀p ∈ Fix(T). (3.2)

We also propose the following explicit algorithm, which generates a sequence in an explicit
way:

xn+1 = βnxn +
(

1 − βn
)

SPC

[

αnγVxn +
(

I − αnμF
)

xn

]

, ∀n ≥ 0, (3.3)

where {αn}, {βn} ⊂ (0, 1) and x0 ∈ C is an arbitrary initial guess, and we establish the strong
convergence of this sequence to a fixed point x̃ of T , which is also a solution of the variational
inequality (3.2).

3.1. Strong Convergence of the Implicit Algorithm

Now, for t ∈ (0, 1), consider a mapping Qt : C → C defined by

Qtx = SPC

[

tγVx +
(

I − tμF
)

x
]

, ∀x ∈ C. (3.4)

It is easy to see that Qt is a contractive mapping with constant 1 − t(τ − γl). Indeed, by
Lemma 2.9, we have

∥
∥Qtx −Qty

∥
∥ ≤ tγ

∥
∥Vx − Vy

∥
∥ +

∥
∥
(

I − tμF
)

x − (

I − tμF
)

y
∥
∥

≤ tγl
∥
∥x − y

∥
∥ + (1 − tτ)

∥
∥x − y

∥
∥

=
(

1 − t
(

τ − γl
))∥
∥x − y

∥
∥.

(3.5)

Hence, Qt has a unique fixed point, denoted by xt, which uniquely solves the fixed point
equation (3.1).

We summarize the basic properties of {xt}.

Proposition 3.1. Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let
T : C → C be a k-strictly pseudocontractive mapping with Fix(T)/= ∅ for some 0 ≤ k < 1, F : C →
H a ρ-Lipschitzain and η-strongly monotone mapping with constants ρ, η > 0, and V : C → H
an l-Lipschitzian mapping with constant l ≥ 0. Let 0 < μ < 2η/ρ2 and 0 < γl < τ , where τ =

1 −
√

1 − μ(2η − μρ2) < 1. Let S : C → C be a mapping defined by Sx = kx + (1 − k)Tx and PC a
metric projection of H onto C. Let {xt} be defined via (3.1). Then,

(i) {xt} is bounded for t ∈ (0, 1),

(ii) limt→ 0‖xt − Sxt‖ = 0,

(iii) xt defines a continuous path from (0, 1) in C.
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Proof. (i) Let p ∈ Fix(T). Observing Fix(T) = Fix(S) by Lemma 2.7, we have

∥
∥xt − p

∥
∥ =

∥
∥SPC

[

tγVxt +
(

I − tμF
)

xt

] − SPCp
∥
∥

≤ ∥
∥t
(

γVxt − μFp
)

+
(

I − tμF
)

xt −
(

I − tμF
)

p
∥
∥

≤ (1 − tτ)
∥
∥xt − p

∥
∥ + t

(

γl
∥
∥xt − p

∥
∥ +

∥
∥
(

γV − μF
)

p
∥
∥
)

.

(3.6)

So, it follows that

∥
∥xt − p

∥
∥ ≤

∥
∥
(

γV − μF
)

p
∥
∥

τ − γl
. (3.7)

Hence, {xt} is bounded and so are {Vxt}, {Sxt}, and {Fxt}.
(ii) By the boundedness of {Vxt} and {Fxt} in (i), we have

‖xt − Sxt‖ =
∥
∥SPC

[

tγVxt +
(

I − tμF
)

xt

] − SPCxt

∥
∥

≤ t
∥
∥
(

γV − μF
)

xt

∥
∥ −→ 0 as t −→ 0.

(3.8)

(iii) Let t, t0 ∈ (0, 1), and calculate

‖xt − xt0‖ =
∥
∥SPC

[

tγVxt +
(

I − tμF
)

xt

] − SPC

[

t0γVxt0 +
(

I − t0μF
)

xt0

]∥
∥

≤ ∥
∥(t − t0)γVxt + t0γ(Vxt − Vxt0) − (t − t0)μFxt +

(

I − t0μF
)

xt −
(

I − t0μF
)

xt0

∥
∥

≤ |t − t0|γ‖Vxt‖ + t0γl‖xt − xt0‖ + |t − t0|
∥
∥μFxt

∥
∥ + (1 − t0τ)‖xt − xt0‖.

(3.9)

It follows that

‖xt − xt0‖ ≤ γ‖Vxt‖ + μ‖Fxt‖
t0
(

τ − γl
) |t − t0|. (3.10)

This shows that xt is locally Lipschitzian and hence continuous.

We establish the strong convergence of the net {xt} as t → 0, which guarantees the
existence of solutions of the variational inequality (3.2).

Theorem 3.2. Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let T :
C → C be a k-strictly pseudocontractive mapping with Fix(T)/= ∅ for some 0 ≤ k < 1, F : C → H
a ρ-Lipschitzain and η-strongly monotone mapping with constants ρ, η > 0, and V : C → H
an l-Lipschitzian mapping with constant l ≥ 0. Let 0 < μ < 2η/ρ2 and 0 < γl < τ , where τ = 1 −
√

1 − μ(2η − μρ2) < 1. Let S : C → C be a mapping defined by Sx = kx+(1−k)Tx and PC a metric
projection of H onto C. The net {xt} defined via (3.1) converges strongly to a fixed point x̃ of T as
t → 0, which solves the variational inequality (3.2), or, equivalently, one has PF(T)(I−μF+γV )x̃ = x̃.
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Proof. We first show the uniqueness of a solution of the variational inequality (3.2), which is
indeed a consequence of the strong monotonicity of μF − γV . In fact, noting that 0 ≤ γl < τ
and μη ≥ τ ⇔ ρ ≥ η, it follows from Lemma 2.8 that

〈(

μF − γV
)

x − (

μF − γV
)

y, x − y
〉 ≥ (

μη − γl
)∥
∥x − y

∥
∥
2
. (3.11)

That is, μF − γV is strongly monotone for 0 ≤ γl < τ ≤ μη. Suppose that x̃ ∈ Fix(T) and
x̂ ∈ Fix(T) both are solutions to (3.2). Then, we have

〈(

μF − γV
)

x̃, x̂ − x̃
〉 ≥ 0,

〈(

μF − γV
)

x̂, x̃ − x̂
〉 ≥ 0.

(3.12)

Adding up (3.12) yields

〈(

μF − γV
)

x̃ − (

μF − γV
)

x̂, x̃ − x̂
〉 ≤ 0. (3.13)

The strong monotonicity of μF − γV implies that x̃ = x̂ and the uniqueness is proved.
Next, we prove that xt → x̃ as t → 0. To this end, set yt = PC[tγVxt + (I − tμF)xt] for

all t ∈ (0, 1). Then, observing Fix(T) = Fix(S) by Lemma 2.7, we have xt = Syt and for any
p ∈ Fix(T)

∥
∥xt − p

∥
∥ ≤ ∥

∥yt − p
∥
∥. (3.14)

Also it follows that

∥
∥yt − xt

∥
∥ =

∥
∥xt − PC

[

tγVxt +
(

I − tμF
)

xt

]∥
∥

≤ t
[

γ‖xt‖ + μ‖Fxt‖
] −→ 0 as t −→ 0.

(3.15)

Since PC is the metric projection fromH onto C, we have, for given p ∈ Fix(T),

∥
∥yt − p

∥
∥
2 =

〈

PC

[

tγVxt +
(

I − tμF
)

xt

] − (

tγVxt +
(

I − tμF
)

xt

)

, yt − p
〉

+
〈

tγVxt +
(

I − tμF
)

xt − p, yt − p
〉

≤ 〈

tγVxt +
(

I − tμF
)

xt − p, yt − p
〉

=
〈

tγVxt − tμFp, yt − p
〉

+
〈(

I − tμF
)

xt −
(

I − tμF
)

p, yt − p
〉

≤ (1 − tτ)
∥
∥xt − p

∥
∥
∥
∥yt − p

∥
∥ + t

〈

γVxt − μFp, yt − p
〉

.

(3.16)

It follows that

∥
∥yt − p

∥
∥
2 ≤ 1

τ

〈

γVxt − μFp, yt − p
〉

=
1
τ

(

γ
〈

Vxt − Vp, yt − p
〉

+
〈(

γV − μF
)

p, yt − p
〉)

≤ 1
τ

(

γl
∥
∥xt − p

∥
∥
∥
∥yt − p

∥
∥ +

〈(

γV − μF
)

p, xt − p
〉)

.

(3.17)
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By (3.14), this implies

∥
∥yt − p

∥
∥
2 ≤ 1

τ − γl

〈(

γV − μF
)

p, yt − p
〉

=
1

τ − γl

〈(

μF − γV
)

p, p − yt

〉

, (3.18)

and hence

∥
∥xt − p

∥
∥
2 ≤ 1

τ − γl

〈(

μF − γV
)

p, p − yt

〉

. (3.19)

Since {xt} is bounded as t → 0 (by Proposition 3.1 (i)), we see that if {tn} is a subsequence
in (0, 1) such that tn → 0 and xtn ⇀ x̃, then, from (3.15), we have ytn ⇀ x̃. By Proposition 3.1
(ii), limn→∞(I − S)xtn = 0. By Lemmas 2.4 and 2.7, x̃ ∈ Fix(T). Therefore, we can substitute x̃
for p in (3.19) to obtain

‖xtn − x̃‖2 ≤ 1
τ − γl

〈(

μF − γV
)

x̃, x̃ − ytn

〉

. (3.20)

Consequently, the weak convergence of {ytn} to x̃ yields that {xtn} → x̃ strongly. Now we
show that x̃ solves the variational inequality (3.2). Again, observe (3.19) and take the limit as
n → ∞ to obtain

∥
∥x̃ − p

∥
∥
2 ≤ 1

τ − γl

〈(

μF − γV
)

p, p − x̃
〉

, ∀p ∈ Fix(T). (3.21)

Hence x̃ solves the following variational inequality:

〈(

μF − γV
)

p, p − x̃
〉 ≥ 0, ∀p ∈ Fix(T), (3.22)

or the equivalent dual variational inequality (see Lemmas 2.5 and 2.8)

〈(

μF − γV
)

x̃, p − x̃
〉 ≥ 0, ∀p ∈ Fix(T). (3.23)

Moreover, if {tj} is another subsequence in (0, 1) such that tj → 0 and xtj ⇀ x̂, then we also
have ytj ⇀ x̂ from (3.15). By the same argument, we can show that x̂ ∈ Fix(T) and x̂ solves
the variational inequality (3.2); hence x̂ = x̃ by uniqueness. In sum, we have shown that each
cluster point of {xt} (at t → 0) equals x̃. Therefore xt → x̃ as t → 0.

The variational inequality (3.2) can be rewritten as

〈(

I − μF + γV
)

x̃ − x̃, p − x̃
〉 ≤ 0, ∀p ∈ Fix(T). (3.24)
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By reminding the reader of (2.2) and Lemma 2.6, this is equivalent to the fixed point equation

PF(T)
(

I − μF + γV
)

x̃ = x̃. (3.25)

From Theorem 3.2, we can deduce the following result.

Corollary 3.3. Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let
T : C → C be a k-strictly pseudocontractive mapping with Fix(T)/= ∅ for some 0 ≤ k < 1. For each
t ∈ (0, 1), let the net {xt} be defined by

xt = SPC(1 − t)xt, ∀t ∈ (0, 1), (3.26)

where S : C → C is a mapping defined by Sx = kx + (1 − k)Tx and PC is a metric projection of
H onto C. Then the net {xt} defined via (3.26) converges strongly, as t → 0, to the minimum-norm
point x̃ ∈ Fix(T).

Proof. In (3.19) with F ≡ I, V ≡ 0, l = 0, μ = 1, and τ = 1, letting t → 0 yields

∥
∥x̃ − p

∥
∥
2 ≤ 〈

p, p − x̃
〉

, ∀p ∈ Fix(T). (3.27)

Equivalently,

〈

x̃, p − x̃
〉 ≥ 0, ∀p ∈ Fix(T). (3.28)

This obviously implies that

‖x̃‖2 ≤ 〈

p, x̃
〉 ≤ ∥

∥p
∥
∥‖x̃‖, ∀p ∈ Fix(T). (3.29)

It turns out that ‖x̃‖ ≤ ‖p‖ for all p ∈ Fix(T). Therefore, x̃ is minimum-norm point of Fix(T).

3.2. Strong Convergence of the Explicit Algorithm

Now, using Theorem 3.2, we show the strong convergence of the sequence generated by the
explicit algorithm (3.3) to a fixed point x̃ of T , which is also a solution of the variational
inequality (3.2).

Theorem 3.4. Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let T :
C → C be a k-strictly pseudocontractive mapping with Fix(T)/= ∅ for some 0 ≤ k < 1, F : C → H
a ρ-Lipschitzain and η-strongly monotone mapping with constants ρ, η > 0, and V : C → H
an l-Lipschitzian mapping with constant l ≥ 0. Let 0 < μ < 2η/ρ2 and 0 < γl < τ , where τ =

1 −
√

1 − μ(2η − μρ2) < 1. Let S : C → H be a mapping defined by Sx = kx + (1 − k)Tx and
PC a metric projection of H onto C. For any given x0 ∈ C, let {xn} be the sequence generated by the
explicit algorithm (3.3), where {αn} and {βn} satisfy the following conditions:
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(C1) limn→∞ αn = 0,

(C2)
∑∞

n=0 αn = ∞,

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then, {xn} converges strongly to x̃ ∈ Fix(T), which is the unique solution of the variational inequality
(3.2).

Proof. First, from condition (C1), without loss of generality, we assume that αn(τ −γl) < 1 and
αn < (1 − βn) for n ≥ 0. From now, we put yn = SPCun and un = αnγVxn + (I − αnμF)xn.

We divide the proof several steps.

Step 1. We show that ‖xn − p‖ ≤ max{‖x0 − p‖, ‖(γV − μF)p‖/(τ − γl)} for all n ≥ 0 and all
p ∈ Fix(T) = Fix(S). Indeed, let p ∈ Fix(T). Then, from Lemma 2.9, we have

∥
∥yn − p

∥
∥ =

∥
∥SPCun − SPCp

∥
∥

≤ ∥
∥αn

(

γVxn − μFp
)

+ βn
(

xn − p
)

+
((

1 − βn
)

I − αnμF
)

xn −
((

1 − βn
)

I − αnμF
)

p
∥
∥

≤ (

1 − βn − αnτ
)∥
∥xn − p

∥
∥ + βn

∥
∥xn − p

∥
∥ + αn

∥
∥γVxn − μFp

∥
∥

≤ (1 − αnτ)
∥
∥xn − p

∥
∥ + αn

(∥
∥γVxn − γVp

∥
∥ +

∥
∥
(

γV − μF
)

p
∥
∥
)

≤ (

1 − (

τ − γl
)

αn

)∥
∥xn − p

∥
∥ + αn

∥
∥
(

γV − μF
)

p
∥
∥.

(3.30)

Thus, it follows that

∥
∥xn+1 − p

∥
∥ ≤ βn

∥
∥xn − p

∥
∥ +

(

1 − βn
)∥
∥yn − p

∥
∥

≤ βn
∥
∥xn − p

∥
∥ +

(

1 − βn
)(

1 − αn

(

τ − γl
))∥
∥xn − p

∥
∥ +

(

1 − βn
)

αn

∥
∥
(

γV − μF
)

p
∥
∥

=
(

1 − αn

(

1 − βn
)(

τ − γl
))∥
∥xn − p

∥
∥ + αn

(

1 − βn
)(

τ − γl
)

∥
∥
(

γV − μF
)

p
∥
∥

τ − γl

≤ max

{

∥
∥xn − p

∥
∥,

∥
∥
(

γV − μF
)

p
∥
∥

τ − γl

}

.

(3.31)

Using an induction, we have ‖xn − p‖ ≤ max{‖x0 − p‖, ‖(γV − μF)p‖/(τ − γl)}. Hence, {xn} is
bounded, and so are {yn}, {un}, {Vxn}, {Sxn}, and {Fxn}.

Step 2. We show that limn→∞‖xn+1 − xn‖ = 0. Indeed, from (3.3), we observe

∥
∥yn+1 − yn

∥
∥ = ‖SPCun+1 − SPCun‖
≤ ∥
∥αn+1γVxn+1 +

(

I − αn+1μF
)

xn+1 −
(

αnγVxn +
(

I − αnμF
)

xn

)∥
∥

=
∥
∥αn+1γ(Vxn+1 − Vxn) + γ(αn+1 − αn)Vxn

+
(

I − αn+1μF
)

xn+1 −
(

I − αn+1μF
)

xn + μ(αn+1 − αn)Fxn

∥
∥

≤ (

1 − αn+1
(

τ − γl
))‖xn+1 − xn‖ +M|αn+1 − αn|,

(3.32)
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where M = sup{γ‖Vxn‖ + μ‖Fxn‖ : n ≥ 0}. Thus, it follows that

∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖ ≤ − αn+1

(

τ − γl
)‖xn+1 − xn‖ +M|αn+1 − αn|, (3.33)

which implies, from condition (C1), that

lim sup
n→∞

(∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (3.34)

Hence, by Lemma 2.3, we have

lim
n→∞

∥
∥yn − xn

∥
∥ = 0. (3.35)

Consequently, from condition (C3), it follows that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(

1 − βn
)∥
∥yn − xn

∥
∥ = 0. (3.36)

Step 3. We show that limn→∞‖xn − Sxn‖ = 0. Indeed, we have

‖xn − Sxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Sxn‖
= ‖xn+1 − xn‖ +

∥
∥βn(xn − Sxn) +

(

1 − βn
)(

yn − Sxn

)∥
∥

≤ ‖xn+1 − xn‖ + βn‖xn − Sxn‖ +
(

1 − βn
)∥
∥yn − SPCxn

∥
∥

≤ ‖xn − xn+1‖ + βn‖xn − Sxn‖ +
(

1 − βn
)

αn

∥
∥
(

γV − μF
)

xn

∥
∥,

(3.37)

that is,

‖xn − Sxn‖ ≤ 1
1 − βn

‖xn+1 − xn‖ + αn

∥
∥
(

γV − μF
)

xn

∥
∥. (3.38)

This together with conditions (C1) and (C3) and Step 2 implies

lim
n→∞

‖xn − Sxn‖ = 0. (3.39)

Step 4. We show that

lim sup
n→∞

〈(

γV − μF
)

x̃, un − x̃
〉 ≤ 0, (3.40)

where x̃ = limt→ 0 xt with xt being defined by (3.1). (We note that, from Theorem 3.2, x̃ ∈
Fix(T) and x̃ is the unique solution of the variational inequality (3.2)). To show this, we can
choose a subsequence {xnj} of {xn} such that

lim
j→∞

〈(

γV − μF
)

x̃, xnj − x̃
〉

= lim sup
n→∞

〈(

γV − μF
)

x̃, xn − x̃
〉

. (3.41)
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Since {xn} is bounded, there exists a subsequence {xnji
} of {xnj}, which converges weakly to

w. Without loss of generality, we can assume that xnj ⇀ w. Since ‖xn − Sxn‖ → 0 by Step 3,
we obtainw = Sw by virtue of Lemma 2.4. From Lemma 2.7, we havew ∈ Fix(T). Therefore,
from (3.2), it follows that

lim sup
n→∞

〈(

γV − μF
)

x̃, xn − x̃
〉

= lim
j→∞

〈(

γV − μF
)

x̃, xnj − x̃
〉

=
〈(

γV − μF
)

x̃, w − x̃
〉 ≤ 0.

(3.42)

We notice that, by condition (C1),

‖un − xn‖ ≤ αn

∥
∥
(

μF − γV
)

xn

∥
∥ −→ 0 as n −→ ∞. (3.43)

Hence, from (3.42), we obtain

lim sup
n→∞

〈(

γV − μF
)

x̃, un − x̃
〉 ≤ 0. (3.44)

Step 5. We show that limn→∞‖xn − x̃‖ = 0, where x̃ = limt→ 0 xt with xt being defined by (3.1),
and x̃ is the unique solution of the variational inequality (3.2). Indeed, we observe that

‖un − x̃‖ ≤ ‖xn − x̃‖ + αn

∥
∥
(

γV − μF
)

xn

∥
∥. (3.45)

Therefore, from the convexity of ‖ · ‖2, (3.3), and Lemma 2.1, we have

‖xn+1 − x̃‖2 ≤ βn‖xn − x̃‖2 + (

1 − βn
)∥
∥yn − x̃

∥
∥
2

≤ βn‖xn − x̃‖2 + (

1 − βn
)‖un − x̃‖2

≤ βn‖xn − x̃‖2 + (

1 − βn
)∥
∥
(

I − αnμF
)

xn −
(

I − αnμF
)

x̃
∥
∥
2

+ 2
(

1 − βn
)

αn

〈

γVxn − μFx̃, un − x̃
〉

≤ βn‖xn − x̃‖2 + (

1 − βn
)

(1 − αnτ)2‖xn − x̃‖2
+ 2

(

1 − βn
)

αn

[〈

γVxn − γV x̃, un − x̃
〉

+
〈(

γV − μF
)

x̃, un − x̃
〉]

≤
[

βn +
(

1 − βn
)(

1 − 2αnτ + α2
nτ

2
)]

‖xn − x̃‖2 + 2
(

1 − βn
)

αnγl‖xn − x̃‖‖un − x̃‖
+ 2

(

1 − βn
)

αn

〈

γV x̃ − μFx̃, un − x̃
〉

≤
[

1 − (

1 − βn
)(

2αnτ − α2
nτ

2
)]

‖xn − x̃‖2 + 2
(

1 − βn
)

αnγl‖xn − x̃‖2

+ 2
(

1 − βn
)

α2
nγl‖xn − x̃‖∥∥(γV − μF

)

xn

∥
∥ + 2

(

1 − βn
)

αn

〈(

γV − μF
)

x̃, un − x̃
〉

≤ [

1 − 2
(

1 − βn
)(

τ − γl
)

αn

]‖xn − x̃‖2 + α2
nτ

2‖xn − x̃‖2

+ 2α2
nγl‖xn − x̃‖∥∥(γV − μF

)

xn

∥
∥ + 2

(

1 − βn
)

αn

〈(

γV − μF
)

x̃, un − x̃
〉

≤ [

1 − 2(1 − b)
(

τ − γl
)

αn

]‖xn − x̃‖2 + αn

(

αnτ
2M2

1 + 2αnγlM1M2

)

+ 2
(

1 − βn
)

αn

〈(

γV − μF
)

x̃, un − x̃
〉

= (1 − λn)‖xn − x̃‖2 + λnδn,

(3.46)
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where 0 < b = lim supn→∞ βn < 1, M1 = sup{‖xn − x̃‖ : n ≥ 0}, M2 = sup{‖γVxn − μFxn‖ :
n ≥ 0}, λn = 2(1 − b)(τ − γl)αn, and

δn =
1

(1 − b)
(

τ − γl
)

(

αnτ
2M2

1

2
+ αnγlM1M2 +

(

1 − βn
)〈(

γV − μF
)

x̃, un − x̃
〉

)

. (3.47)

From conditions (C1), (C2), and (C3) and Step 4, it is easy to see that λn → 0,
∑∞

n=0 λn = ∞
and lim supn→∞δn ≤ 0. Hence, by Lemma 2.2, we conclude that xn → x̃ as n → ∞. This
completes the proof.

From Theorem 3.4, we can also deduce the following result.

Corollary 3.5. Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let
T : C → C be a k-strictly pseudocontractive mapping with Fix(T)/= ∅ for some 0 ≤ k < 1. For each
x0 ∈ C, let the sequence {xn} be defined by

xn+1 = βnxn +
(

1 − βn
)

SPC(1 − αn)xn, ∀n ≥ 0, (3.48)

where S : C → C is a mapping defined by Sx = kx + (1 − k)Tx and PC is a metric projection of H
onto C. If {αn} and {βn} satisfy conditions (C1), (C2), and (C3) in Theorem 3.4, then the sequence
{xn} defined via (3.48) converges strongly, as n → ∞, to the minimum-norm point x̃ ∈ Fix(T).

Proof. VI (3.2) is reduced to the inequality

〈

x̃, p − x̃
〉 ≥ 0, ∀p ∈ Fix(T). (3.49)

This is equivalent to ‖x̃‖2 ≤ 〈p, x̃〉 ≤ ‖p‖‖x̃‖ for all p ∈ Fix(T). It turns out that ‖x̃‖ ≤ ‖p‖ for
all p ∈ Fix(T) and x̃ is the minimum-norm point of Fix(T).

Remark 3.6. We point out that our algorithms (3.1) and (3.3) are new ones different from those
in the literature (see [2–4, 15, 18, 21, 22] and references therein).

4. Conclusion and Future Directions

In this paper, we have introduced new implicit and explicit algorithms for finding fixed points
of a k-strictly pseudocontractive mapping and for solving a certain variational inequality
and have established strong convergence of the proposed algorithms to a fixed point of the
mapping, which is a solution of a certain variational inequality, where the constraint set is
the fixed points of the mapping. As direct consequences, we have considered the quadratic
minimization problem on the set of fixed points of the mapping.

In forthcoming studies, we will consider implicit and explicit algorithms for solving
some variational inequalities, where the constraint set is the common set of the set of fixed
points of the mapping and the set of solutions of the equilibrium problem.

We hope that the ideas and techniques of this paper may stimulate further research in
this field.
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