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The pseudoparabolic regularization technique is employed to study the local well-posedness of
strong solutions for a nonlinear dispersive model, which includes the famous Camassa-Holm
equation. The local well-posedness is established in the Sobolev space H*(R) with s > 3/2 via
a limiting procedure.

1. Introduction

In recent years, extensive research has been carried out worldwide to study highly nonlinear
equations including the Camassa-Holm (CH) equation and its various generalizations [1-6].
It is shown in [7-9] that the inverse spectral or scattering approach is a powerful technique
to handle the Camassa-Holm equation and analyze its dynamics. It is pointed out in [10-12]
that the CH equation gives rise to geodesic flow of a certain invariant metric on the Bott-
Virasoro group, and this geometric illustration leads to a proof that the Least Action Principle
holds. Li and Olver [13] established the local well-posedness to the CH model in the Sobolev
space H*(R) with s > 3/2 and gave conditions on the initial data that lead to finite time
blow-up of certain solutions. Constantin and Escher [14] proved that the blow-up occurs in
the form of breaking waves, namely, the solution remains bounded but its slope becomes
unbounded in finite time. Hakkaev and Kirchev [15] investigated a generalized form of the
Camassa-Holm equation with high order nonlinear terms and obtained the orbit stability
of the traveling wave solutions under certain assumptions. Lai and Wu [16] discussed a
generalized Camassa-Holm model and acquired its local existence and uniqueness. Recently,
Lietal. [17] investigated the generalized Camassa-Holm equation

Uy — Upex + K™ty + (M +3) "™ uy = (M + 2) U™ty + "™ iy, (1.1)
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where m > 0 is a natural number and k > 0. The authors in [17] assume that the initial value
satisfies the sign condition and establish the global existence of solutions for (1.1).
In this paper, we will study the following generalization of (1.1):

m+1

Uy — Upex + K™ty + (M + 3) "y = (1 + 2) U™ ety + U™ My + MU — Uyy), (1.2)

where m > 0 is a natural number, k > 0, and A is a constant.

The objective of this paper is to study the local well-posedness of (1.2). Its local well-
posedness of strong solutions in the Sobolev space H®(R) with s > 3/2 is investigated by
using the pseudoparabolic regularization method. Comparing with the work by Li et al.
[17], (1.2) considered in this paper possesses a conservation law different to that in [17]
(see Lemma 3.2 in Section 3). Also (1.2) contains a dissipative term A(u — uyy), which
causes difficulty to establish its local and global existence in the Sobolev space. It should
be mentioned that the existence and uniqueness of local strong solutions for the generalized
nonlinear Camassa-Holm models like (1.2) have never been investigated in the literatures.

The organization of this work is as follows. The main result is given in Section 2.
Section 3 establishes several lemmas, and the last section gives the proof of the main result.

2. Main Result

Firstly, we introduce several notations.

LP = IP(R) (1 £ p < +oo) is the space of all measurable functions h such that
||h||z,, = [glh(t,x)Pdx < oo. We define L* = L*(R) with the standard norm ||h];.. =
inf,,(e)=0 supxeR\e|h(t, x)|. For any real number s, H* = H*(R) denotes the Sobolev space with
the norm defined by

it = ([ (ee) freofa) < @)

where h(t, ) = [, e h(t, x)dx.

For T > 0 and nonnegative number s, C([0,T); H*(R)) denotes the Frechet space of all
continuous H*-valued functions on [0,T). We set A = (1 - 6%)1/2. For simplicity, throughout
this paper, we let ¢ denote any positive constant that is independent of parameter .

We consider the Cauchy problem of (1.2)

_ k m+1 m+3/ .0 1 5/ w2
ut_utxx__m+1<u )x_m+2<u >x+m+26x(u )
—(m+1)0, <umui> + UM Uy + MU — Uyy), k>0, m>0, (2.2)

u(0, x) = up(x).

Now, we give our main results for problem of (2.2).
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Theorem 2.1. Suppose that the initial function ug(x) belongs to the Sobolev space H*(R) with s >

3/2 and \ is a constant. Then, there is a T > 0, which depends on ||uo|| s, such that problem (2.2) has
a unique solution u(t, x) satisfying

u(t,x) € C([0,T); H*(R)) [ C' ( [0,T); Hs-l(R)). (2.3)

3. Local Well-Posedness

In order to prove Theorem 2.1, we consider the associated regularized problem

Up = Upex + Ellgrrxx = —ﬁ (um“)x - Z_:i <um+2>x — 253 ( m+2>
= (4 0B (W) + " it + M = ), (3.1)

u(0,x) = u(x),

where the parameter ¢ satisfies 0 < e < 1/4.

Lemma 3.1. For s > 1 and f(x) € H*(R) and letting ki > 0 be an integer such that k; < s -1,
f, f',..., fk are uniformly continuous bounded functions that converge to 0 at x = +oo.

The proof of Lemma 3.1 was stated on page 559 by Bona and Smith [18].

Lemma 3.2. If u(t,x) € H*(s > 7/2) is a solution to problem (3.1), it holds that

JR (u + U + el >dx IR <ué +us + su%xx> dx + 2\ JZ JR <u2 + ui)dx. (3.2)

Proof. Using Lemma 3.1, we have u(t, £00) = u,(t,£00) = tyy(t,£00) = Uyyx(t, £00) = 0. The
integration by parts results in

J U Uy dx = f U™ A = U U TP~ (m+ 2) f Mty dx
. . (3.3)
=—-(m+2) f ot dax.
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Direct calculation and integration by parts give rise to

%% f (uz +u+ gu§x>dx
R

= f (Uths + UxUpy + EUxxUpyy)AX
R

= J‘ u(ut — Upxx + gutxxxx)dx

R
k " 3/ m 1 "
<[ g (), R (), e i (e?)

(3.4)

—(m+1)0, <umui> + UM Uy U + MU — uxx)] dx
= IR u [(m + 2)U M U Uy + um”uxxx] dx+ ) IR <u2 - uuxx>dx
= IR [(m +2) U™ U + u"”zuxxx] dx+ 1A ’[R <u2 + ui) dx

=\ IR <u2 + ui)dx,

in which we have used (3.3). From (3.4), we obtain the conservation law (3.2). O

Lemma 3.3. Let s > 7/2. The function u(t, x) is a solution of problem (3.1) and the initial value
uo(x) € H®. Then, the following inequality holds:

Il < [ (1848 +ud)ax, 1<0

(3.5)
”u”%[l < eZMJ‘ (u% + uéx + euéxx>dx, lfJ\ > 0.
R
For q € (0,5 — 1], there is a constant c independent of € such that
1)’ 1,1\ 2
f (A’7+ u) dx < f [(Aq+ u0> + e(ATugxy) ]dx
R R
(3.6)

t
2 -1 -1 2
+ cf a1 (M (Ul el ) ot + Dl el ) .
0
For q € [0, s — 1], there is a constant c independent of € such that

-1 -1 2
(1= 26) el g0 < laelggon (11 + (Ul + el ) el s+l Pl o + el aea 2 )
(3.7)
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The proof of this lemma is similar to that of Lemma 3.5 in [17]. Here we omit it.

Lemma 3.4. Let r and q be real numbers such that —r < q < r. Then,

o1
luollpe < cllullgrllolpge,  if r> 57
(3.8)

) 1
luoligrare < cllullgeliolie, <.

This lemma can be found in [19] or [20].

Lemma 3.5. Let up(x) € H*(R) with s > 3/2. Then, the Cauchy problem (3.1) has a unique
solution u(t,x) € C([0,T]; H*(R)), where T > 0 depends on ||uo||psr)- If s > 7/2, the solution
u € C([0, +o0); H®) exists for all time.

Proof. Letting D = (102 +£3%)”", we know that D : H® — H* is a bounded linear
operator. Applying the operator D on both sides of the first equation of system (3.1) and
then integrating the resultant equation with respect to t over the interval (0, t), we get

ult) =t f:) v [_%@mﬂ)x ) Z—:i (), + ml+ 70 (1) (39)

—(m +1)0y <umu§> + UM Uy Uy + MU — uxx)] dt.

Suppose that both u and v are in the closed ball By, (0) of radius M, about the zero function in
C([0,T]; H°(R)) and A is the operator in the right-hand side of (3.9). For any fixed ¢t € [0, T],
we obtain

[Py ), - 3 () ()

—(m +1)0y <umu§> + U Uy Uy + MU — uxx)] dt

t k X . o
_,[OD[_m+1(vm 1>x _2—3@ 2>x+m1+26§f<” )

—(m + 1)ax <'Umv325> + vmvxvxx + )‘(U - '()xx)] dt

(3.10)

Hs

um+1 _ ym+l

v um+2 _ m+2

_+ sup v

H*  ogper

< TC1<SUP | - vllggs + sup

0<t<T 0<t<T Hs

+sup
0<I<T

Doy [umui - vmvi]

Hs + sup ”D[umuxuxx - vmvxvxx] ”H5>/
0<t<T
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where C; may depend on ¢. The algebraic property of H* (R) with sy > 1/2 derives

|| um+2 _ z)m+2

. ”(u—v)(uerl +umv+-~-+uv’”+v"’+1>|
s

Hs

m+1

m+1-j
<@ =)= 5 el o]
j=0

i
Hs’

< Mg*Hju = ol

(3.11)

m+1l _ vm+1

[ < Mol

H

||Dax <umu§ - v’”vi)

[ < [Pa: (=) + [[Pox ez —em]]

(i)

< CMI*Hu = vl -

+
Hs-1

2
v =on,.)

Using the first inequality of Lemma 3.4 gives rise to
1
ID [t txthsx — O™ Ox Vx| || s = ” §D[um (ui)x -o" (’()i)x]

< H(lpl(e-)

(i),

2
x

Hs

o 1P1(e2) 0o |
P [CORCES | P

2
2 = o)

)

< C (I

2
U, —

Hs1

< CM [ = o,
(3.12)
where C may depend on ¢. From (3.11)-(3.12), we obtain

|Au — Aol < 0llu - vl|gs, (3.13)

where 0 = TCz(Mg‘ + Mg“l) and C; is independent of 0 < t < T. Choosing T sufficiently
small such that 6 < 1, we know that A is a contraction. Similarly, it follows from (3.10) that

[ Aullggs < [luoll s + Ollull - (3.14)

Choosing T sufficiently small such that Mg + ||uo|| ;7 < Mo, we deduce that A maps By, (0)
to itself. It follows from the contraction-mapping principle that the mapping A has a unique
fixed point u in By, (0). It completes the proof. O
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From the above and Lemma 3.2, we have

fR <u2 +ul + euix>dx < e IR <u§ +ud + su(z)xx>dx. (3.15)

Therefore,

[t < Cgezl)‘“J <ué + Ul + 5”§xx> dx, (3.16)
R

which together with Lemma 3.3 completes the proof of the global existence.
Setting ¢.(x) = e /4p(e7/*x) with 0 < ¢ < 1/4 and u,g = ¢, * up, we know that
Uz € C* for any ug € H® s > 0. From Lemma 3.5, it derives that the Cauchy problem

_ k m+l m+3 /.0 L 5/ me2
ut_utxx+5utxxxx—_m+1<u >x_m<u >x+m+26x<u >
— (m+1)0y (umui> + UM U U + MU — Uyy), (3.17)
u(0,x) = ugp(x), x€R,
has a unique solution u,(t, x) € C*([0, 00); H*®) .
Furthermore, we have the following.
Lemma 3.6. For s > 0,uy € H®, it holds that
UeOx |l S Cl|UOx || oo r .
[[tc0x| = < cllutox]| (3.18)
lucollge <c, ifq<s, (3.19)
llteolljge < c€® D4, if g > s, (3.20)
lltteo — Uo || pge < € P/4, if g<s, (3.21)
lluco — uoll s = 0(1), (3.22)

where c is a constant independent of e.

The proof of Lemma 3.6 can be found in [16].
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Remark 3.7. For s > 1, using lluell < clltellyper < cliellp, el < ¢ [ + u2)dx, (3.5),
(3.19), and (3.20), we know that,

e < el < e [ (s 4ad + eni ) dx
R
< Cemlt(”usolliﬁ + £||u50||§{2>

< ce'“'t(c +CE X 5(5‘2)/2>

(3.23)

< C062|)L|t,

where ¢y is independent of € and .

Lemma 3.8. Suppose ug(x) € H°(R) with s > 1 such that ||uox||;» < oo. Let ug be defined as in
system (3.17). Then, there exist two positive constants T and c, which are independent of €, such that
the solution u, of problem (3.17) satisfies ||uzx|| - < c forany t € [0,T).

Here we omit the proof of Lemma 3.8 since it is similar to Lemma 3.9 presented in
[17].

Lemma 3.9 (see Li and Olver [13]). Ifuand f are functions in HT™ N {||uy || < oo}, then

-

1
coll el g€ (5:1]-
q (oo el el .

el Mol + sl sl )

q € (0, 0).

<3 (3.24)

’[R AN (uf) dx

Lemma 3.10 (see Lai and Wu [16]). For u,v € H*(R) withs > 3/2, w=u—-v,q>1/2,and a
natural number n, it holds that

IR ASwA® (u"” - v"+1>xdx

< (0l el a2l e + N0y )- (3.25)

Lemma 3.11 (see Lai and Wu [16]). If1/2 < g <min{1,s—-1} and s > 3/2, then for any functions
w, f defined on R, it holds that

< cllwlall £l o (3.26)

‘ IR ANwAT?(wf) dx

| f AwAT? (wyfx) dx| < cllwlliga || £l - (3.27)
R
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Lemma 3.12. For problem (3.17), s > 3/2, and ug € H*(R), there exist two positive constants c and
M, which are independent of €, such that the following inequalities hold for any sufficiently small ¢
and t € [0,T):

l[ttell g < Me®,
l[ttell oo < €774 Me”, Ky >0, (3.28)

otet|| ooty < e ®DAMES, Ky > 1.

Slightly modifying the methods presented in [16] can complete the proof of
Lemma 3.12.

Our next step is to demonstrate that u, is a Cauchy sequence. Let u, and us be solutions
of problem (3.17), corresponding to the parameters € and 6, respectively, with0 < e < 6 < 1/4,
and let w = u, — us. Then, w satisfies the problem

(1 - E)wt — EWxxt + (6 - 5) (uﬁt + uﬁxxt)

= (1 - 6i>_1 [—swt + (6 - €)ugt — %69( <u2’”1 - ug’”> — 0y <u2”+2 - ug"”)

(3.29)
— 0, [ax (1) oxt0 + 0 (1 - u;"”)axué]
m m 1 m m
+ [ug UexUexx — Ug uéxuéxx]] - max <u5 2 Ug +2> + \w,
w(x,0) = wo(x) = ue(x) — ugo(x). (3.30)

Lemma 3.13. For s > 3/2, uy € H*(R), there exists T > 0 such that the solution u. of (3.17) is a
Cauchy sequence in C([0,T]; H*(R)) N C1([0,T]; H*"Y(R)).

Proof. For qwith1/2 < g <min{1,s—1}, multiplying both sides of (3.29) by A9wA? and then
integrating with respect to x give rise to

%% f R[(1 ~ ) (A'w)? + e(ATw, )| dx

=(e-0) IR(Aqw) [(ATust) + (Augxyt)]dx — € IR AwAT2w,dx

X

1
5 Aq-y AG—2 1 Aq Aq(,,m+2 m+2 1
( 6‘) IR w UstdXx 5 IR( u’) <ue Ug ) X
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-2 1 1 -2 2 2
IR ANwAT <u’g’+ —ug” )xdx—j NwAT <u£”+ —ug” >xdx

m+1 R

- JR ANwAT? [ax <u;’”1> 6xw] xdx - IR ANwAT? [ax (u;"” - ug“l)axuﬁ] xdx

+ J ANIWAT? [ U U — UL UsxUsxx| dx + )Lf ATwMNwdx.
R R

(3.31)
It follows from the Schwarz inequality that

% f[a — &) (A w)? + 5(Aqwx)2]dx

ol

< c{ [ AT20]| > [(6 — &) (|ATust |2 + [|ATugxxt ] 12) + SHAq_zwt”Lz s (6—e) ||Aq‘2u5t

+ A f (Aw)?* dx +
R

q qf,m+2 _  m+2
IRA wA <u€ ug )xdx

U ANwAT? <u;"+1 - ug”l)xdx + f ANwAT? <u;”+2 - ug‘+2> xdx|

+ +

fR NN [0, (™ = ) dus| dx

JR ATwAT? [6x <u§”+1 ) 6xw] xdx

+ f ANIWAT [ U Uerr — ug”ugxugxx]dx' }
R

(3.32)

Using the first inequality in Lemma 3.9, we have

= U ANwA (wgp1) dx
R

f ANwA1 <u§”+2 - ug”z) dx
R * (3.33)

< C”w”%{q ”gm+1”Hq+“

where g4 = Z;":Bl uznﬂ_j ué. For the last three terms in (3.32), using Lemmas 3.4 and 3.12,

1/2 < g < min{1,s — 1}, s > 3/2, the algebra property of H® with sy > 1/2, and (3.23),
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we have

< cllwl i luellit?, (3.34)

JR AwAT? <6x <u;”+1> (3xw> xdx

JR AwAT2? <ax (ug”l - ug”l ) axu5>xdx

1 1 3.35
< clloll sl e = 7| (339
2
< cllwlyallus 11
f ANIwWAT2 [ U Uy — U Us Usxx | AX
R
2 2 2
< clleolls | e =) () +u[ude=ad,] ||
< cllwllps (|| -y (2,) ||+ [z -22d] | )
x Il H9-1 x Il H9-2 (336)
< c||w||Hq<||um —ul|| <u2 ) + || ' [uz - u? ] )
£ 6 WHa ex ) M pat 6 IWHs £x ox g2
2
< clle0ll g0 (110l | g | o el + [142 | g Nt + el gl )
2 2
< clleol (Nl ol + [0 et + el )-
Using (3.26), we derive that the inequality
f Aqu"‘2<uZ’+2—ug”+2> dx| = U Aquq‘z(wgm+1)xdx
R x R (3.37)

< C||gm+1 ”Hq”w”%{q

holds for some constant ¢, where g1 = Z;";f)l u ”{5' Using the algebra property of HY

with g >1/2, g+ 1 < s and Lemma 3.11, we have |||l ;o1 < ¢ for t € (0, T]. Then, it follows
from (3.28) and (3.33)—(3.37) that there is a constant ¢ depending on T such that the estimate

% fR[(l — &) (ATw)? + s(A‘?wx)2]dx < C<6Y||w||Hq + ||w||§+,) (3.38)
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holds for any t € [0,T), where y = 1if s >3 +gand y = (1 +s - q)/4 if s < 3 + . Integrating
(3.38) with respect to t, one obtains the estimate

1
holl =3 [ (oorax
< f [(1 — &) (Aw)? + g(Aqw)z] dx (3.39)
R
t
< [ [0 + ettt dx v [ (57wl + oy, )
R 0
Applying the Gronwall inequality and using (3.20) and (3.22) yield
l[tall g < 6D 46t 4 67 (e~ 1) (3.40)

forany t € [0,T).
Multiplying both sides of (3.29) by A*wA® and integrating the resultant equation with
respect to x, one obtains

2 = J [(1 — &) (A*w)? + e(Awy) ]dx
=(e-0) ’[ (AN°w)[(A’ust) + (Augyxt)]dx — sf ASwAS?w,dx
R R

k
— s s-2 o~ s s m+1 m+1
+ (6 g)f N*wAN " usdx 1 f (A°w)A <u€ - ug )xdx

(3.41)
I (Asw)As< m+2 _ m+2> dx — f ASTWAS™ 2( m+2 _ m+2> dx
m+2 R o
_ s 5-2 m+1 _ s 5-2 m+1 m+1
JRA wA\ [ax <u€ >6xw]xdx IRA wA\ [ax (uE — Ug >6xu5]xdx
+ I ASwAS2 (Ul Uexterx — UL UsK US| AX + )Lf (Asw)2dx.
R R
From Lemma 3.12, we have
J ANwA* 2( ul"? ug"+2) dx| < cs|| gme || e 10l s (3.42)
R X
From Lemma 3.10, it holds that
fR A (w2 —up?) dx| < (ool ol lusllpgon + ol ). (3:43)
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Using the Cauchy-Schwartz inequality and the algebra property of H* with so > 1/2, for
s >3/2, we have

IR ANSwA2 [ax <u6m+1 ) axw] xdx

JR A2 [0, (w2 ) o] dx

< el A%l (3.49)

oo

12

< clloll g |2 (2 )220,

< cf eyttt

IR ASwA2 [6x <u2”+1 - uZ‘”) axug] xdx|

< cl|wl e ||AS-2 [ax (1 - ug"+1)axu5]x (3.45)

12

< cllusllpge | gmll 10l

f NSWAT? U U U — UL U U | dx
R

m|,,2 2
[l e -],

2
< clleoll g (|| ezt =) (2, )

Hs2

H> (3.46)

Hs2 >

< clleollge (lle =42 W | (s2) ||+ Mo [ = 2]

< cllwlf.,

in which we have used Lemma 3.4 and the bounded property of |[u.||gs and ||us|/gs (see
Remark 3.7). It follows from (3.41)—(3.46) and the inequalities (3.28) and (3.40) that there
exists a constant ¢ depending on m such that

% IR [(1 — &) (Nw)? + g(Aswx)z]dx

< 26<||u5f||H5 + |[ttxt | s + ”AS_zwt“L2 * ”As_zu&'D”wHHs (3.47)

2
+ (Il + el ol s 5

2
< e(8" lwllyge + ol ),
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where y; = min(1/4, (s—q—1)/4) > 0. Integrating (3.47) with respect to ¢ leads to the estimate

ol < [ [a-eraw? e, ax

, (3.48)
< [ [+ etaron?dr +c [ (67wl + ol )
R 0
It follows from the Gronwall inequality and (3.48) that
1/2
llew]| s < <ZI [(Aswo)2 + 5(Asw0x)2]dx) e+ (e - 1)
R (3.49)
< c1(Jlwollyse + 87 4)et + 67 (e - 1),
where ¢; is independent of € and 6.
Then, (3.22) and the above inequality show that
lwllgs — 0 ase—0, 6—0. (3.50)

Next, we consider the convergence of the sequence {u,}. Multiplying both sides of (3.29) by
A1, AS7! and integrating the resultant equation with respect to x, we obtain

1
(1- g)Hwt”%{s—l + m IR <A5_1wt>AS—1 <u£n+2 _ ug1+2)xdx

+ IR [—5 <AS‘1wt> (As‘lwxxt> +(6-¢) <A5_1wt>As_1(u5t + ugxxt)] dx
= J‘R (As‘lwt>AS"3 [—swt + (6 — €)ugt — %ax <u2”+1 - ug”l) — Oy <u£"+2 - ug”’“z)
— Oy [6x (uf”)@,cw + Oy (uZ‘” - u€m+1>6xu5]

+ Ul Ugxthorx — ug”ugxu(sxx]] dx + .)Lf A A5 wodx.
R
(3.51)

It follows from inequalities (3.28) and the Schwartz inequality that there is a constant
¢ depending on T and m such that

2 1/2 2
(1= )l < (82 + wollgy + ewlly-y et e + elleonl (3.52)
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Hence

1
Sl < (1= 2€) [l

(3.53)
< c(82 + lltwllgge + leollgen )leorll e,

which results in

1
Sl < (824 ol + 1l )- (3.54)

It follows from (3.40) and (3.50) that w; — 0 as e, 6 — 0 in the H*! norm. This
implies that u, is a Cauchy sequence in the spaces C([0,T); H*(R)) and C([0,T); H*"'(R)),
respectively. The proof is completed. O

4. Proof of the Main Result

We consider the problem

(1 - &)uy — etprx = <1 - a§>_1 [_ k <um+1>x _ m_+3<um+2)x + 1 & <um+2>

m+1 m+2 m+2 "

(4.1)

—(m+1)0, <umui> + UM U U | + Aut,

u(0,x) = ugp(x).

Letting u(t, x) be the limit of the sequence u, and taking the limit in problem (4.1) ase¢ — 0,
from Lemma 3.13, we know that u is a solution of the problem

w=(1-8) [ (), e (), g ()

—(m+1)0, (umui) + umuxuxx] +\u, (42)

M(O, x) = uO(x)/

and hence u is a solution of problem (4.2) in the sense of distribution. In particular, if s > 4,
u is also a classical solution. Let u and v be two solutions of (4.2) corresponding to the same
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initial value ug such that u, v € C([0,T); H*(R)). Then, w = u—v satisfies the Cauchy problem

_(1-2) o, |-k _m#3 1
wt_<1 6x) O mal e m+2wgm+1+m+26x(wgm+l)

-0, (um”)axw -0y <u’”+1 - vm”)axv

+ UM Uy U — vmvxvxx} + \w,

w(0,x) =0.
(4.3)

For any 1/2 < g < min{1,s — 1}, applying the operator A9wA1 to both sides of (4.3) and
integrating the resultant equation with respect to x, we obtain the equality

1d o (e aafa [ K m+3 1,
g0l = [ Ar0nr2{o, |-t~ g + s (wgn)

—0yx <u’"”>axw — 0y <u"”1 - v"’”)@,cv +uM Uy (4.4)

2
e L
By the similar estimates presented in Lemma 3.13, we have

w3 < &l (4.5)
dt

Using the Gronwall inequality leads to the conclusion that

w0l e <Oxe® =0 (4.6)

for t € [0,T). This completes the proof.
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