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We consider a strongly coupled predator-prey model with one resource and two consumers, in
which the first consumer species feeds on the resource according to the Holling II functional
response, while the second consumer species feeds on the resource following the Beddington-
DeAngelis functional response, and they compete for the common resource. Using the energy
estimates and Gagliardo-Nirenberg-type inequalities, the existence and uniform boundedness
of global solutions for the model are proved. Meanwhile, the sufficient conditions for global
asymptotic stability of the positive equilibrium for this model are given by constructing a
Lyapunov function.

1. Introduction

The principle of competitive exclusion asserts that two or more consumer species cannot
coexist indefinitely upon a single limiting resource, which dates back to the pioneering work
of Volterra [1] in the 1920s. Subsequently, Ayala [2] in 1969 demonstrated experimentally that
two species of Drosophila can coexist upon a single limiting resource. Ayala’s experiments
have received much attention (see the comprehensive survey by Cantrell and Cosner
[3]). Schoener [4] in 1976 found that intraspecific interference among consumers may
lead to coexistence of multiple consumer species upon a single resource. To examine
more closely the implications of feeding interference among conspecific consumers on
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consumer-resource dynamics, Cantrell et al. [5] in 2004 proposed the following predator-prey
system:

@—ru<1—£>— auv Auw

dt K 1+bu 1+ Bu+Dw’

dv eu

sy ) BT 1.1
dr o( l+l+bu>’ (1)

d_w—w _L+L
dr 1+Bu+Dw)’

wherer,a,b,e,1,A,B,D,E,L, and K are positive constants, u(t) represents the density of the
limiting resource at time t,v(t) and w(t) denote two consumers species. The first consumer
species feeds upon the resource according to the Holling II functional response, while
the second consumer species feeds upon the resource following the Beddington-DeAngelis
functional response, and they compete for the common resource. For more details on the
backgrounds about this system see [5].

The system (1.1) has a positive equilibrium E-= (11, 0, W) under the suitable conditions,
where

-1 e /o u\_ A o . (E-BL)i-L
W= U—a{ru<1 K) o (E-BL)# L]}, W=——F— (12)

The Jacobian matrix of the system (1.1) at E can be written as

~ apip diz ais
]<E> = axn axn ax ), (1.3)

as1 asy ass

where
~| ru abo ABw ail

anlr=u|——+ ~2+ — ~— | a12:——~<0,

K 1+b)> (1+Bii+Dw) 1+bu

Au(l+ Bu 0 Ew(1+ Dw
a3 = —”(N—+”32 <0, an=———>0, an= w(N—+ui)2 >0, (14)

(1+ Bu + Dw) (1+bu) (1+ Bu + Dw)
DEutw

as = <0, an = ax =ax =0.

" (1 + Bii + D@)?

The following results were proved in [5]:

(1) the system (1.1) is dissipative;

(2) the positive equilibrium E of (1.1) is locally stable if —(a11 +asz) > 0 and aq1(ai1as3 -
a13as — aaz) — asz(anass — asasz) < 0; and

(3) the positive equilibrium E of (1.1) is globally stable if max{b, B} (K —u) < 1.
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Rescaling the system (1.1) such that

%I—>u, v— v, wrw, ri—t, §|—> a, bKr—b, ér—>A, BK+— B,
D— D, -+—1, (elK)|—>e, é|—>L, @HE
(1.5)
yields
du—u(l—u)— auv_ Auw
dt 1+bu 1+ Bu+Dw’
do eu
= = -1+ — 1.
a = ) (1.6)
dw Eu
E?‘Lw<4+1+Bu+Dw>'
The corresponding weakly coupled reaction-diffusion system for (1.6) is as follows:
w=diAu+u(l—u) - ano__ Auw xeQ, t>0
S 1+bu 1+Bu+Dw’ o
eu
Ut —dZAv+lv<—l+ 1+bu>' xeQ, t>0,
Eu (1.7)

wt=d3Aw+Lw<—1 ), xeQ, t>0,

"1+ Bu+ Dw
oou=0,v=0,w=0, x€0Q, t>0,
u(x,0) =up(x),  v(x,0)=0vo(x),  w(x0) =wp(x), x€Q,
where Q ¢ RYN is a bounded smooth domain, v is the outward unit normal vector of the
boundary 0,0, = 0/0v. The constants di,d,, and d3, called diffusion coefficients, are
positive, and ug(x), vo(x), and wy(x) are nonnegative functions which are not identically

zero. The system (1.7) has a constant positive steady-state solution E* = (u*,v*,w*) if and
only if

e>b, E-B>e-b, DE(e-b-1)-A(e-b)[(E-B)-(e-b)]>0, (1.8)

where

1 U*_e{DE(e—b—l)—A(e—b)[(E—B)—(e—b)]}
- aDE(e - b)?

7

(1.9)
._(E-B)-(e-b)

D(e -b)
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In [6], Hei and Yu proved the following main results.
(1) The equilibrium (u*, v*, w*) of (1.7) is locally asymptotically stable if (1.8) and

DE?[b(e —b-1) —e] + A(e — b)(Be — bE)[(E- B) — (e = b)] < 0 (1.10)

hold.

(2) Let d5 and d;, be fixed positive constants which satisfy dju; > I(e-b—-1)/(1 + b)
and dju; > L(E-B-1)/(1+ B).

Then there exists a positive constant D;, such that (1.7) has no nonconstant positive
solution if dy > Dy, d, > d; and d3 > d}, where 0 = pg < p1 < pp < --- are the eigenvalues of
the operator —A on Q with the homogeneous Neumann boundary condition.

(3) Let d; (i = 1,3) be fixed positive constants. Assume that aj; >0,

. [4d, —4eldy —ed, [D(E-B)-A(E-B-1)] 1
mm{ 1 , DE-B) } > S (1.11)

and (1.8) hold. Furthermore, assume that one of the following conditions is satisfied:

(i) aj, a3, — a3,aj; <0, jt € (U, pns1) for some n > 1, and the sum o, = >, dim E(u;)
is odd;

(i) aj,a5; — a5,a); > 0, ft € (pk, pks1), ft € (Hn, Pns1) for some n > k > 1, and the sum
On = Ditjsq dim E(p;) is odd.

Then there exists a positive constant D5, such that (1.7) has at least one nonconstant positive
solution if d, > D,, where

ay, =-u"+ abo’ + ABw’
11— ezu* EZu* 4
g = DELu*w*
¥ (1+Bur + Dw*)?’
. Aw*
= "
. ELw*(1 + Dw*) (1.12)
az =

1+ Bu* + Dw*)?’

ayds + alydds +\/ (s — aldy)” +dad, alydids
2d,ds ’

=<
11

@y + @dy — (@, ds - ald)? + 4ad alacids
2dvd;

~)

and E(y;) is the eigenspace corresponding to y; in H'(Q).

(4) The bifurcation of nonconstant positive solutions for (1.7) was studied.

In recent years, the SKT type cross-diffusion systems have attracted the attention of
a great number of investigators and have been successfully developed on the theoretical
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backgrounds. The above work mainly concentrate on (1) the instability and stability induced
by cross-diffusion, and the existence of nonconstant positive steady-state solutions [7-14];
(2) the global existence of strong solutions [15-23]; (3) the global existence of weak solutions
based on semidiscretization or finite element approximation [24-30]; and (4) the dynamical
behaviors [18, 19, 31, 32], and so forth. The corresponding SKT type cross-diffusion system
for (1.7) is as follows:

auv Auw

T+bu 1:BusDw €120

u = A (dlu +anu® + apuv + a13uw) +u(l-u) -

eu
1+bu

Uy = A<d21) + AU + AV + zx23vw> + lv(—l + ), xeQ, t>0,
Eu

wy = A <d3w + anuw + anpovw + a33w2> + Lw<—1 + 1+Bu+Dw

>, xeQ, t>0,

oou=0,v=0,w=0, x€0Q, t>0,

u(x,0) = up(x), v(x,0) = vy(x), w(x,0) =wy(x), x€Q,
(1.13)

where a;;(i,j = 1,2,3) are positive constants, a;;(i = 1,2,3) are referred as self-diffusion
pressures, and a;;(i,j = 1,2,3, i#j) are cross-diffusion pressures. The self-diffusion implies
the movement of individuals from a higher to lower concentration region. Cross-diffusion
expresses the population fluxes of one species due to the presence of the other species.
The value of cross-diffusion coefficient may be positive, negative, or zero. The positive
cross-diffusion coefficient denotes the movement of the species in the direction of lower
concentration of another species and negative cross-diffusion coefficient denotes that one
species tends to diffuse in the direction of higher concentration of another species (e.g., [33]).

The local existence of solutions for the system (1.13) is an immediate consequence of a
series of important papers [34-36] by Amann. Roughly speaking, if 1 (x), v (x), and wy(x) in
WF} (Q) with p > n, then (1.13) has a unique nonnegative solution u, v, w € C([0,T), W; Q)N
C*((0,T),C*(Q)), where T € (0,00] is the maximal existence time for the solution. If the
solution (u, v, w) satisfies the estimate

sup{||u(-, Allwi ) 10C Dllw @y 1w Dllwq)  0<t< T} < ®, (1.14)

then T = +oo0. Moreover, if ug(x), vo(x), wo(x) € W;(Q), then u,v,w € C([0, %0), W, (LQ)).
For the following SKT system
w=diA[(1+av+yu)u] +au(l-u-cv), x€Q, t>0,
vy = A[(1 +6v)v] +bv(l-du-v), x€Q, t>0,
P)
Oou=0,v=0, x€0Q, t>0,

u(x,0) = up(x), v(x,0) =v9(x), x€Q,
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Yamada in [23] proposed four open problems:

(1) the global existence of solutions of (P) in the case 6 > 0 and the space dimension
N > 6;

(2) the global existence in the case y = 0;

(3) in order to study the asymptotic behavior of u,v ast — oo need to establish the
uniform boundedness of global solutions; and

(4) the global existence of solutions for the following full SKT system:

w=diA[(1+av+yu)u] +au(l-u-cv), x€Q, t>0,

v =dA[(1+pu+6v)v] +bo(l-du-v), xe€Q, t>0,
(1.15)
oLu=0,0=0, x€0Q, t>0,

u(x,0) = up(x), v(x,0) =1vp(x), x€Q

witha,y,,6 > 0.

Very few global existence results for (1.13) are known. The main purpose of this paper
is to establish the uniform boundedness of global solutions for the system (1.13) in one space
dimension. For convenience, we consider the following system:

auov Auw
w = (dyu + aju® + apuo + a uw> +u(l-u)- - , O0<x<1,t>0,
! <1 1 12 wuw) Aul =) = = T By Dw

eu

Uy = (dzv + Ao UD + T + thgUZU) + lv(—l >, O<x<1, t>0,
XX

+1+bu

Eu

2
wy = <d3w + A31UW + A3VDW + A33W > +Lw( -1+ —————
xx 1+ Bu+ Dw

), O<x<1, t>0,

Up(x,t) = v(x,t) =wye(x,t) =0, x=0,1, t>0,

u(x,0) = up(x), v(x,0) = vy(x), w(x,0) =wy(x), O0<x<l.
(1.16)

We firstly investigate the global existence and the uniform boundedness of the solutions
for (1.16), then prove the global asymptotic stability of the positive equilibrium (u*, v*, w*)
of (1.16) by an important lemma from [37]. The proof is complete and complement to the
uniform convergence theorems in papers [38-40].

It is obvious that (u*, v*, w*) is the unique positive equilibrium of the system (1.16) if
(1.8) holds.

For simplicity, we denote || - ||W;5(0,1) by |- [kpand || - [|r,1) by | - |p- Our main results are
as follows.
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Theorem 1.1. Let ug(x),vo(x), wo(x) € W22(0, 1), (u, v, w) be the unique nonnegative solution of
the system (1.16) in the maximal existence interval [0, T). Assume that

2 2
Bayiaoias1 > anaij; + aj,az,
2 2
8[112(122&32 > azpoy) + ayz2, (117)

2 2
8[113[123&33 > 0303 + 3,13

Then there exist ty > 0 and positive constants M',M which depend on d;, aij (i,j =
1,2,3),a,b,e,1,A,B,D,E and L, such that

Sup{|”('/ t)|1,2/ |U('/ t)|1,2/ |ZU(, t)|1,2 ite (to,T)} < M,/ (118)

max{u(x,t),v(x,t),w(x,t): (x,t) € [0,1] x (t,,T)} < M, (1.19)

and T = +oo. Moreover, in the case that dy,dp,ds > 1, dx/d1,ds/d1 € [d, 3], where d and d are
positive constants, M', M depend on d, d, but do not depend on dy, dy, ds.

Remark 1.2. Since the continuous embedding H'(Q) — L*(Q) holds only in one space
dimension, we can only establish the uniform maximum-norn estimates about time for the
solution in one space dimension.

Theorem 1.3. Assume that all conditions in Theorem 1.1 are satisfied. Assume further that

4cxﬂu*v*w*d1d2d3 > u*M2 (lX[Xz3’U* + ﬁa32w*)2(d1 + 201 M + a;pM + (Xl3M)
+ DCU*MZ (061314* + ﬂaglw*)z(dz + ale + 2rx22M + DC23M) (1-20)
+ ﬂw*M2(a12u* + tXO(21’U*)2(d3 +a31 M + az; M + 2“33M),

DE[(e —=b) -b(e-b-1)] > A(e - b)[(E - B) - (e - b)](B-b), (1.21)

and (1.8) hold, where a = a(1 + bu*)/el, p = A(1 + Bu*)/EL(1 + Dw*), M is given by (1.19).
Then the unique positive equilibrium (u*,v*,w*) of (1.16) is globally asymptotically stable.

Remark 1.4. The system (1.16) has no nonconstant positive steady-state solution if all
conditions of Theorem 1.3 hold.



Examples. The following two examples satisfy all conditions of Theorem 1.3:

2. Global Solutions

Abstract and Applied Analysis

1

an = —, ap =1, ap =1,
4
5

an = =, ap =1, ap = -,
2

az =1, ap =1, as =2,

di,dy,dz > 1;

an =2, ap =1, ap =2,
3 1
a1 = o, an =z ap =1,
as =2, az =2, asz =3,
1 5 2
b=3  e=3 A=z
1 3
B ==, D = - E = 4,
2 4

dy,d, d3 > 1.

(1.22)

In order to establish the uniform Wzl-estimates of the solutions for the system (1.16),
the following Gagliardo-Nirenberg-type inequalities and the corresponding corollary play

important roles (see [38, 41]).

Theorem 2.1. Let Q C R" be a bounded domain with 0Q € C™. For every function u € W*(Q), 1 <
q, r < oo, the derivative Diu (0 < j < m) satisfies the inequality

|Dfu) < c(|Dmu|f|u|}[“ + |u|q>,
P

2.1)

provided one of the following three conditions is satisfied: (1) r < g, (2) 0 < n(r — q)/(mrq) <1,
or (3) n(r — q)/(mrq) = 1 and m — n/q is not a nonnegative integer, where 1/p = j/n+a(l/r -

m/n) + (1 —a)/qforall a € [j/m,1), and the positive constant C depends on n,m, j,q,1, a.
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Corollary 2.2. There exists a universal constant C such that

lul, < c(|ux|;/3|u|§/3 + |u|1>, Yu e W2(0,1), (2.2)
july < C (Jualylul} + [uly), Vi € WE(0,1), 2.3)
juls 2 < C (I P ual)® + uly ), Vu € W10, 1), (2.4)
fualy < C(Juae3 0} + uly),  Vue € WE(O,1). (2.5)

Throughout this paper, we always denote that C is a Sobolev embedding constant or
other kind of universal constant, A;, B;,C; are some positive constants which depend only on
a;j (i,j = 1,2,3),a,b,e,1,A,B,D,E and L,K; are positive constants depending on d;, a;; (i,j =
1,2,3),a,b,e,1,A,B,D,E and L. When dy,d»,ds > 1, d»/dy, ds/dy € [d,d], K; depend on d, d,
but do not depend on dy, dy, ds.

Proof of Theorem 1.1. Taking integration of the three equations in (1.16) over (0,1), respec-
tively, and combining the three integration equalities linearly, we have

di JJ [(el + EL)u + av + Aw]dx < J‘1 [(el + EL)u(1 — u) — alv — ALw]dx. (2.6)
tJo 0

It follows from the Young inequality and the Holder inequality that

1 1
% f [(el + EL)u + av + Aw]dx < Cy — kf [(el + EL)u + av + Aw]dx, (2.7)
0 0

where k = min{l,L}, C; = (k + 1)*(el + EL)/4. So there exist positive constants My and Ty
depending on a,b,e,1, A, B, D, E, and L, such that

1 1 1
f udx,f vdx,f wdx < My, t2>1. (2.8)
0 0 0

Moreover, there exists a positive constant M6 which depends on a,b,e,1,A,B,D,E,L and
L'-norm of uy, vy, wo, such that

1 1 1
J‘ udx,f vdx,f wdx <M, t>0. (2.8)
0 0 0
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Multiplying the first three equations in the system (1.16) by u, v, w, respectively, and
integrating over (0,1), we have

1d (! 1 1
= | Wddx<-d, j uidx - I [(Zanu + apo + a13w)u§ + (ap0y + 1113wx)uux] dx
2dt ), 0 0
1
+j u?dx,
0
1d (! 1 1
o¥ T, f v*dx < —d, f vidx - f [(a21u + 20000 + ap3w) 02 + ay (Uy + azswx)vvx]dx
0 0 0
(2.9)
1
+ e_l v%dx,
bJo
1d (* 1 1
- J‘ wzdx < —dS ’[ w,zcdx - J‘ [(a31u + a30 + 26[33{,0){,0326 + (a31ux + aSZUx)wwx] dx
2dt ), 0 0
EL (!
+ — | w?dx,
B ),

from which it follows that

d (!
T fo <u2 +0% + w2>dx

1 1 el (1 EL (1 1
- df (ui + vi + wi)dx + j Wldx + — j v?dx + — J w?dx - J‘ q(Uy, Ux, Wy)dx
0 0 by B ) 0

d ! 2 2 2\ 4 1 el EL ! 2, .2 2\4 ! d
_ (ux+vx+wx> X+ +3+f (u +0 +w> x — Oq(ux,vx,wx) X,

0 0
(2.10)

N =
IN

IN

where d = min{dy, dy, d3},

q(Uy, Ux, Wy) = anu+ apov + [X13’(,U)ui + (AU + 010U Uy + (AU + 20000 + (1237,0)7)326
+ (a13U + az1W) Uy Wy + (A31U + X320 + 2cx33w)w§ + (A0 + A3W) VWi

(2.11)

It is obvious that g(uy, vy, wy) is a positive definite quadratic form of u,, vy, wy if (1.17) holds.
So (1.17) implies that

1d (fy, 2 jl 2, .2 2 < el EL)J’1 2. .2 2

-— u +v +w )dx<-d| (up+oi+we)dx+ 1+ —+— u”+ v +w)dx.

2dt 0< ) 0( ) b B 0< )
(2.12)
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Now, we proceed in the following two cases.
(i) One hast > 7. The inequality (2.2) implies that |[ulS < C(juy3lul] + [uf$) <

3
CM (luxl3 + M2). So we have J'S uldx > (1/CM§)(I§ u?dx) — M3, and

1 1 3
—f (ui +02 + wi)dx < - ! j <u2 + 0% + w2>dx +3M3. (2.13)
0 9CM§ 0

It follows from (2.12) and (2.13) that

1 3 1
1 el EL
_ 2. .2 2 2, 1 2. .2 2
Sd{ CQI:J‘()(u +v +w>dx] +3M0+d<1+—b +—B )Jl)(u +v +w>dx}.

This means that there exist positive constants 7 and M; depending on d;(i =
1,2,3),a,b,e,1,A,B,D,E, and L, such that

1 1 1
f u2dx,f v2dx,f wldx < My, t>T. (2.15)
0 0 0

When d > 1, M; is independent of d because the zero point of the right-hand side in (2.14)
can be estimated by positive constants independent of d.

(ii) One has t > 0. Repeating estimates in (i) by (2.8)', we can obtain that there exists
a positive constant M) depending on d; (i =1,2,3),a,b,e,1,A,B,D,E, L and the L', L*norm
of ugy, vy, wy, such that

1 1 1
f ude,f vzdx,f w’dx <M, t>0. (2.15)'
0 0 0

When d > 1, M is independent of d.
To estimate |uy|y, |vx|2, |wx |2, we introduce the following scaling;:

i=—, 5=—, W= —, t=dit. (2.16)
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Denoting ¢ = do/d1,n = d3/dy, and using u, v, w, t instead of #, 7, W, 1, respectively, then the
system (1.16) reduces to

U = Py + f(u,v,w), 0<x<1,t>0,

Ut =Qx+g(u,v,w), 0<x<1,t>0,

w = Ry + h(u,v,w), 0<x<1,t>0, (2.17)
Up(x, 1) = vg(x,t) =wye(x,t) =0, x=0,1, t>0,

u(x,0) = tp(x), v(x,0) = Tg(x), w(x,0) =wy(x), 0<x<1,

where P = u+a11u2+a12uv+(x13uw, Q = §v+a21uv+azzv2+a23vw, R = HW+a31UwW +azp0w +
apw?, f(u,0,w) = di'u —u? - (auv/(1 + bdiu)) - (Auw/(1 + Bdyu + Ddiw)), g(u,v,w) =
lv(—al;1 + (eu/ (1 + bdyu))), h(u,v,w) = Lw(—d;1 + (Eu/(1 + Bdiu + Ddyw))).

We still proceed in the following two cases.

(i) One has t > T = dy7y. It is not hard to verify that
1 y

1 1 1
f udx,J‘ vdx,f wdx < Myd7!,
0 0

0

B ! ! 2.18
I uzdx,f vzdx,f w?dx < M1d{2, ( )
0 0 0

P, 1Qh, IRl < AiKady',

where K7 = (1 + g + Tl) + Mldil, A= max{MO, a1 + app + a3, a1 + app + a3, 31 + A3 + 0(33}.
Multiplying the first three equations in (2.17) by P, Q;, Ry, integrating them over the
domain (0, 1), respectively, and then adding up the three integration equalities, we have

1 1 1 1
%y'(t) = - J u?dx — §J vidx - qf widx - J‘ q(us, v, wi)dx
0 0 0 0

1
+ I [(1+2a11u + @120 + azw)u f + apuv f + azuw, f|dx

‘ (2.19)

1
+ f [(¢ + a2iu + 20200 + a3w) V1§ + A VUG + ArzvW; G| dx
0

1
+ J- [(17 + az1u + aznv + 2azw)wih + azywuh + apwoh]dx,
0

where y(t) = f; (P? + Q% + R2)dx. Notice by (1.17) that there exists a positive constant Cs
depending only on a;; (i,j = 1,2,3), such that

q(us, vy, wr) > C3(u + v +w) <uf +0F + wtz) (2.20)
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Thus,

1 1 1 1
ly’(t)g— j ufdx—gf vf‘dx—qj wfdx—C3f (u+v+w)<ut2+vf'+wf‘>dx
2 0 0 0 0

+ f [(1+ 211U + a120 + apzw)us f + apuvy f + arzuw, f]dx
’ 2.21)

1
+ f [(§ + AU + 20000 + AW) Vg + A VUG + a23thg] dx
0

1
+ f [(17 + aziu + apv + 2aw)wih + asywuh + apwoih]dx.
0

Using the Young inequality, Holder inequality, and (2.18), we can obtain the following
estimates:

1 1 1/3 , 4 2/3 1 2/3
j utdx < J udx J uddx SM}/SdIZB j wdx ,
0 0 0 0
1 1 /2 , 4 16 , 4 1/3 1 1/3
f uv’dx < <I uzdx> <I vzdx> <f vsdx> SM%/Bd;MS <f vsdx> ,
0 0 0 0 0

) ) 2/3 , 4 1/3 1 1/3
f wldx < f u*dx J wdx SMf/Sde f wdx ,
0 0 0 0
1 1 1 1
4 1 4
4 5 5 5,5
f uvdxsgf udx+gj vdxggj (u +v>dx.

0 0 0
(2.22)

Applying the above estimates and Gagliardo-Nirenberg-type inequalities to the terms
on the right-hand side of (2.21), we have

—JJ 2dx < — f P2 dx+J‘ fdx,
—gfvfdxg IQ dx+§jlg2dx

—qf widx < - ;lf dx+11f h*dx,
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2.,2 2.2 2 2
ffzdx<j A2 +ut + = AW e LAvw advw
(bch)*  (Bdy)* ~ bdi  Bdi " bBd;

< 1+2(5>2+2<é>2 Mid™+ MY3423 j1u5dx ”
= b B 144 1“1 0
AN s il (s v
+2<b+§>M d; <foudx> ,
1 1 212,.2
el“v
§f deggf d;?0? + dx <¢P|1+
08 o\ (bd:)?
1 1 2722
qJ hzdxgrlf L*d*w* + Flw dx <nlL? 1+<E> Mid*,
0 0 (Bdy)* B
1 1 1
—J ufdx—gf vtzdx—qj widx
0

< - J‘ PZ dx — éf Qxxdx — i”l J‘ Rixdx
a\2 A 2 2 e\?2 2 E ? —4
+{1+2 <E> (3 +¢l 1+(E> +nL7 1+ B Mad,
) 2/3 A 1 1/3
N M}/3d[2/3 <f u5dx> + 2<g + E)M%Bdim <f u5dx> .
0 0

_>2] Ml d_4,

(2.23)

(2.24)

Similarly, we can obtain

1 1 a A
4[0 uf dx < 4[0 U <d;1u +u?+ b_dlv + B—dlw>dx

-2 1 1
i Oudx+§f0uutdx+—f 3dx+2JOuut2dx

(a/bd;)? _[1 E,[l (A/Bd;)? Jl Efl )
s Ovdx+2 Ovutdx+ o Owdx+2 Owutdx

1/3
1 a\2 A - L 3 r2/3 5473 ! 5
—2€[1+<b) +<B> ]Mod + - Mid] o dx

1 1
€
+£I uutdx+2f vuldx + = f wuldx,
0 0

IN

IN
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1 1 a A
2a11J‘ uu f dx < Zallj uut<d u+ut+ —o+ —w)dx
0

0 bd; Bd,
2 1 1 1
ag dy
< 1 f 3dx+ef uuldx + HI u5dx+ef uu?dx
€ 0 0 € Jo 0
2 2 1 2 A2 (1 1
aj,a aj A
+ = 2J‘ uzvdx+€f vutdx + 2 2J‘ uzwdx+sf wuldx
Ebzdl 0 0 SBzdl 0 0

a? ax2  /A\2 1 V3 2 a
<1+ <—> + (—) Mf/?’d;m/s J u’dx + L WPdx
£ b B 0 € Jo

1 1
+25I uutdx+ef vuldx + € wutzdx
0 0

1 1 a A
lezfo ou f dx < alzjo vut<d u+u’+ b—dlv+ B—dlw>dx

ad
<

e (1 a2, (! e (1
—f uvzdx+—f uutdx + =2 u4vdx+—f vuldx
2¢ ) 2 ) 2e ), 2 )

2 2

apa® (1, e ap A2 (1, et o

+ > | vldx+ 5 vutdx + > | vwdx+ 5 | wupdx
2eb2d7 Jo 2 )y 2¢eB%d; Jo 2 Jo

o2 a2/ A\Z 1 V3 5p2
< M2 a A 2/3 3-10/3 5 12 5, 5
S 50 [1+<b> +<B> M7 d; Ovdx +—5€ 0<u +v>dx

e (1 1 e (1
+- | widdx+e| vuddx+ > | wutdx,
2 Jo 0 2Jo

1 1
A
< - i
algfo wu f dx < a13f0 wut<d u+u’+ bdlv+ Bd1w>dx

a2, d; e (1 a2 (1 e (1
< uwzdx + o | wldx+ 2| vrwdx+ = | wuldx
2¢ )y 2 ) 2 )y 2 )
2 2 1 a2, A2 1
a139 20 dx + & 34 w? € 2
+——— | wodx+; vutdx+—2 dx+ = | wuidx
2£b2d1 0 2 0 eBzd 2 0

a3 a\? A\’ 2/3 1-10/3 ! 5 v 2“%3 ! 5 5
52—5[1+<E> +<§> ]M1 d, <J‘Ow dx> +¥J‘O<u +w>dx

1 1 1
€
+—f uufdx+£J‘ wu%dx+zj vuldx,
0 0
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1 1 a A
a fo uvif dx < app J‘o uv; <d1’1u +1u2+ b_dlv + B—dlw>dx
[X d -2 1 1 1
<227 I 3dx+£f uvldx + 12J‘ u5dx+§f uvidx
2¢ )y 2)o 2 ), 2)o

2 2 4l 1 2 A2 4l 1

a,a ap, A

+ 22 2J u2vdx+£f vvidx + —2 2.[ uzwdx+ff woldx
28b2d1 0 2 0 2532611 0 2 0

2 2 1 1/3 2 A
) a\? A 2/3 4-10/3 5 Xy 5
25[1+<b> +<B> :IM1 d, Oudx +2€ wdx

1 1
+£J‘ uvtdx+2J‘ vordx + = f woldx,
0 0

IN

1 1 4 A
a3 f uw; f dx < a3 fo UW; (d{lu 1+ b—dlv + B—d1w>dx

0
2 g2 1 2 1
as.d £ s €
< B Pdx+ 2 | wwldx+ 2| Wldx+ = | wwldx
2e )y 2 ) 25 0 2 )

2 2

apa® (1, et ap A2 (1, et o

+ 5 | wodx+ 3 | vwidx + > | wwdx+ 5 | ww;dx,
2€b2d1 0 2 0 2632d1 0 2 0

ax2 (AN ass w0 (1 v ai; (1
-1 5 5
< — 26 [1+<b> +<E> ]Ml d1 <f0udx> +E udx

1 1
+£J uwtdx+2J‘ vwidx + = J‘ wwidx,
0 0

R R s P L LTy PR

é l (1 + (e/b)) _ £ !
< 3
< Modl + = (X d.X

1 1
0121J uvigdx < az1f uvilv (d;l + i>alx
0 0 bd1

— 2

< vo’dx
2e 0o !

2(1+ (e/b 1 Ve
< az1 1+ (e/b))? M%/3d110/3 <I u5dx> . EJ‘ vv?dx,
2¢ 0 2 )



Abstract and Applied Analysis

1 1
Z[xzzJ‘ v g dx < 2a22J‘ v vtl<d + )dx
0 0 bd;

Gl A+ /D) (1 L f
15

voldx

0

12(1 + b ! v '
a3 (1 + (e/b))? Mf/3d110/3<f v5dx> +e jvvtdx
0

€ 0

1 1
azsj wog dx < cxz3f wvtlv<d;1 + i>dx
0 0 bd1

Py a2, 12d2(1 + (e/b))*
- 2¢

2 P(1+ (e/b))? 1 R
. % (1+ (e/b)) Mf/3d110/3 f Ddx +§f wolds,
0 0

1
€
*wdx + 3 f woldx
0

- 2¢e

1 1
umj vupgdx < aZl,[ U vd(d + )dx
0 0 bd]

a21lzd 2(1+ (e/b))? 3d £ J‘l
2¢

vutdx
0

1/3
. _ P+ (e/b))? M2 (fl v5dx> +£ J‘1 vuydx,
2e 0 2Jo

1 1
a23I thgdx < a23f v wtl<d + i)dx
0 0 bd1

2 lzd—z 1 b 1
< T % (L+(e/ )) v3dx+£f vwfdx
2e 0 2 )y

1/3
. zx2312(1 +(e/b)) M2/3g10/3 <J’1 Ude> L £ Jd vwidx,
2¢ 0 2

0

1 1
rlf wihdx < qf wiw(d;l + i>dx
0 0 Bd,

?L2d?(1+ (E/B))?
- 2¢

1 e (1
wdx + - J‘ wwidx
0 2 )0

17
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n*L*(1+ (E/B))’
2¢

1
Modf’ + gf wwtzdx,
0

1

1
a31f uwih dx < a31f

uw;Lw (d{l + i) dx
0 0

Bd,
a2, L2d;*(1 + (E/B))*

1
€
< wudx + = | ww?dx
2¢ 0 2 )

a2, I2(1+ (E/B))? ! R
< 23 ( 25( ) Mf/SdeB Idex +§f uwfdx,
0

0

1 1
E
agzj vwihdx < ang thLw<d + —>dx

2 1242 2 4 1
. %L "(1+ (E/B)) o dx + gf vwidx

- 2¢e

L2(1+ (E/B ! RaE
. a2,L*(1+ (E/B))* M%/adiw/a(J‘ w5dx> +ff vwkdx,
2¢ 0 2 )

0

1 1
2a33 f wwih dx < 2a33 f w?w;L <d + i)dx
0 Bd,

_ L2 *(1+ (E/B))’
£

a2.1>(1+ (E/B ! o
sl + (E/ )? Mf/BdfOB(J dex> +5J‘ ww;dx,
0 0

- £

1
f dex+eI wwidx
0

1 1 E
az fo wuthdx < d31j wuL (d + §>dx

. cx3lL2d 21+ (E/B))
- 2¢

L*>(1+(E/B
<a31 (1+(E/B))? Mf/3d110/3<fo 54 > Iwu dx,

e (1
w’dx + EI wuldx
0

- 2¢e
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1 1
aszj woth dx < ang wzvtL<dI1 + i>glx
0 Bd

1

szszd 21+ (E/B))
2¢e

22, 12(1 + (E/B)) ! v 1
»L*(1+ (E/B)) M2/34710/3 I wddx +f’[ woldx.
2¢ 0 2Jo

e (1
wdx + = f wvldx
2
0

(2.25)

By the above inequalities and the condition (1.17), we have

1
J‘ [(1 +2a11u + @120 + ar3w)u f + apuoy f + arzuw, fdx
0

1
+ I [(g + ap1U + 2000 + ARW) Vg + A1 VUG + azngtg] dx
0
+ f [( + asiu + aznv + 2as3w) wih + azywuh + apwoh]dx (2.26)
0
_ Cy
< Asf (u+v+ w)(u% +0F + wf)dx + —(1 +&+ q2>M0d1’3
0 £

1/3 1
+ %(1 +d; >M2/3d 4/3 I:f (u +0° +w5>dx] + %f <u5 +0° +w5>dx,
0 0

where 1 is a constant depending only on £(aij) (i,j = 1,2,3). Choose a small enough positive
number £ which depends on a;; (i,j = 1,2,3),a,b,e,1,A,B,D,E, and L, such that Le < Cs.
Substituting inequalities (2.24) and (2.26) into (2.21), one can obtain

2y " < - lj‘ P2 .dx - f Q% dx - J‘: R? dx 227

+ BledIB + BzY + B3K3d{2/3Y2/3 + B4K4d{4/3Y1/3,

where Y = [)(u® + 0% + wd)dx, Ky = (1+ & + )My + (1 + & + p)Myd;!, K3 = M3, Ky =
M23(1+dp?).

Note that

P>anu?, Q>anv’,  R>apw’ (2.28)
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It follows from (2.18) and (2.4) to functions P, Q, R that

1
Y < B5J‘ <P5/2 i Q5/2 n R5/2>dx < B6Kf/zd1'3/2ym n BéKf/zd;‘m,
0

Y12 < BKY2d71/2576 4 B K5/6475/6, (2.29)
Y?3 < BsKad;'y' + BsKY2d*.
Moreover, one can obtain by (2.5) and (2.18) that
1J‘ P? dx—éf Q% dx— = JAR2 dx
XX
0 (2.30)

< -Bymin{1,¢ n)K;*2d*y% + (1 + ¢+ ) K2d;%
Combining (2.27),(2.29), and (2.30), we have

‘3/ ") <- Ay min{1,¢,1}K —4/3d4/3y5/3
+ A1+ 8+ m)Kid;? + Kod;? + K22 4+ KPKad " + K7/ Ky ] (231)

+ AsK32d Py AlKKad Py + AsK P Kad, M0y C.
Multiplying inequality (2.31) by d?, we have

1 . -
Ey’(t) < - Aymin{1,¢ ) K3y
2 1, 15/23-1/2 | 5/31 3-1/3 | 1/5/61 1-1/6 (2.32)
+ A2|(1+¢+n)Ki + Kody' + K)'7d] /7 + K)WKad] /7 + K/ Kyd)

+ AsK}2d] Pyt AlK Kad) Pyt + AsKPKad 0y Ye,

where y = f; [(d1Py)? + (d1Qx)? + (d1Ry)*]dx. The inequality (2.32) implies that there exist
T, > 0 and positive constant MZ depending on d;, a;; (i,j = 1,2,3),a,b,e,1,A,B,D,E,and L,
such that

1 1 1
f (lex)zdx,f (dex)de,f (diR)dx < M,, t>7%. (2.33)
0 0 0

In the case thatdy,d,,ds > 1,¢,n € [d, E], the coefficients of inequality (2.31) can be estimated
by some constants which depend on 4, d, but do not depend on di, ds, ds. So Mz depends
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on a; (i,j = 1,2,3),a,b,e,1,A,B,D,E, L,d, and d, but it is irrelevant to dq,d»,d;, when
dy,dy,ds >1and &,7 € [d,d]. Since

Py P, P, P, Uy
<Qx> = <Qu Qv Qw> <vx > ’ (234)
R, R, Ry, Ry Wy

we can transform the formulations of u,, v,, w, into fraction representations, then distribute
the denominators of the absolute value of the fractions to the numerators item and enlarge
the term concerning with u,, v, or wy to obtain

|dyuy| + |d10x] + |diwy| < C'(|d1 Py| + |[d1Qx| + |d1Ry]), O0<x<1, t>0, (2.35)

where C’ is a constant depending only on ¢,7, aij (i,j = 1,2,3). After scaling back and
contacting estimates (2.33) and (2.35), there exist positive constant M, depending on
d;, i (i,j=1,2,3),a,b,e,l,A,B,D,E,L, and 75 > 0, such that

1 1 1
f uidx,J‘ vidx,J‘ widx <M,, t>m. (2.36)
0 0 0

When dy,dy,dz >1and ¢, 7 € [d, H], M, is independent of dy, d,, ds.

(ii)One has t > 0. Modifying the dependency of the coefficients in inequalities (2.17)-
(2.22), namely, replacing My, M with M{, M, there exists a positive constant M), depending
ond;,aij(i,j=1,2,3),a,bel, A B,D,E,L, and the Wzl—norm of up, vy, wy, such that

1 1 1
J‘ uidx,f Uidx,f widx < M), t>0. (2.36)'
0 0 0

Furthermore, in the case that dy,d,d3 > 1,¢,1 € [d, E], M, depends on d, H, but does not
depend on dy, d, ds.

Summarizing estimates (2.8), (2.15), (2.36) and Sobolev embedding theorem, there
exist positive constants M, M’ depending only on d;,a;; (i,j = 1,2,3),a,b,e,1,A,B,D,E,
and L, such that (1.18) and (1.19) hold. In particular, M, M' depend only on a;; (i,j =
1,2,3),a,b,e,1,A,B,D,E,L,d, and E, but do not depend on di,ds, ds, when di,dp, ds > 1
and ¢, n € [d,d].

Similarly, according to (2.8)", (2.15), (2.36)', there exists a positive constant M"
depending ond;, a;; (i,j =1,2,3),a,b,e,1, A, B, D, E, L and the initial functions uo, vy, wo, such
that

[u(, Ol [0C o [, B, < M", t20. (2.37)

Further, in the case that dj,d»,d3 > 1, ¢,17 € [Q,E], M" depends only on Q,H, but do not
depend on dy, dy, ds. Thus, T = +co. This completes the proof of Theorem 1.1. O
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3. Global Stability

In order to obtain the uniform convergence of the solution for the system (1.16), we recall the
following result which can be found in [37, 42].

Lemma 3.1. Let a and b be positive constants. Assume that ¢, ¢ € C'([a,+0)),¢(t) > 0 and
¢ is bounded from below. If ¢'(t) < —by(t) and ¢'(t) is bounded from above in [a,+oo), then
lim; —, ¢ (t) = 0.

Proof of Theorem 1.3. Let (u,v,w) be a solution for the system (1.16) with initial functions
up(x),vo(x), wo(x) > (#)0. From the strong maximum principle for parabolic equations, it
is not hard to verify that u, v, w > 0 for t > 0. Define the function

1 1

H(u,v,w) = f (v—v*—v*ln%)dx

u—u*—u*lni dx +a
o< u*> f

‘ 3.1)

+ﬁJZ<w—w* —w*ln%)dx.

Then the time derivative of H (1, v, w) for the system (1.16) satisfies

dH Yu—u lo- w — w*
= udx + a
u

dt 0 0 O

widx

* 1
e vtdx+ﬁJ‘
0

w

1 u* 5 u*
= - ;(dl +2a11U + 120 + a3w) Uy + ;(auvx + A13Wy ) Uy
0

* *

, av
(da + anu + 2anv + anw)v; + (a1Uy + A3 ) Vy
v

pw

p” (aziuy + alSUx)wx] dx

244
02

pw

w2

1 1
av Aw eu
—uy(1-u- - d —otym(-1+ —H
+f0(” ”)< YT o 1+Bu+Dw> ““L(U o) +1+bu>dx

+ J‘l( - *)M<—1+L>d
P (w-w 1+ Bu+Dw )™

+

+ (d3 + az1u + azo + 2(1337,0)7,0326 +

(3.2)

The first integrand in the right hand of (3.2) is positive definite if
4apu*v*w” (di + 201U + a0 + apw) (da + AU + 2000 + apw)(ds + azu + a3v + 2azw)
> u*(aanv'w + ﬂth,zw*U)z(dl +2a11U + 120 + apw)
+av* (azu'w + ﬁa31w*u)2(d2 + AU + 20000 + A W)

+ pw* (apu*v + aa21v*u)2(d3 + az1U + axnv + 2a33W).
(3.3)
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By the maximum-norm estimate in Theorem 1.1, the condition (1.20) implies (3.3). Therefore,
we have

dH < J‘l [1 ~ abv* ~ ABw* ] - u*)de
a = Jo (1+bu*)(1+bu) (1+Bu*+Dw*)(1+ Bu+ Dw)
1
MDEu* o
P @5 Bw +Dw)(1+ Bus D) W W)
1 1
abot ABw’ ) MDEw* )
<-| h- _ YV — ey
- Li T+bw  1+Bw+ Do) 4P | T Bt Do W)X
1 1
b wewydx-p [ Go-wyax
0 0
(3.4)
where
L=1- abv* ABw*
YT T 1+4bw  1+Bu +Dw’ -
MDEu* )
I

~ 1+ Bu + Dw*

The condition (1.21) implies [; > 0. Using the similar argument in the proof of Theorem 4.2 in
[42], by the maximum-norm estimate in Theorem 1.1 and some tedious calculations, we can
prove

1 1 1
lim f (u—u*)’dx = tlim J‘ (v -0v*)dx = tlim f (w - w*)*dx = 0. (3.6)
0 —»Jo —»Jo

t— o0

It follows from (3.6) and Gagliardo-Nirenberg-type inequality |u|,, < C |u|i/22|u|§/ ? that
(u, v, w) converges uniformly on (u*,v*, w*). By the fact that H (i, v, w) is decreasing for ¢ >
0, it is obvious that (u*, v*, w*) is globally asymptotically stable. So the proof of Theorem 1.3

is completed. O
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