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We present some conditions for the existence and uniqueness of almost periodic solutions of
Nth-order neutral differential equations with piecewise constant arguments of the form (x(t)+
px(t − 1))(N) = qx([t])+f(t), here [·] is the greatest integer function, p and q are nonzero constants,
N is a positive integer, and f(t) is almost periodic.

1. Introduction

In this paper we study certain functional differential equations of neutral delay type with
piecewise constant arguments of the form

(
x(t) + px(t − 1)

)(N) = qx([t]) + f(t), (1.1)

here [·] is the greatest integer function, p and q are nonzero constants, N is a positive integer,
and f(t) is almost periodic. Throughout this paper, we use the following notations: � is the
set of reals; �+ the set of positive reals; � the set of integers; that is, � = {0,±1,±2, . . .}; �+ the
set of positive integers; � denotes the set of complex numbers. A function x : � → � is called
a solution of (1.1) if the following conditions are satisfied:

(i) x is continuous on �;

(ii) the Nth-order derivative of x(t) + p(t)x(t − 1) exists on � except possibly at the
points t = n, n ∈ �, where one-sided Nth-order derivatives of x(t) + p(t)x(t − 1)
exist;

(iii) x satisfies (1.1) on each interval (n, n + 1)with integer n ∈ �.
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Differential equations with piecewise constant arguments are usually referred to as a
hybrid system, and could model certain harmonic oscillators with almost periodic forcing.
For some excellent works in this field we refer the reader to [1–5] and references therein, and
for a survey of work on differential equations with piecewise constant arguments we refer
the reader to [6].

In paper [1, 2], Yuan and Li and He, respectively, studied the existence of almost
periodic solutions for second-order equations involving the argument 2[(t + 1)/2] in the
unknown function. In paper [3], Seifert intensively studied the special case of (1.1) forN = 2
and |p| < 1 by using different methods. However, to the best of our knowledge, there are no
results regarding the existence of almost periodic solutions forNth-order neutral differential
equations with piecewise constant arguments as (1.1) up to now.

Motivated by the ideas of Yuan [1] and Seifert [3], in this paper we will investigate
the existence of almost periodic solutions to (1.1). Both the cases when |p| < 1 and |p| > 1 are
considered.

2. The Main Results

We begin with some definitions, which can be found (or simply deduced from the theory) in
any book, say [7], on almost periodic functions.

Definition 2.1. A set K ⊂ � is said to be relatively dense if there exists L > 0 such that [a, a +
L] ∩K/= ∅ for all a ∈ �.

Definition 2.2. A bounded continuous function f : � → � (resp., � ) is said to be almost
periodic if the ε-translation set of f

T
(
f, ε
)
=
{
τ ∈ � :

∣∣f(t + τ) − f(t)
∣∣ < ε ∀t ∈ �} (2.1)

is relatively dense for each ε > 0. We denote the set of all such function f by AP(�,�) (resp.,
AP(�, � )).

Definition 2.3. A sequence x : � → �k (resp., � k ), k ∈ �, k > 0, denoted by {xn}, is called an
almost periodic sequence if the ε-translation set of {xn}

T({xn}, ε) = {τ ∈ � : |xn+τ − xn| < ε ∀n ∈ �} (2.2)

is relatively dense for each ε > 0, here | · | is any convenient norm in �k (resp., � k ). We denote
the set of all such sequences {xn} by APS(�,�k) (resp., APS(�, �k )).

Proposition 2.4. {xn} = {(xn1, xn2, . . . , xnk)} ∈ APS(�,�k) (resp., APS(�, �k )) if and only if
{xni} ∈ APS(�,�) (resp.,APS(�, �)), i = 1, 2, . . . , k.

Proposition 2.5. Suppose that {xn} ∈ APS(�,�), f ∈ AP(�,�). Then the sets T(f, ε) ∩ � and
T({xn}, ε) ∩ T(f, ε) are relatively dense.
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Now one rewrites (1.1) as the following equivalent system

(
x(t) + px(t − 1)

)′ = y1(t), (2.31)

y′
1(t) = y2(t), (2.32)

...
...

y′
N−2(t) = yN−1(t), (2.3N−1)

y′
N−1(t) = qx([t]) + f(t). (2.3N)

(2.3)

Let (x(t), y1(t), . . . , yN−1(t)) be solutions of system (2.3) on �, for n ≤ t < n + 1, n ∈ �, using
(2.3N) we obtain

yN−1(t) = yN−1(n) + qx(n)(t − n) +
∫ t

n

f(t1)dt1, (2.4)

and using this with (2.3N−1) we obtain

yN−2(t) = yN−2(n) + yN−1(n)(t − n) +
1
2
qx(n)(t − n)2 +

∫ t

n

∫ t2

n

f(t1)dt1dt2. (2.5)

Continuing this way, and, at last, we get

x(t) + px(t − 1) = x(n) + px(n − 1) + y1(n)(t − n) +
1
2
y2(n)(t − n)2 + · · ·

+
1

(N − 1)!
yN−1(n)(t − n)N−1 +

1
N!

qx(n)(t − n)N

+
∫ t

n

∫ tN

n

· · ·
∫ t2

n

f(t1)dt1dt2 · · ·dtN.

(2.6)

Since x(t) must be continuous at n + 1, using these equations we get for n ∈ �,

x(n + 1) =
(
1 − p +

q

N!

)
x(n) + y1(n) +

1
2!
y2(n) + · · · + 1

(N − 1)!
yN−1(n) + px(n − 1)

+f (1)
n ,

(2.71)

y1(n + 1) =
q

(N − 1)!
x(n) + y1(n) + y2(n) +

1
2!
y3(n) + · · · + 1

(N − 2)!
yN−1(n) + f

(2)
n , (2.72)

...
...

yN−2(n + 1) =
q

2
x(n) + yN−2(n) + yN−1(n) + f

(N−1)
n , (2.7N−1)

yN−1(n + 1) = qx(n) + yN−1(n) + f
(N)
n , (2.7N)

(2.7)
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where

f
(1)
n =

∫n+1

n

∫ tN

n

· · ·
∫ t2

n

f(t1)dt1dt2 · · ·dtN, . . . , f
(N−1)
n =

∫n+1

n

∫ t2

n

f(t1)dt1dt2,

f
(N)
n =

∫n+1

n

f(t1)dt1.

(2.8)

Lemma 2.6. If f ∈ AP(�,�), then sequences {f (i)
n } ∈ APS(�,�), i = 1, 2, . . . ,N.

Proof. We typically consider {f (1)
n } for all ε > 0 and τ ∈ T(f, ε) ∩ �, we have

∣∣∣f (1)
n+τ − f

(1)
n

∣∣∣ =

∣
∣∣∣
∣

∫n+τ+1

n+τ

∫ tN

n+τ
· · ·
∫ t2

n+τ
f(t1)dt1dt2 · · ·dtN −

∫n+1

n

∫ tN

n

· · ·
∫ t2

n

f(t1)dt1dt2 · · ·dtN
∣
∣∣∣
∣

≤
∫n+1

n

∫ tN

n

· · ·
∫ t2

n

∣
∣f(t1 + τ) − f(t1)

∣
∣dt1dt2 · · ·dtN

≤ ε

N!
.

(2.9)

From Definition 2.3, it follows that {f (1)
n } is an almost periodic sequence. In a manner similar

to the proof just completed, we know that {f (2)
n }, {f (3)

n }, . . . , {f (N)
n } are also almost periodic

sequences. This completes the proof of the lemma.

Lemma 2.7. The system of difference equations

cn+1 =
(
1 − p +

q

N!

)
cn + d

(1)
n +

1
2!
d
(2)
n + · · · + 1

(N − 1)!
d
(N−1)
n + pcn−1 + f

(1)
n , (2.101)

d
(1)
n+1 =

q

(N − 1)!
cn + d

(1)
n + d

(2)
n +

1
2!
d
(3)
n + · · · + 1

(N − 2)!
d
(N−1)
n + f

(2)
n , (2.102)

...
...

d
(N−2)
n+1 =

q

2
cn + d

(N−2)
n + d

(N−1)
n + f

(N−1)
n , (2.10N−1)

d
(N−1)
n+1 = qcn + d

(N−1)
n + f

(N)
n , (2.10N)

(2.10)

has solutions on �; these are in fact uniquely determined by c0, c−1, d
(1)
0 , . . . , d

(N−1)
0 .

Proof. It is easy to check that cn, d
(i)
n , i = 1, 2, . . . ,N − 1 are uniquely determined in term

of c0, c−1, d
(1)
0 , d

(2)
0 , . . . , d

(N−1)
0 for n ∈ �+. For n = −1, (2.10N) uniquely determines d

(N−1)
−1 ,

(2.10N−1) uniquely determines d
(N−2)
−1 , . . . , (2.102) uniquely determines d

(1)
−1 , and thus since

p /= 0, (2.101) uniquely determines c−2. So c−1, c−2, d
(1)
−1 , d

(2)
−1 , . . . , d

(N−1)
−1 are determined. Contin-

uing in this way, we establish the lemma.
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Lemma 2.8. For any solution (cn, d
(1)
n , d

(2)
n , . . . , d

(N−1)
n ), n ∈ �, of system (2.10), there exists a

solution (x(t), y1(t), y2(t), . . . , yN−1(t)), t ∈ R, of (2.3) such that x(n) = cn, y1(n) = d
(1)
n , . . . ,

yN−1(n) = d
(N−1)
n , n ∈ �.

Proof . Define

w(t) = cn + pcn−1 + d
(1)
n (t − n) +

1
2!
d
(2)
n (t − n)2 + · · ·

+
1

(N − 1)!
d
(N−1)
n (t − n)N−1 +

1
N!

qcn(t − n)N +
∫ t

n

∫ tN

n

· · ·
∫ t2

n

f(t1)dt1dt1 · · ·dtN,

(2.11)

for n ≤ t < n + 1, n ∈ �. It can easily be verified that w(t) is continuous on �; we omit the
details.

Define x(t) = ϕ(t), −1 ≤ t ≤ 0, where ϕ(t) is continuous, and ϕ(0) = c0, ϕ(−1) = c−1;

x(t) =

[
w(t + 1) − ϕ(t + 1)

]

p
, −2 ≤ t < −1,

x(t) =
[w(t + 1) − x(t + 1)]

p
, −3 ≤ t < −2.

(2.12)

Continuing this way, we can define x(t) for t < 0. Similarly, define

x(t) = −pϕ(t − 1) +w(t), 0 ≤ t < 1,

x(t) = −px(t − 1) +w(t), 1 ≤ t < 2,
(2.13)

continuing in this way x(t) is defined for t ≥ 0, and so x(t) is defined for all t ∈ �.
Next, define y1(t) = w′(t), y2(t) = w′′(t), . . . , yN−1(t) = w(N−1)(t), t /=n ∈ �, and

by the appropriate one-sided derivative of w′(t), w′′(t), . . . , w(N−1)(t) at n ∈ �. It is easy to
see that y1(t), y2(t), . . . , yN−1(t) are continuous on �, and (x(n), y1(n), y2(n), . . . , yN−1(n)) =
(cn, d

(1)
n , d

(2)
n , . . . , d

(N−1)
n ) for n ∈ �; we omit the details.

Next we express system (2.7) in terms of an equivalent system in �N+1 give by

vn+1 = Avn + hn, (2.14)
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where

A =

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜
⎝

1 − p +
q

N!
1

1
2!

· · · 1
(N − 1)!

p

q

(N − 1)!
1 1 · · · 1

(N − 2)!
0

· · · · · ·
q

2!
0 0 · · · 1 0

q 0 0 · · · 1 0
1 0 0 · · · 0 0

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟
⎠

,

vn =
(
x(n), y1(n), y2(n), . . . , yN−1, x(n − 1)

)T
, hn =

(
f
(1)
n , f

(2)
n , . . . , f

(N)
n , 0

)T
.

(2.15)

Lemma 2.9. Suppose that all eigenvalues of A are simple (denoted by λ1, λ2, . . . , λN+1) and |λi|/= 1,
1 ≤ i ≤ N + 1. Then system (2.14) has a unique almost periodic solution.

Proof. From our hypotheses, there exists a (N + 1) × (N + 1) nonsingular matrix P such that
PAP−1 = Λ, where Λ = diag(λ1, λ2, . . . , λN+1) and λ1, λ2, . . . , λN+1 are the distinct eigenvalues
of A. Define vn = Pvn, then (2.14) becomes

vn+1 = Λvn + hn, (2.16)

where hn = Phn.
For the sake of simplicity, we consider first the case |λ1| < 1. Define

vn1 =
∑

m≤n
λn−m
1 h(m−1)1, (2.17)

where hn = (hn1, hn2, . . . , hn(N+1))
T
, n ∈ �. Clearly {hn1} is almost periodic, since hn = Phn,

and {hn} is. For τ ∈ T({hn1}, ε), we have

∣∣v(n+τ)1 − vn1
∣∣ =

∣∣
∣∣∣

∑

m≤n+τ
λn+τ−m
1 h(m−1)1 −

∑

m≤n
λn−m
1 h(m−1)1

∣∣
∣∣∣

(
letting m = m′ + τ, then replacing m′ by m

)

=

∣∣
∣∣∣

∑

m≤n
λn−m
1 h(m+τ−1)1 −

∑

m≤n
λn−m
1 h(m−1)1

∣∣
∣∣∣

=

∣∣
∣∣∣

∑

m≤n
λn−m
1

(
h(m+τ−1)1 − h(m−1)1

)
∣∣
∣∣∣

≤ ε

1 − |λ1| ,

(2.18)

this shows that {vn1} ∈ APS(�, �).
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If |λi| < 1, 2 ≤ i ≤ N + 1, in a manner similar to the proof just completed for λ1, we
know that {vni} ∈ PAS(�, �), 2 ≤ i ≤ N + 1, and so {vn} ∈ APS(�, �N+1). It follows easily
that then {P−1vn} = {vn} ∈ APS(�,�N+1) and our lemma follows.

Assume now |λ1| > 1. Now define

vn1 =
∑

m≤n
λm−n
1 h(m−1)1, n ∈ �. (2.19)

As before, the fact that {vn1} ∈ APS(�, �) follows easily from the fact that {hn1} ∈ APS(�, �).
So in every possible case, we see that each component vni, i = 1, 2, . . . ,N + 1, of vn is almost
periodic and so {vn} ∈ APS(�,�N+1).

The uniqueness of this almost periodic solution {vn} of (2.14) follows from the
uniqueness of the solution vn of (2.16) since P−1vn = vn, and the uniqueness of vn of (2.16)
follows, since if ṽn were a solution of (2.16) distinct from vn, un = vn − ṽn would also be
almost periodic and solve un+1 = Λun, n ∈ �. But by our condition on Λ, it follows that each
component of un must become unbounded either as n → ∞ or as n → −∞, and that is
impossible, since it must be almost periodic. This proves the lemma.

Lemma 2.10. Suppose that conditions of Lemma 2.9 hold,w(t) is as defined in the proof of Lemma 2.8
with (cn, d

(1)
n , d

(2)
n , . . . , d

(N−1)
n ) the unique firstN components of the almost periodic solution of (2.14)

given by Lemma 2.9, thenw(t) is almost periodic.

Proof. For τ ∈ T({cn}, ε) ∩ T({d(1)
n }, ε) ∩ T({d(2)

n }, ε) ∩ · · · ∩ T({d(N−1)
n }, ε) ∩ T(f, ε),

|w(t + τ) −w(t)|

=

∣∣
∣∣∣
(cn+τ − cn) + p(cn+τ−1 − cn−1) +

(
d
(1)
n+τ − d

(1)
n

)
(t − n) +

1
2!

(
d
(2)
n+τ − d

(2)
n

)
(t − n)2 + · · ·

+
1

(N − 1)!

(
d
(N−1)
n+τ − d

(N−1)
n

)
(t − n)N−1 +

q

N!
(cn+τ − cn)(t − n)N

+
∫ t+τ

n+τ

∫ tN

n+τ
· · ·
∫ t2

n+τ
f(t1)dt1dt2 · · ·dtN −

∫ t

n

∫ tN

n

· · ·
∫ t2

n

f(t1)dt1dt2 · · ·dtN
∣∣∣
∣∣

≤
(

1 +
∣∣p
∣∣ +

∣∣q
∣∣

N!
+

N−1∑

i=0

1
i!

)

ε.

(2.20)

It follows from definition that w(t) is almost periodic.

Theorem 2.11. Suppose that |p|/= 1 and all eigenvalues of A in (2.14) are simple (denoted by
λ1, λ2, . . . , λN+1) and satisfy |λi|/= 1, 1 ≤ i ≤ N + 1. Then (1.1) has a unique almost periodic
solution x(t), which can, in fact be determined explicitly in terms of w(t) as defined in the proof of
Lemma 2.8.
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Proof. Consider the following.

Case 1 (|p| < 1). For eachm ∈ �+ define xm(t) as follows:

xm(t) = w(t) − pxm(t − 1), t > −m, (2.21)

xm(t) = φ(t), t ≤ −m, (2.22)

herew(t) is as defined in the proof of Lemma 2.8, and

φ(t) = cn + (cn+1 − cn)(t − n), n ≤ t < n + 1, n ∈ �, (2.23)

where cn is the first component of the solution vn of (2.14) given by Lemma 2.9. Let l ∈ �+,
then from (2.21) we get

(−p)lxm(t − l) =
(−p)lw(t − l) +

(−p)l+1xm(t − l − 1), t > −m. (2.24)

It follows that

xm(t) =
l−1∑

j=0

(−p)jw(t − j
)
+
(−p)lxm(t − l), t > −m. (2.25)

If l > t +m, xm(t − l) = φ(t − l), and so for such l,

∣∣∣
∣∣∣
xm(t) −

l−1∑

j=0

(−p)jw(t − j
)
∣∣∣
∣∣∣
≤ ∣∣p∣∣l∣∣φ(t − l)

∣
∣. (2.26)

Let l → ∞, we get

xm(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑

j=0

(−p)jw(t − j
)
, t > −m,

φ(t), t ≤ −m.

(2.27)

Since w(t) and φ(t) are uniformly continuous on �, it follows that {xm(t) : m ∈ �+}
is equicontinuous on each interval [−L, L], L ∈ �+, and by the Ascoli-Arzelá Theorem,
there exists a subsequence, which we again denote by xm(t), and a function x(t) such that
xm(t) → x(t) uniformly on [−L, L], and by a familiar diagonalization procedure, can find a
subsequence, again denoted by xm(t) which is such that xm(t) → x(t) for each t ∈ �. From
(2.27) it follows that

xm(t) =
∞∑

j=0

(−p)jw(t − j
)
, (2.28)
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and so x(t) is almost periodic since w(t − j) is almost periodic in t for each j ≥ 0, and |p| < 1.
From (2.21), lettingm → ∞, we get x(t) +px(t− 1) = w(t), t ∈ �, and sincew(t) solves (1.1),
x(t) does also. The uniqueness of x(t) as an almost periodic solution of (1.1) follows from
the uniqueness of the almost periodic solution vn : � → �

N+1 of (2.14) given by Lemma 2.9,
which determines the uniqueness of w(t), and therefore from (2.21) the uniqueness of x(t).

Case 2 (|p| > 1). Rewriting (2.24) as

(−1
p

)l

xm(t − l) =
(−1

p

)l

w(t − l) +
(−1

p

)l+1

xm(t − l − 1), t > −m, (2.29)

we deduce in a similar manner that

xm(t) =

⎧
⎪⎨

⎪⎩

∞∑

j=0

(−1
p

)j

w
(
t − j
)
, t > −m,

φ(t), t ≤ −m.

(2.30)

The remainder of the proof is similar to that of Case 1, we omit the details.

If p = 0, the system of difference equations (2.10) of Lemma 2.7 now becomes

cn+1 =
(
1 +

1
N!

q

)
cn + d

(1)
n +

1
2!
d
(2)
n + · · · + 1

(N − 1)!
d
(N−1)
n + f

(1)
n ,

d
(1)
n+1 =

1
(N − 1)!

qcn + d
(1)
n + d

(2)
n +

1
2!
d
(3)
n + · · · + 1

(N − 2)!
d
(N−1)
n + f

(2)
n ,

...

d
(N−2)
n+1 =

q

2
cn + d

(N−1)
n + d

(N−2)
n + f

(N−1)
n ,

d
(N−1)
n+1 = qcn + d

(N−1)
n + f

(N)
n ,

(2.31)

and system (2.14) reduces to

v∗
n+1 = A∗v∗

n + h∗
n, (2.32)

where

A∗ =

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1 +
q

N!
1

1
2!

· · · 1
(N − 2)!

1
(N − 1)!

q

(N − 1)!
1 1 · · · 1

(N − 3)!
1

(N − 2)!
q

(N − 2)!
0 1 · · · 1

(N − 4)!
1

(N − 3)!
· · · · · ·
q

2!
0 0 · · · 1 1

q 0 0 · · · 0 1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

(2.33)
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and v∗
n = (x(n), y1(n), y2(n), . . . , yN−1)

T , h∗
n = (f (1)

n , f
(2)
n , . . . , f

(N)
n )

T
. Then we have the

following theorem.

Theorem 2.12. Let p = 0 and q /= (−1)NN!, if all eigenvalues of A∗ in (2.32) are simple (denoted by
λ1, λ2, . . . , λN) and satisfy |λi|/= 1, 1 ≤ i ≤ N, then (1.1) has a unique almost periodic solution x(t).

Proof. System (2.32) has a solution on � sinceA∗ is nonsingular because q /= (−1)NN!. The rest
of the proof follows in the same way as the proof of Theorem 2.11 and is omitted.
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