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This paper discusses highly finite element algorithms for the eigenvalue problem of electric field.
Combining the mixed finite element method with the Rayleigh quotient iteration method, a new
multi-grid discretization scheme and an adaptive algorithm are proposed and applied to the
eigenvalue problem of electric field. Theoretical analysis and numerical results show that the
computational schemes established in the paper have high efficiency.

1. Introduction

The finite element method for eigenvalue problem of electric field has become a hot topic in
the field of mathematics and physics (see, e.g., [1–7]). This paper discusses high efficient
mixed finite element calculation schemes for the eigenvalue problem of electric field.

Kikuchi [6] introduced the first type of mixed variational formulation for the eigenval-
ue problem of electric field. Based on this formulation, in [3] Buffa et al.analyzed the approx-
imation of nodal finite element. Boffi et al. [1] discussed the second type of mixed variational
formulation for the eigenvalue problem of electric field and analyzed approximations of edge
element and nodal element. Yang et al. [7] studied a two-grid discretization scheme of finite
element for the first type of mixed variational formulation.

Based on the work mentioned above, in this paper a new multi-grid discretization
scheme and an adaptive algorithm are proposed for the first type of mixed variational formu-
lation of eigenvalue problem and applied to the eigenvalue problem of electric field. Themain
features of the research in this paper are as follows.
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(1) Our multi-grid discretization scheme and adaptive algorithm, which are the exten-
sion of conforming finite element multi-grid discretization scheme (see scheme 3
in [8] and scheme 1 in [9]), are a combination of the mixed finite element method
and the Rayleigh quotient iteration method (see the algorithm 27.3 in [10]). With
our algorithm one solves an eigenvalue problem on a coarse grid just at the first
step and always solves a linear algebraic system on finer and finer grids at each
following step. We derive the error estimates for the algorithm and prove that the
constants appeared in the error estimates are independent of the iteration degrees.
Thus we prove the convergence of iterations.

(2) The eigenvalue problem of electric field is so complicated that it is very difficult to
obtain local a posteriori error estimates for the eigenfunctions of mixed finite ele-
ment. As yet, there is no achievement reported in this field. Our adaptive algorithm
substitutes the weight method established by Costabel and Dauge (see [3, 11]) for
local refinement, which uses θ× |λhl −λhl−1 |(θ ∈ (0, 1]) as a posteriori error estimator
of λhl instead of estimating local a posteriori error for the eigenfunction. And the
results are satisfying.

(3) We analyze the mixed finite element error for the eigenvalue problem of electric
field (see Theorem 2.2 and Theorem 4.2). We refer to [12] to propose a new proof
method which differs from the usual one in [13].

The rest of this paper is organized as follows. Some preliminaries of finite element
approximations for eigenvalue problems which are needed in this paper are provided in the
next section. In Section 3, for the first type of mixed variational formulation of eigenvalue
problem, the finite element multi-grid discretization scheme and the adaptive algorithm
are established and the validity of these schemes is proved theoretically. In Section 4, the
multi-grid discretization scheme is applied to the eigenvalue problem of electric field. Finally,
numerical experiments are presented in Section 5.

2. Preliminaries

Let V , W , and D be three real Hilbert spaces with inner products and norms (·, ·)V , ‖ · ‖V ,
(·, ·)W , ‖ · ‖W , (·, ·)D, and ‖ · ‖D, respectively. Suppose that V ↪→ D (continuously imbedded),
a(·, ·) is a symmetric, continuous, and V -elliptic bilinear form on V × V , that is,

∣
∣a
(

q, ψ
)∣
∣ ≤M1

∥
∥q

∥
∥
V

∥
∥ψ

∥
∥
V , ∀q, ψ ∈ V,

a
(

q, q
) ≥ ν∥∥q∥∥2

V , ∀0/= q ∈ V.
(2.1)

b(·, ·) is a continuous bilinear form on V ×W , that is,

∣
∣b
(

ψ, v
)∣
∣ ≤M2

∥
∥ψ

∥
∥
V ‖v‖W, ∀ψ ∈ V, v ∈W. (2.2)

It is obvious that a(·, ·) is an inner product on V and ‖ · ‖a =
√

a(·, ·) is an equivalent norm to
‖ · ‖V .
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In scientific and engineering computations, many eigenvalue problems have the fol-
lowing first type of mixed variational formulation: find (λ, u, σ) ∈ R × V ×W , (u, σ)/= (0, 0),
such that

a
(

u, ψ
)

+ b
(

ψ, σ
)

= λ
(

u, ψ
)

D, ∀ψ ∈ V, (2.3)

b(u, v) = 0, ∀v ∈W. (2.4)

In order to solve problem (2.3)-(2.4), one should construct finite element spaces Vh ⊂ V
andWh ⊂ W . Restricting (2.3)-(2.4) on Vh ×Wh, we get the conforming mixed finite element
approximation as follows: find (λh, uh, σh) ∈ R × Vh ×Wh, (uh, σh)/= (0, 0), such that

a
(

uh, ψ
)

+ b
(

ψ, σh
)

= λh
(

uh, ψ
)

D, ∀ψ ∈ Vh, (2.5)

b(uh, v) = 0, ∀v ∈Wh. (2.6)

Consider the associated source and approximate source problems. Given f ∈ D, find
(w, p) ∈ V ×W satisfying

a
(

w,ψ
)

+ b
(

ψ, p
)

=
(

f, ψ
)

D, ∀ψ ∈ V,
b(w,v) = 0, ∀v ∈W.

(2.7)

Given f ∈ D, find (wh, ph) ∈ Vh ×Wh satisfying

a
(

wh, ψ
)

+ b
(

ψ, ph
)

=
(

f, ψ
)

D, ∀ψ ∈ Vh,
b(wh, v) = 0, ∀v ∈Wh.

(2.8)

Note that the source term f is independent of the solution.
As for themixed finite elementmethod for boundary value problems, Brezzi and Forti-

nand so forth have established a systematic theory (see [14]). By Brezzi-Babuska Theorem,
we have the following.

Lemma 2.1 (Brezzi-Babuska). Suppose that

(C1) (2.1)-(2.2) hold;

(C2) inf-sup condition holds, namely, there exists a constant ν1 > 0, such that

sup
ψ∈V,ψ /= 0

b
(

ψ, v
)

∥
∥ψ

∥
∥
V

≥ ν1‖v‖W, ∀v ∈W, (2.9)

then there exists a unique solution (w, p) to the problem (2.7) and

‖w‖a +
∥
∥p

∥
∥
W ≤ Cr

∥
∥f

∥
∥
D, (2.10)

where Cr just depends on ν, ν1, andM1. Moreover, suppose;
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(C3) discrete inf-sup condition holds, namely, there exists a constant ν2 > 0 independent of h,
such that

sup
ψ∈Vh,ψ /= 0

b
(

ψ, v
)

∥
∥ψ

∥
∥
V

≥ ν2‖v‖W, ∀v ∈Wh, (2.11)

then there exists a unique solution (wh, ph) to the problem (2.8) and the following error
estimate is valid:

‖w −wh‖a +
∥
∥p − ph

∥
∥
W ≤ Ce

{

inf
q∈Vh

∥
∥w − q∥∥a + inf

v∈Wh

∥
∥p − v∥∥W

}

, (2.12)

where Ce just depends on ν, ν2 andM1,M2.

Suppose conditions (C1)–(C3) hold in Lemma 2.1. Then there exist unique solutions
to the problem (2.7) and (2.8), respectively. Thus, we can define linear bounded operators as
follows: T : D → V, S : D → W : ∀f ∈ D,

a
(

Tf, ψ
)

+ b
(

ψ, Sf
)

=
(

f, ψ
)

D, ∀ψ ∈ V,
b
(

Tf, v
)

= 0, ∀v ∈W.
(2.13)

Th : D → Vh ⊂ V, Sh : D → Wh ⊂W : ∀f ∈ D,

a
(

Thf, ψ
)

+ b
(

ψ, Shf
)

=
(

f, ψ
)

D, ∀ψ ∈ Vh;
b
(

Thf, v
)

= 0, ∀v ∈Wh.
(2.14)

Obviously, (2.3)-(2.4) has the following equivalent operator form

λTu = u,

σ = S(λu),
(2.15)

and (2.5)-(2.6) has the following equivalent operator form

λhThuh = uh, (2.16)

σh = Sh(λhuh). (2.17)

It is easy to verify that T : D → D, Th : D → D are self-adjoint operators in the sense
of inner product (·, ·)D (see [7]).
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Assume V
c
↪→ D (compactly embedded), then it’s easy to prove that T : D → D is

completely continuous, T : V → V is completely continuous, and Th is a finite rank operator.
Combining (2.3)-(2.4), (2.5)-(2.6), and the V -ellipticity of a(·, ·), we deduce

λ =
a(u, u)
(u, u)D

> 0, λh =
a(uh, uh)
(uh, uh)D

> 0. (2.18)

Then from the spectral theory of self-adjoint and completely continuous operator, we know
that the eigenvalues of (2.3)-(2.4) can be sorted as

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · ↗ +∞, (2.19)

and the corresponding eigenfunctions are

(u1, σ1), (u2, σ2), . . . , (uk, σk), . . . , (2.20)

where (ui, uj)D = δij .
The eigenvalues of (2.5)-(2.6) can be sorted as

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λk,h ≤ · · · ≤ λNh,h, (2.21)

and the corresponding eigenfunctions are

(u1,h, σ1,h), (u2,h, σ2,h), . . . , (uk,h, σk,h), . . . , (uNh,h, σNh,h), (2.22)

whereNh = dimVh, (ui,h, uj,h)D = δij .
From (2.5), by taking uh = ui,h, ψ = uj,h, we have

a
(

ui,h, uj,h
)

+ b
(

uj,h, σh
)

= λi,h
(

ui,h, uj,h
)

D
, (2.23)

and from (2.6)we see that b(uj,h, σh) = 0, then

a
(

ui,h, uj,h
)

= λi,h
(

ui,h, uj,h
)

D
= λi,hδij , (2.24)

thus {ui,h/‖ui,h‖a} is a completely normal eigenvector system on Vh in the sense of the inner
product a(·, ·).

Denote λk = 1/μk, λk,h = 1/μk,h. In this paper, μk and μk,h, λk and λk,h are all called
eigenvalues.

Let μ be the kth eigenvalue with algebraic multiplicity q, μ = μk = μk+1 = · · · = μk+q−1.

M(μ) is the space spanned by all eigenfunctions {uj}k+q−1k
corresponding to μ of T . Mh(μ)

is the space spanned by all eigenfunctions {uj,h}k+q−1k corresponding to all eigenvalues of Th
that converge to μ. Let M̂(μ) = {v : v ∈ M(μ), ‖v‖a = 1}, M̂h(μ) = {v : v ∈ Mh(μ), ‖v‖a = 1}.
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We call λ = 1/μ as the kth eigenvalue, too. Denote M(λ) = M(μ), Mh(λ) = Mh(μ), and
M̂(λ) = M̂(μ). Define

∥
∥(T − Th)|M(λ)

∥
∥
D = max

u∈M(λ)

‖(T − Th)u‖D
‖u‖D

,

∥
∥(T − Th)|M(λ)

∥
∥
a = max

u∈M(λ)

‖(T − Th)u‖a
‖u‖a

.

(2.25)

The convergence and error estimates about the mixed element method of eigenvalue
problem have been studied in [7, 12, 13, 15, 16]. From [12], we know that the following results
are valid.

Theorem 2.2. Suppose V
c
↪→ D, a(u, v) is symmetric, and the conditions of Lemma 2.1 hold;

moreover, for any f ∈ D,

inf
q∈Vh

∥
∥Tf − q∥∥V −→ 0 (h −→ 0), (2.26)

inf
v∈Wh

∥
∥Sf − v∥∥W −→ 0 (h −→ 0). (2.27)

Then ‖Th − T‖D → 0 (h → 0).

Proof. From V
c
↪→ D, we derive that T : D → D is a completely continuous operator. It is

obvious that Th : D → D is a finite rank operator. From (2.12), (2.26), and (2.27), we deduce

∥
∥Tf − Thf

∥
∥
a ≤ Ce

(

inf
q∈Vh

∥
∥Tf − q∥∥a + inf

v∈Wh

∥
∥Sf − v∥∥W

)

−→ 0 (h −→ 0). (2.28)

It shows that Th : D → V pointwisely converges to T . From (2.10) and (2.12) we derive
that both T : D → V and Th : D → V are linear bounded. Hence, from Banach-Steinhaus
Theorem, we know that there exists a positive constantM independent of h, such that

sup
h

‖Th‖L(D,V ) ≤M. (2.29)

Thus, ∪h>0(T−Th)B is a bounded set in V with respect to the unit ball B ofD. From V
c
↪→ D, we

know that ∪h>0(T −Th)B is a relatively compact set inD, which proves that {Th} is collectively
compact. From (2.28), we know that T : D → D, Th : D → D, and Th pointwisely converge
to T . From [7], T : D → D, Th : D → D are self-adjoint operators in the sense of inner
product (·, ·)D. Then by Lemma 3.7 or Table 3.1 in [17], we get ‖Th − T‖D → 0 (h → 0). The
proof is completed.
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Lemma 2.3. Suppose that the conditions of Theorem 2.2 hold. Let (λh, uh, σh) be the kth eigenpair of
(2.5)-(2.6) with ‖uh‖a = 1, let λ be the kth eigenvalue of (2.3)-(2.4). Then λh → λ (h → 0), and
there exists an eigenfunction (u, σ) corresponding to λ, such that

|λh − λ| + ‖uh − u‖D ≤ C1
∥
∥(T − Th)|M(λ)

∥
∥
D, (2.30)

‖σ − σh‖W ≤ ‖Sh(λu) − S(λu)‖W + C
∥
∥(T − Th)|M(λ)

∥
∥
D, (2.31)

‖u − uh‖a ≤ C2
∥
∥(Th − T)|M(λ)

∥
∥
a, (2.32)

let u ∈ M̂(λ), then there exists uh ∈Mh(λ) such that

‖u − uh‖a ≤ C3
∥
∥(Th − T)|M(λ)

∥
∥
a, (2.33)

where u depends on h in general, and C1, C2, and C3 are constants independent of h.

Proof. By Theorem 2.2, we know ‖Th − T‖D → 0(h → 0). Thus from Theorem 2.2 in [7], we
see that the desired results are valid. The proof is completed.

For (u∗, σ∗) ∈ V ×W , u∗ /= 0, define the Rayleigh quotient

λr =
a(u∗, u∗) + 2b(u∗, σ∗)

(u∗, u∗)D
. (2.34)

Lemma 2.4. Suppose (λ, u, σ) is an eigenpair of (2.3)-(2.4), then for any (u∗, σ∗) ∈ V ×W , u∗ /= 0,
the Rayleigh quotient λr satisfies

λr − λ =
a(u∗ − u, u∗ − u) + 2b(u∗ − u, σ∗ − σ)

(u∗, u∗)D
− λ (u

∗ − u, u∗ − u)D
(u∗, u∗)D

. (2.35)

Proof. The proof is completed by using the same argument as that of Lemma 9.1 (see [7,
18]).

Since V ↪→ D (continuously imbedded), there exists a constant C4 independent of h
such that

‖v‖D ≤ C4‖v‖a, ∀v ∈ V. (2.36)

Taking (u∗, σ∗) = (uh, σh) in (2.35) and using (2.4) and (2.6), we deduce the following.
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Lemma 2.5. Suppose (λh, uh, σh) is an approximation of (λ, u, σ) and ‖uh‖a = 1, then

λh − λ =
a(uh − u, uh − u) + 2b(uh − u, v − σ)

(uh, uh)D

− λ (uh − u, uh − u)D
(uh, uh)D

, ∀v ∈ Wh,

(2.37)

|λh − λ| ≤
(

λh + λλhC2
4

)

‖uh − u‖2a

+ 2λhM2‖uh − u‖V ‖σ − v‖W, ∀v ∈Wh.

(2.38)

3. Mixed Finite Element Multigrid Discretization Scheme Based on the
Rayleigh Quotient Iteration

In this section, we develop the work in [8], noticing that in [8], when k > 1, λh1k − λk, λhl−1k −
λk,hl and λhl−1

k
− λk sholud be modified to their absolute values, respectively, and establish

the following mixed finite element multi-grid discretization scheme based on the Rayleigh
quotient iteration, and give a rigorous theoretical analysis. Suppose the partition satisfies the
following conditions.

Condition 1. {Khi} is a family of regular meshes (see [19]) with the mesh diameter {hi} and
hi = h

ti
i−1, ti ∈ (1, 3) is arbitrarily chosen, i = 1, 2, . . ., and infiti > 1.

Let {Vhi}l0 and {Whi}l0 be finite element spaces on {Khi}l0.

Scheme 1. Multigrid Discretization.

Step 1. Solve the eigenvalue problem (2.3)-(2.4) on VH×WH : find (λH, uH, σH) ∈ R×VH×WH ,
‖uH‖a = 1 such that

a
(

uH, ψ
)

+ b
(

ψ, σH
)

= λH
(

uH, ψ
)

D, ∀ψ ∈ VH,
b(uH, v) = 0, ∀v ∈WH.

(3.1)

Step 2. uh0 ⇐ uH , λh0 ⇐ λH , i⇐ 1.

Step 3. Solve an equation on Vhi ×Whi : find (u′, σ ′) ∈ Vhi ×Whi such that

a
(

u′, ψ
)

+ b
(

ψ, σ ′) − λhi−1(u′, ψ)D =
(

uhi−1 , ψ
)

D
, ∀ψ ∈ Vhi ,

b
(

u′, v
)

= 0, ∀v ∈Whi.

(3.2)

Set uhi = u′/‖u′‖a, σhi = σ ′/‖u′‖a.
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Step 4. Compute the Rayleigh quotient

λhi =
a
(

uhi , uhi
)

(

uhi , uhi
)

D

. (3.3)

Step 5. If i = l, then output (λhl , uhl , σhl), stop; else, i⇐ i + 1, and return to Step 3.
Let (λH, uH, σH) be the kth eigenpair, and we use (λhl , uhl , σhl) as the kth approxima-

tion eigenpair of (2.3)-(2.4).
Next, we will discuss the validity of Scheme 1.

Lemma 3.1. For any nonzero u, v ∈ V ,

∥
∥
∥
∥

u

‖u‖a
− v

‖v‖a

∥
∥
∥
∥
a
≤ 2

‖u − v‖a
‖u‖a

,

∥
∥
∥
∥

u

‖u‖a
− v

‖v‖a

∥
∥
∥
∥
a
≤ 2

‖u − v‖a
‖v‖a

. (3.4)

Proof. See [8].

Denote dist(u, V ) = infv∈V ‖u − v‖a.
Consider the eigenvalue problem (2.16) on Vh.

Lemma 3.2. Suppose that μ and μh are the kth eigenvalue of T and Th, respectively, and (μ0, u0) is an
approximate eigenpair, where μ0 is not an eigenvalue of Th, u0 ∈ Vh, ‖u0‖a = 1, dist(u0,Mh(μ)) ≤
1/2,maxk≤j≤k+q−1|(μj,h −μh)/(μ0 −μj,h)| ≤ 1/2, |μ0 −μj,h| ≥ (ρ/2)(j /= k, k + 1, . . . , k + q − 1), and
us ∈ Vh, uh ∈ Vh satisfy

(

μ0 − Th
)

us = u0, uh =
us

‖us‖a
. (3.5)

Then

dist
(

uh, M̂h

(

μ
)) ≤ 16

ρ

∣
∣μ0 − μh

∣
∣dist

(

u0,Mh

(

μ
))

, (3.6)

where ρ = minμj /=μ|μj − μ| is the separation constant of the eigenvalue μ.

Proof. See [8]

Since the convergence rate of Vhl−1 and Whl−1 approximating eigenfunctions is lower
than that of Vhl andWhl approximating eigenfunctions, respectively, the approximation order
of (λhl−1 , uhl−1) is lower than that of (λhl , uhl). However, in general, the accuracy order of
(λhl−1 , uhl−1) will not exceed that of (λhl−1 , uhl−1); therefore in the following Theorem 3.3 we
assume that the accuracy order of (λhl−1 , uhl−1) is lower than that of (λhl , uhl).

Theorem 3.3. Suppose that ‖Th − T‖D → 0 (h → 0), H is small properly, and Condition 1
holds. Let (λhl , uhl , σhl) be the approximate eigenpair obtained by Scheme 1, and let uhl−1 approximate
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u ∈ M̂(λ), λhl−1 approximate λ, and the accuracy order of (λhl−1 , uhl−1) be lower than that of (λhl , uhl).
Then there exists u ∈M(λ) such that

∥
∥
∥uhl − u

∥
∥
∥
a
≤ 32

ρ
C5C6

(∣
∣
∣λhl−1 − λ

∣
∣
∣

2
+
∣
∣
∣λhl−1 − λ

∣
∣
∣

∥
∥
∥uhl−1 − u

∥
∥
∥
D

)

+
(

C2 × q + 3
)∥
∥(T − Thl)|M(λ)

∥
∥
a,

(3.7)

∣
∣
∣λhl − λ

∣
∣
∣ ≤

(

λhl + λλhlC2
4

)∥
∥
∥uhl − u

∥
∥
∥

2

a
+ 2λhlM2

∥
∥
∥uhl − u

∥
∥
∥
V

inf
v∈Whl

‖σ − v‖W, (3.8)

where C5 and C6 are determined, respectively, by (3.10) and (3.14) in the following proof.

Proof. Let μ0 = 1/λhl−1 , and u0 = λhl−1Thlu
hl−1/‖λhl−1Thluhl−1‖a. Since u ∈ M(λ), by calculation

we deduce
∥
∥
∥λhl−1Thlu

hl−1 − u
∥
∥
∥
a
=
∥
∥
∥λhl−1Thlu

hl−1 − λTu
∥
∥
∥
a

=
∣
∣
∣λhl−1 − λ

∣
∣
∣

∥
∥
∥Thlu

hl−1
∥
∥
∥
a
+ λ

∥
∥
∥Thl

(

uhl−1 − u
)∥
∥
∥
a
+ λ‖(Thl − T)u‖a.

(3.9)

From Lemma 2.1, there exists a positive constant C5 depending only on ν, ν1, ν2,M1, andM2

such that

‖Thlv‖a ≤ C5‖v‖D, ∀v ∈ D. (3.10)

Then
∥
∥
∥λhl−1Thlu

hl−1 − u
∥
∥
∥
a
≤ C5

(

C4

∣
∣
∣λhl−1 − λ

∣
∣
∣ + λ

∥
∥
∥uhl−1 − u

∥
∥
∥
D

)

+ λ
∥
∥(Thl − T)|M(λ)

∥
∥
a. (3.11)

By Lemma 3.1, we derive

dist
(

u0, M̂(λ)
)

≤ ‖u0 − u‖a ≤ 2
∥
∥
∥λhl−1Thlu

hl−1 − u
∥
∥
∥
a

≤ 2C5

(

C4

∣
∣
∣λhl−1 − λ

∣
∣
∣ + λ

∥
∥
∥uhl−1 − u

∥
∥
∥
D

)

+ 2λ
∥
∥(Thl − T)|M(λ)

∥
∥
a.

(3.12)

Using the triangle inequality and (2.33), we deduce

dist(u0,Mhl(λ)) ≤ dist
(

u0, M̂(λ)
)

+ C3
∥
∥(Thl − T)|M(λ)

∥
∥
a. (3.13)

According to the hypotheses of the theorem, we know that λhl−1 → λ and λhl−1 − λ are an
infinitesimal of lower order comparing with λj,hl − λ. Hence, there exists a positive constant
C6 independent of hl (l = 1, 2, . . .) such that for j = k, k + 1, . . . , k + q − 1 we have

∣
∣μ0 − μj,hl

∣
∣ =

∣
∣
∣
∣
∣

λhl−1 − λ + λ − λj,hl
λj,hlλ

hl−1

∣
∣
∣
∣
∣
≤ C6

∣
∣
∣λhl−1 − λ

∣
∣
∣. (3.14)
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Note thatH is small enough and hl � hl−1; from (3.13) and (3.12), we obtain

dist(u0,Mhl(λ)) ≤
1
2
. (3.15)

Noticing that λ = λk = λk+1 = · · · = λk+q−1, we have

∣
∣μj,hl − μhl

∣
∣ =

∣
∣
∣
∣
∣

λhl − λj,hl
λhlλj,hl

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

λhl − λ + λj − λj,hl
λhlλj,hl

∣
∣
∣
∣
∣
, (3.16)

which together with (3.14), noting that λj,hl − λ is an infinitesimal of higher order comparing
with λhl−1 − λ, yields

max
k≤j≤k+q−1

∣
∣
∣
∣
∣

μj,hl − μhl
μ0 − μj,hl

∣
∣
∣
∣
∣
≤ 1

2
. (3.17)

Since ρ is the separation constant,H is small enough, and hl � hl−1, there holds

∣
∣μ0 − μj,hl

∣
∣ ≥ ρ

2
, j /= k, k + 1, . . . , k + q − 1. (3.18)

For u′ in Step 3 of Scheme 1, from the definition of Th and Sh (taking i = l), we have

a
(

λhl−1Thlu
′, ψ

)

+ b
(

ψ, λhl−1Shlu
′
)

= λhl−1
(

u′, ψ
)

D, ∀ψ ∈ Vhl , (3.19)

b
(

λhl−1Thlu
′, v

)

= 0, ∀v ∈Whl , (3.20)

a
(

Thlu
hl−1 , ψ

)

+ b
(

ψ, Shlu
hl−1

)

=
(

uhl−1 , ψ
)

D
, ∀ψ ∈ Vhl , (3.21)

b
(

Thlu
hl−1 , v

)

= 0, ∀v ∈Whl . (3.22)

Hence, when i = l, Step 3 of Scheme 1 is equivalent to the following: find (u′, σ ′) ∈ Vhl ×Whl

such that

a
(

u′, ψ
)

+ b
(

ψ, σ ′) − λhl−1a(Thlu′, ψ
) − λhl−1b(ψ, Shlu′

)

= a
(

Thlu
hl−1 , ψ

)

+ b
(

ψ, Shlu
hl−1

)

, ∀ψ ∈ Vhl ,
(3.23)

b
(

u′, v
)

= 0, ∀v ∈Whl . (3.24)

And set uhl = u′/‖u′‖a, σhl = σ ′/‖u′‖a.
From (3.23), we obtain

a
(

u′ − λhl−1Thlu′ − Thluhl−1 , ψ
)

+ b
(

ψ, σ ′ − λhl−1Shlu′ − Shluhl−1
)

= 0, ∀ψ ∈ Vhl . (3.25)
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Combining (3.24), (3.20) and (3.22), we get

b
(

u′ − λhl−1Thlu′ − Thluhl−1 , v
)

= 0, ∀v ∈Whl . (3.26)

By (3.26) and taking ψ = u′ − λhl−1Thlu′ − Thluhl−1 in (3.25), we obtain

a
(

u′ − λhl−1Thlu′ − Thluhl−1 , u′ − λhl−1Thlu′ − Thluhl−1
)

= 0. (3.27)

Thus

(
1

λhl−1
− Thl

)

u′ =
1

λhl−1
Thlu

hl−1 , uhl =
u′

‖u′‖a
. (3.28)

From (3.28) we know that the first term on the left-hand side of (3.25) is equal to 0, thus

b
(

ψ, σ ′ − λhl−1Shlu′ − Shluhl−1
)

= 0, ∀ψ ∈ Vhl , (3.29)

then, using discrete inf-sup condition we get

σ ′ = λhl−1Shlu
′ + Shlu

hl−1 . (3.30)

Thus Step 3 of Scheme 1 is equivalent to (3.28), (3.30), uhl = u′/‖u′‖a, and σhl = σ ′/‖u′‖a.
Noting that (1/λhl−1)Thlu

hl−1 = ‖(1/λhl−1)Thluhl−1‖au0 differs from u0 by only a constant
and selecting us = (λhl−1u′)/‖Thluhl−1‖a, we have

(
1

λhl−1
− Thl

)

us = u0, uhl =
us

‖us‖a
. (3.31)

By (3.15), (3.17), (3.18), and (3.31), we see that the conditions of Lemma 3.2 hold. Thus,
substituting (3.13) and (3.14) into (3.6), we obtain

dist
(

uhl , M̂hl(λ)
)

≤ 16
ρ
C6

(

λhl−1 − λ
)(

dist
(

u0, M̂(λ)
)

+ C3
∥
∥(T − Thl)|M(λ)

∥
∥
a

)

. (3.32)

Let the eigenfunctions {uj,hl}k+q−1k be an orthonormal system of Mhl(λ) in the sense of a(·, ·),
then

dist
(

uhl ,Mhl(λ)
)

=

∥
∥
∥
∥
∥
∥

uhl −
k+q−1
∑

j=k

a
(

uhl , uj,hl

)

uj,hl

∥
∥
∥
∥
∥
∥
a

. (3.33)
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Let

u∗ =
k+q−1
∑

j=k

a
(

uhl , uj,hl

)

uj,hl , (3.34)

noting ‖uhl − u∗‖a ≤ dist(uhl , M̂hl(λ)), from (3.32) we deduce

∥
∥
∥uhl − u∗

∥
∥
∥
a
≤ 16
ρ
C6

(

λhl−1 − λ
)(

dist
(

u0, M̂(λ)
)

+ C3
∥
∥(T − Thl)|M(λ)

∥
∥
a

)

. (3.35)

By Lemma 2.3, there exist {u0j }
k+q−1
k

⊂ M̂(λ) such that uj,hl − u0j satisfy (2.32). Let

u =
k+q−1
∑

j=k

a
(

uhl , uj,hl

)

u0j , (3.36)

then u ∈M(λ). Using (2.32), we deduce

‖u∗ − u‖a =
∥
∥
∥
∥
∥
∥

k+q−1
∑

j=k

a
(

uhl , uj,hl

)(

uj,hl − u0j
)

∥
∥
∥
∥
∥
∥
a

≤ C2q
∥
∥(Thl − T)|M(λ)

∥
∥
a. (3.37)

Combining (3.35) with the above inequality, we have

∥
∥
∥uhl − u

∥
∥
∥
a
≤ 16

ρ
C6

(

λhl−1 − λ
)

dist
(

u0, M̂(λ)
)

+
(

C2q + 1
)∥
∥(T − Thl)|M(λ)

∥
∥
a.

(3.38)

Substituting (3.12) into (3.38), we get (3.7).
From Step 3 of Scheme 1, we know that b(uhl , σhl) = 0, thus

λhl =
a
(

uhl , uhl
)

(

uhl , uhl
)

D

=
a
(

uhl , uhl
)

+ 2b
(

uhl , σhl
)

(

uhl , uhl
)

D

. (3.39)

Select λr = λhl , u∗ = uhl , and σ∗ = σhl . From Lemma 2.4, we get

λhl − λ =
a
(

uhl − u, uhl − u) + 2b
(

uhl − u, σhl − σ)
(

uhl , uhl
)

D

− λ
(

uhl − u, uhl − u)D
(

uhl , uhl
)

D

. (3.40)
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Noting that ∀v ∈Whl , b(u
hl − u, v) = 0, and (uhl , uhl)D = (1/λhl)a(uhl , uhl) = 1/λhl , we have

λhl − λ = λhla
(

uhl − u, uhl − u
)

+ 2λhlb
(

uhl − u, v − σ
)

− λλhl
(

uhl − u, uhl − u
)

D
, ∀v ∈Whl .

(3.41)

Note ‖uhl − u‖D ≤ C4‖uhl − u‖a. From (3.41)we obtain (3.8).

For l = 1, Scheme 1 is actually the two-grid discretization scheme established in [7].
By Theorem 3.3 we get the following conclusion directly.

Theorem 3.4. Suppose ‖Th − T‖D → 0(h → 0). Let h0 = H be small properly. Let (λh1 , uh1 , σh1)
be an approximate eigenpair obtained by Scheme 1 (l = 1). Then there exists u ∈M(λ) such that

∥
∥
∥uh1 − u

∥
∥
∥
a
≤ 32

ρ
C5C6

(∣
∣
∣λh0 − λ

∣
∣
∣

2
+
∣
∣
∣λh0 − λ

∣
∣
∣C1

∥
∥(T − Th0)|M(λ)

∥
∥
D

)

+
(

C2 × q + 3
)∥
∥(T − Th1)|M(λ)

∥
∥
a,

(3.42)

∣
∣
∣λh1 − λ

∣
∣
∣ ≤

(

λh1 + λλh1C2
4

)∥
∥
∥uh1 − u

∥
∥
∥

2

a
+ 2λh1M2

∥
∥
∥uh1 − u

∥
∥
∥
V

inf
v∈Wh1

‖σ − v‖W. (3.43)

Proof. Consider Scheme 1. Here l = 1, uh0 = uH . By Lemma 2.3, we know that uh0

approximates u ∈ M̂(λ), and the accuracy order of (λh0 , uh0) is lower than (λh1 , uh1). Hence,
for l = 1, the conditions of Theorem 3.3 hold. Select u in the proof of Theorem 3.3 such that
uh0 − u satisfies Lemma 2.3. Then from (2.30), we obtain

∥
∥
∥uh0 − u

∥
∥
∥
D
≤ C1

∥
∥(T − Th0)|M(λ)

∥
∥
D, (3.44)

substituting it into (3.7), we obtain (3.42). From (3.8), we deduce (3.43).

Theorem 3.4 is actually Theorem 3.3 in [7], but we analyze in detail the constants
appeared in the error estimates.

From Theorem 3.4 and Theorem 3.3, we know that λhl → λ (l → ∞) and the
convergence rate is high. Thus, we use θ × |λhl − λhl−1 | as a posteriori error indicator of λhl − λ
(details can be seen in Remark 4.5). Then we establish the following adaptive algorithm.

Scheme 2 (Adaptive Algorithm). Give an error tolerance ε and choose the parameter 0 < θ ≤ 1,
H, t1, and h1 = Ht1 .

Step 1. Solve (2.3)-(2.4) on VH ×WH : find (λH, uH, σH) ∈ R × VH ×WH , ‖uH‖a = 1 such that

a
(

uH, ψ
)

+ b
(

ψ, σH
)

= λH
(

uH, ψ
)

D, ∀ψ ∈ VH,
b(uH, v) = 0, ∀v ∈WH.

(3.45)

Step 2. uh0 ⇐ uH , λh0 ⇐ λH , l ⇐ 1.
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Step 3. Solve an equation on Vhl ×Whl : find (u′, σ ′) ∈ Vhl ×Whl such that

a
(

u′, ψ
)

+ b
(

ψ, σ ′) − λhl−1(u′, ψ)D =
(

uhl−1 , ψ
)

D
, ∀ψ ∈ Vhl ,

b
(

u′, v
)

= 0, ∀v ∈Whl .

(3.46)

Let uhl = u′/‖u′‖a, σhl = σ ′/‖u′‖a.

Step 4. Compute the Rayleigh quotient

λhl =
a
(

uhl , uhl
)

(

uhl , uhl
)

D

. (3.47)

Step 5. If θ × |λhl − λhl−1 | > ε, then select tl+1, hl+1 = htl+1
l

, l ⇐ l + 1 and return to Step 3; else
output (λhl , uhl , σhl), stop.

Remark 3.5. In Scheme 2, we use θ × |λhl − λhl−1 | as a posteriori error indicator which is global.
In order to cope with difficulties caused by local singularity of a complicated problem in
calculation, so far, most algorithms designed a local a posteriori error indicator to establish
adaptive algorithm with local mesh refinement (e.g., see [20–22]). However, because the
eigenvalue problem of electric field is so complicated, that it is very difficult to obtain a local
a posteriori error indicator of eigenfunction. Fortunately, the influence of local singularity
can be avoided by using the weight method which is established by Costabel and Dauge to
discrete the eigenvalue problem of electric field. And the performance of the weigh method
is very good (see [3, 11]). Hence, without local mesh refinement, by using the weight method
mentioned above our algorithm can also guarantee its high efficiency.

4. The Eigenvalue Problem of Electric Field

Consider the eigenvalue problem of electric field:

c2curlcurl �u = ω2�u, inΩ,

div �u = 0, inΩ,

�u × �γ = 0, on ∈ ∂Ω,
(4.1)

where Ω is a polyhedron in R3, �γ is the unit outward normal to ∂Ω.
Physically �u denotes the electric field, ω denotes the time frequency, and c is the speed

of the light velocity. Usually, let λ = ω2/c2 named eigenvalue.
Let

H(curl,Ω) =
{

�q ∈ L2(Ω)3 : curl�q ∈ L2(Ω)3
}

,

H0(curl,Ω) =
{

�q ∈ H(curl,Ω) : �q × �γ |∂Ω = 0
}

.

(4.2)
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When Ω is a convex polyhedron, we define the following function space:

χ =
{

�q ∈ H0(curl,Ω) : div �q ∈ L2(Ω)
}

. (4.3)

Denote

(

�q, �ψ
)

0 =
∫

Ω
�q · �ψdx, ∥

∥�q
∥
∥
0 =

(

�q, �q
)1/2
0 .

(

�q, �ψ
)

χ =
(

curl�q, curl�ψ
)

0 +
(

div �q,div �ψ
)

0,
∥
∥�q

∥
∥
χ =

(

�q, �q
)1/2
χ ,

(4.4)

From [23, 24], we know that χ ⊂ H1(Ω)3; (�q, �ψ)χ is a coercive bilinear form on χ, and ‖�q‖χ is
a norm.

When Ω is a nonconvex polyhedron, the problem is relatively complicated. Let E
denote a set of edges of reentrant dihedral angles on ∂Ω, and d = d(x) denote the distance
to the set E: d(x) = dist(x,∪e∈Ee). We introduce a weight function ωr which is a nonnegative
smooth function of x. It can be represented by dr in reentrant edge and angular domain. We
shall write ωr � dr . Define the weighted functional spaces:

L2
r(Ω) =

{

v ∈ L2
loc(Ω) : ωrv ∈ L2(Ω)

}

,

χr =
{

�q ∈ H0(curl,Ω) : div �q ∈ L2
r(Ω)

}

.

(4.5)

Denote

(

�q, �ψ
)

L2
r
=
∫

Ω
ω2
r �q · �ψ dx,

∥
∥�q

∥
∥
L2
r
=
(

�q, �q
)1/2
L2
r
.

(

�q, �ψ
)

χr
=
(

curl �q, curl �ψ
)

0 +
(

div �q,div �ψ
)

L2
r
,

∥
∥�q

∥
∥
χr

=
(

�q, �q
)1/2
χr
.

(4.6)

Let σDΔ be the following smallest singular exponent in the Laplace problemwith homogenous
Dirichlet boundary condition:

{

φ ∈ H1
0(Ω) : Δφ ∈ L2(Ω)

}

⊂ ∩s<σDΔH
s(Ω),

{

φ ∈ H1
0(Ω) : Δφ ∈ L2(Ω)

}

�⊂HσDΔ (Ω).
(4.7)

From the regularity estimate, we know σDΔ ∈ ((3/2), 2). Let rmin = 2 − σDΔ .
From [11, 25], we see that for all r ∈ (rmin, 1), the seminorm ‖�q‖χr is a norm on χr , and

χr ∩H1(Ω)3 is dense in χr .
In the following discussion, we will use χr, L2

r(Ω) for both nonconvex and convex
domains. We select r ∈ (rmin, 1) for non-convex domain and χr = χ, L2

r(Ω) = L2(Ω) for convex
domain.
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By introducing the Lagrange multiplier σ, [6] changed (4.1) into the mixed variational
formulation: find (λ, �u, σ) ∈ R+ × χr × L2

r(Ω) such that

(

�u, �ψ
)

χr
+
(

div �ψ, σ
)

L2
r
= λ

(

�u, �ψ
)

0, ∀�ψ ∈ χr,

(div �u, v)L2
r
= 0, ∀v ∈ L2

r(Ω).
(4.8)

Let Kh be a regular simplex partition (tetrahedral partition) of Ω with the mesh
diameter h. Define the finite element space Vh ×Wh ⊂ χr × L2

r(Ω).
Restricting (4.8) on the above-mentioned finite space, we obtain the discrete mixed

variational form: find (λh, �uh, σh) ∈ R+ × Vh ×Wh such that

(

�uh, �ψ
)

χr
+
(

div �ψ, σh
)

L2
r
= λh

(

�uh, �ψ
)

0, ∀�ψ ∈ Vh,

(div �uh, v)L2
r
= 0, ∀v ∈Wh.

(4.9)

Set

V = χr, ‖·‖V = ‖·‖a = ‖·‖χr ,

W = L2
r(Ω), ‖·‖W = ‖·‖L2

r
,

D = L2(Ω)3, ‖·‖D = ‖·‖0,
a
(

�q, �ψ
)

=
(

�q, �ψ
)

χr
b
(

�ψ, v
)

=
(

div �ψ, v
)

L2
r
.

(4.10)

Then (4.8) and (4.9) can be written as (2.3)-(2.4) and (2.5)-(2.6), respectively (it is needed to
add� for the vector function, e.g., u, ψ should be written in the forms of �u, �ψ).

We apply Schemes 1 and 2 to the eigenvalue problem of electric field (4.8). Adding
the symbol� for the vector function, we get a multi-grid discretization scheme and adaptive
algorithm for mixed finite element of the eigenvalue problem of electric field which are still
called Schemes 1 and 2.

It is easy to know that a(·, ·) and b(·, ·) are continuous bilinear forms on V × V and

V ×W , respectively. V
c
↪→ D. (It is true obviously when Ω is convex; when Ω is non-convex,

see [25].)
Consider the source problem associated with (4.8): find ( �w, p) ∈ χr × L2

r(Ω) such that

(

�w, �ψ
)

χr
+
(

div �ψ, p
)

L2
r
=
(

�f, �ψ
)

0
, ∀�ψ ∈ χr,

(div �w, v)L2
r
= 0, ∀v ∈ L2

r(Ω).
(4.11)

For (4.11) and its conforming finite element approximation, condition (C1) of
Lemma 2.1 holds obviously; [3] has proved that condition (C2) holds; assume that the
discrete inf-sup condition (C3) holds, then conditions of Lemma 2.1 hold. Thus we can
define operators T, S, Th, and Sh. (4.8) and (4.9) can be written as (2.15) and (2.16)-(2.17),
respectively.

The following Lemma 4.1 is cited from [3, 25].
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Lemma 4.1. Equation (4.1) is equivalent to (4.8), and the solutions of (4.8) σ = S(λ�u) = 0 and
�u ∈ χr , div �u = 0.

Note that Lemma 4.1 shows that for the eigenvalue problem of electric field, the second
term on the right-hand side in (3.8) is equal to 0.

Theorem 4.2. Suppose that the discrete inf-sup condition (C3) holds. Then ‖T − Th‖D → 0(h → 0).
Let (λh, �uh, σh) be the kth eigenpair of (4.9) with ‖�uh‖χr = 1, and let λ be the kth eigenvalue of (4.8).
Then λh → λ(h → 0), and there exists an eigenfunction �u corresponding to λ with ‖�u‖χr = 1, such
that

|λh − λ| ≤
(

λh + λλhC2
4

)

C2
2

∥
∥(Th − T)|M(λ)

∥
∥
2
χr
, (4.12)

‖�u − �uh‖χr ≤ C2
∥
∥(Th − T)|M(λ)

∥
∥
χr
, (4.13)

let �u ∈ M̂(λ), then there exists �uh ∈Mh(λ) such that

‖�u − �uh‖χr ≤ C3
∥
∥(Th − T)|M(λ)

∥
∥
χr
, (4.14)

where C2, C3, and C4 are constants independent of h.

Proof. From the preceding discussion and hypotheses of the theorem, we know that V
c
↪→ D,

a(u, v) is symmetric, and the conditions of Lemma 2.1 hold. Besides, since Kh is a regular
partition, when Ω is a convex polyhedron, χr ⊂ H1(Ω)3(χr = χ); when Ω is a non-convex

polyhedron, χr ∩H1(Ω)3 is dense in χr . Since C∞(Ω)
3
is dense inH1(Ω)3, thus, no matter Ω

is convex or non-convex, C∞(Ω)
3
is dense in χr . For any given �f ∈ D, we have T �f ∈ χr . Thus

for any ε > 0, according to the density, we know that there exists �w ∈ C∞(Ω)
3
such that

∥
∥
∥T �f − �w

∥
∥
∥
χr

≤ ε

2
. (4.15)

Selecting h0 > 0 being small properly, when 0 < h ≤ h0, we have

‖ �w − Ih �w‖χr ≤ Ch| �w|2 ≤
ε

2
, (4.16)

where Ih : C∞(Ω)
3 → Vh is an interpolation operator. Thus

inf
�q∈Vh

∥
∥
∥T �f − �q

∥
∥
∥
χr

≤
∥
∥
∥T �f − Ih �w

∥
∥
∥
χr

≤
∥
∥
∥T �f − �w

∥
∥
∥
χr
+ ‖ �w − Ih �w‖χr ≤

ε

2
+
ε

2
= ε.

(4.17)

Namely, inf�q∈Vh‖T �f − �q‖χr → 0(h → 0). Hence (2.26) is true. Analogously, using the density

of C∞(Ω) in L2
r(Ω), we deduce that infv∈Wh‖S �f − v‖L2

r
→ 0(h → 0), namely, (2.27), is true.
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Hence, from Theorem 2.2 and Lemma 2.3, we know that ‖T − Th‖D → 0 (h → 0), λh →
λ (h → 0), (4.13), and (4.14) hold. From (2.38), (4.13), and Lemma 4.1, we get (4.12). The
proof is completed.

Denote

ελ(h) = sup
�u∈M̂(λ)

inf
�ψ∈Vh

∥
∥�u − �ψ

∥
∥
χr
. (4.18)

From Lemma 2.1, noting σ = 0, we deduce

∥
∥(Th − T)|M(λ)

∥
∥
χr

= sup
�u∈M̂(λ)

‖(Th − T)u‖χr

≤ sup
�u∈M̂(λ)

Ce inf
�ψ∈Vh

∥
∥T�u − �ψ

∥
∥
χr

≤ λ−1Ceελ(h) ≡ C7ελ(h).
(4.19)

Theorem 4.3. Assume that the discrete inf-sup condition (C3) holds, h0 = H is small properly,
Condition 1 holds and supiti < 3. Let (λhl , uhl) be an approximate eigenpair obtained by Scheme 1,
then there exists �u ∈M(λ) such that

∥
∥
∥�uhl − �u

∥
∥
∥
χr

≤ 2
(

C2 × q + 3
)

C7ελ(hl), (4.20)

∣
∣
∣λhl − λ

∣
∣
∣ ≤ 4

(

λhl + λλhlC2
4

)(

C2 × q + 3
)2
C2

7ελ(hl)
2. (4.21)

Proof. We use induction to complete the proof. Note that the conditions of Theorem 2.2 hold.
For l = 1, Scheme 1 is actually two-grid discretization scheme. Substituting (4.19) into (4.12)
and (4.13), we derive

‖�uH − �u‖χr ≤ C2C7ελ(H),

|λ − λH | ≤
(

λH + λλHC2
4

)

C2
2C

2
7ελ(H)2.

(4.22)

Combining (3.7) with l = 1 and the above two inequalities, we know that there exists �u ∈
M(λ) such that

∥
∥
∥uh1 − �u

∥
∥
∥
χr

≤ 32
ρ
C5C6

(∣
∣
∣λh0 − λ

∣
∣
∣

2
+
∣
∣
∣λh0 − λ

∣
∣
∣

∥
∥
∥uh0 − u

∥
∥
∥
D

)

+
(

C2 × q + 3
)∥
∥(T − Th1)|M(λ)

∥
∥
χr
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≤ 32
ρ
C5C6

((

λH + λλHC2
4

)2
C4

2C
4
7ελ(H)4

+
(

λH + λλHC2
4

)

C2
2C

2
7ελ(H)2C2C4C7ελ(H)

)

+
(

C2 × q + 3
)

C7ελ(h1)

≤ 2
(

C2 × q + 3
)

C7ελ(h1).

(4.23)

Since σ = 0, substituting (4.23) into (3.43), we deduce

∣
∣
∣λh1 − λ

∣
∣
∣ ≤

(

λh1 + λλh1C2
4

)∥
∥
∥�uh1 − �u

∥
∥
∥

2

χr

≤
(

λh1 + λλh1C2
4

)

4
(

C2 × q + 3
)2
C2

7ελ(h1)
2.

(4.24)

The above two inequalities show that Theorem 4.2 is true for l = 1.
Suppose that the theorem is true for l − 1, then by Theorem 3.3, we get

∥
∥
∥�uhl − �u

∥
∥
∥
χr

≤ 32
ρ
C5C6

((

λhl−1 + λλhl−1C2
4

)2
42
(

C2 × q + 3
)4
C4

2C
4
7ελ(hl−1)

4

+
(

λhl−1 + λλhl−1C2
4

)

4
(

C2 × q + 3
)2
C2

7ελ(hl−1)
22
(

C2 × q + 3
)

C7ελ(hl−1)
)

+
(

C2 × q + 3
)

C7ελ(hl)

≤ 2
(

C2 × q + 3
)

C7ελ(hl),
(4.25)

That is, (4.20) is valid.
From (4.20) and (3.8), we obtain (4.21). The proof is completed.

Assume that Kh is a regular simplex partition (tetrahedral partition) of Ω with the
mesh diameter h. Let Vh andWh be the Pk+1-Pk finite element spaces as follows:

Vh =
{

�q ∈ C0
(

Ω
)3

: �q × �γ |∂Ω = 0, �q|κ ∈ Pk+1(κ)3 · ∀κ ∈ Kh

}

,

Wh =
{

v ∈ C0
(

Ω
)

: v|κ ∈ Pk(κ), ∀κ ∈ Kh, v|Eh = 0
}

.

(4.26)

Here we set Eh = ∪κ∈Kh,∂κ∩E/=φκ. v|Eh = 0 means that v is equal to 0 on the tetrahedron where
reentrant edge and angular point are adjacent. Considering finite element approximation
of (4.11), for the 3-DP2-iso-P1 Taylor-Hood finite element, Ciarlet and Girault [26] have
discussed that the discrete inf-sup condition (C3) holds when Ω is a convex domain; for the
Pk+1-Pk element, Ciarlet and Hechme have proved that the discrete inf-sup condition (C3)
holds when Ω is a polyhedron (see Section 2.2 in [4] and pp. 509 in [3]).
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From the above mentioned, we know that the Pk+1-Pk element approximation of (4.11)
satisfies the conditions of Theorem 4.2.

Let σNΔ be the smallest singular exponent in the Laplace problem with homogenous
Neumman boundary condition, then σNΔ ∈ (3/2, 2). Denote τ = min(r − rmin, σ

N
Δ − 1).

Corollary 4.4. Assume that h0 = H is small properly, ti ∈ (1, 3](i = 1, 2, ., l), and hi = htii−1
(i = 1, 2, . . . , l). Let (λhl , uhl) be an approximate eigenpair of the Pk+1-Pk element obtained by Scheme 1.
Then when Ω is a convex domain, there exists �u ∈M(λ) such that

∥
∥
∥�uhl − �u

∥
∥
∥
χr

≤ 2
(

C2 × q + 3
)

C7C
′hl, (4.27)

∣
∣
∣λhl − λ

∣
∣
∣ ≤ 4

(

λhl + λλhlC2
4

)(

C2 × q + 3
)2
C2

7C
′2h2l . (4.28)

When Ω is a non-convex domain, there exists �u ∈M(λ) such that

∥
∥
∥�uhl − �u

∥
∥
∥
χr

≤ 2
(

C2 × q + 3
)

C7C
′′hμ

l
, ∀μ ∈ (0, τ), (4.29)

∣
∣
∣λhl − λ

∣
∣
∣ ≤ 4

(

λhl + λλhlC2
4

)(

C2 × q + 3
)2
C2

7C
′′2h2μ

l
, ∀μ ∈ (0, τ), (4.30)

where C′ and C′′ are determined by (4.31) and (4.32) in the proof, respectively.

Proof. The hypotheses of Corollary 4.4 imply that the conditions of Theorem 4.3 hold. When
Ω is convex, for any �u ∈M(λ)we have �u = T(λ�u) ∈ H2(Ω) (see (44) in [1]). Thus there exists
C′ independent of hl (l = 1, 2, . . .) such that

ελ(hl) ≤ C′hl. (4.31)

Substituting the above inequality into (4.20) and (4.21), we get (4.27) and (4.28), respectively.
When Ω is a non-convex domain, for any �u ∈M(λ), by (36) in [3] we know that there

exists C′′ independent of hl (l = 1, 2, . . .), such that

ελ(hl) ≤ C′′hμ
l
. (4.32)

Substituting the above inequality into (4.20) and (4.21), we derive (4.29) and (4.30),
respectively.

Remark 4.5. From Corollary 4.4, we see that the constants in the error estimates are not only
independent of the mesh diameter but also independent of the iterative degrees. Thus, when
l → ∞, we have λhl → λ. Suppose that the precision order of (4.28) is optimal which cannot
be improved any more, then

λhl − λhl+1 = λhl − λ + λ − λhl+1 = O
(

h2rl

)

,

λhl−1 − λhl = λhl−1 − λ + λ − λhl = O
(

h2rl−1
)

,

(4.33)
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2

Figure 1

where for convex domain r = 1, while for non-convex domain r = μ ∈ (0, τ) but approximates
τ arbitrarily. Therefore we have that λhl − λhl+1 ≤ λhl−1 − λhl . Then

∣
∣
∣λhl − λ

∣
∣
∣ ≤

∣
∣
∣λhl − λhl+1

∣
∣
∣ +

∣
∣
∣λhl+1 − λ

∣
∣
∣

≤
∣
∣
∣λhl−1 − λhl

∣
∣
∣ + ϑ

(

h2rl+1

)

,

(4.34)

thus we can use η(λhl) = θ × |λhl−1 − λhl | as a posteriori error indicator of |λhl − λ|, where
θ ∈ (0, 1].

5. Numerical Experiments.

Consider the eigenvalue problem (4.1) of electric field, where Ω = [0, π] × [0, π] is a square
domain orΩ = [−1, 0]×[−1, 0]∪[−1, 1]×[0, 1] is an L-shaped domain. For the square domain,
the first five exact eigenvalues are λ1 = λ2 = 1, λ3 = 2, and λ4 = λ5 = 4; for the L-shaped
domain, the first five eigenvalues are λ1 ≈ 1.47562182408, λ2 ≈ 3.53403136678, λ3 = λ4 = π2 ≈
9.86960440109, and λ5 ≈ 11.3894793979, and the first eigenfunction has a strong singularity
(see, e.g., [3]).

We adopt a uniform isosceles right triangulation for Ω (the edge in each element is
along three fixed directions, see Figure 1) to produce the meshes Khl with mesh diameter hl.

The definition of P2-P1 mixed finite element spaces is given by

Vhl =
{

�q ∈ C0
(

Ω
)2

: �q × �γ |∂Ω = 0, �q|κ ∈ P2(κ)2, ∀κ ∈ Khl

}

,

Whl =
{

v ∈ C0
(

Ω
)

: v|κ ∈ P1(κ), ∀κ ∈ Khl , v|Ehl = 0
}

.

(5.1)

Wemake use of Matlab to compute the first five approximate eigenvalues by using Scheme 1
with P2-P1 element. The numerical results are listed in Tables 1, 2, and 3.
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Table 1: The results on the square by Scheme 1 (P2-P1 element) for the eigenvalue problem of electric field
(r = 0).

k H l hl λk,hl λhl
k

η(λk,hl )/e(λk,hl ) η(λhl
k
)/e(λhl

k
)

1
√
2/8 1

√
2/32 1.0000001280750 1.00000012807483 248.41 248.41

1
√
2/8 2

√
2/64 1.0000000080355 1.00000000803501 14.94 14.94

1
√
2/8 3

√
2/128 — 1.00000000050340 — 14.96

3
√
2/8 1

√
2/32 2.0000017958515 2.00000179585163 245.62 245.62

3
√
2/8 2

√
2/64 2.0000001126165 2.00000011261761 14.95 14.95

3
√
2/8 3

√
2/128 — 2.00000000704840 — 14.98

4
√
2/8 1

√
2/32 4.0000081820714 4.00000818207150 242.08 242.08

4
√
2/8 2

√
2/64 4.0000005140035 4.00000051400385 14.92 14.92

4
√
2/8 3

√
2/128 — 4.00000003219500 — 14.97

Table 2: The results on the L-shaped domain by Scheme 1 (P2-P1 element) for the eigenvalue problem of
electric field (r = 0.5).

k H l hl λk,hl λhl
k

η(λk,hl )/e(λk,hl ) η(λhl
k
)/e(λhl

k
)

1
√
2/10 1

√
2/40 2.619901684020 2.619902307450 0.16 0.16

1
√
2/10 2

√
2/80 2.545994662814 2.545994677427 0.69 0.69

1
√
2/10 3

√
2/160 — 2.468072524066 — 0.78

2
√
2/10 1

√
2/40 3.540738971244 3.540738974231 5.75 5.75

2
√
2/10 2

√
2/80 3.536561194304 3.536561194305 1.65 1.65

2
√
2/10 3

√
2/160 — 3.534975905948 — 1.67

3
√
2/10 1

√
2/40 9.869612668412 9.869612668412 244.51 244.51

3
√
2/10 2

√
2/80 9.869604920374 9.869604920377 14.92 14.92

3
√
2/10 3

√
2/160 — 9.869604433619 — 14.92

5
√
2/10 1

√
2/40 11.392491049450 11.392491049225 7.11 7.11

5
√
2/10 2

√
2/80 11.390607786437 11.390607786437 1.67 1.67

5
√
2/10 3

√
2/160 — 11.389899921315 — 1.68

Table 3: The results on the L-shaped domain by Scheme 1 (P2-P1 element) for the eigenvalue problem of
electric field (r = 0.95).

k H l hl λk,hl λhl
k

η(λk,hl )/e(λk,hl ) η(λhl
k
)/e(λhl

k
)

1
√
2/10 1

√
2/40 1.550099678021 1.550100277590 1.88 1.88

1
√
2/10 2

√
2/80 1.512784318422 1.512784324775 1.00 1.00

1
√
2/10 3

√
2/160 — 1.492972425344 — 1.14

2
√
2/10 1

√
2/40 3.534598663496 3.534598663588 14.65 14.65

2
√
2/10 2

√
2/80 3.534154160497 3.534154160495 3.62 3.62

2
√
2/10 3

√
2/160 — 3.534055109225 — 4.17

3
√
2/10 1

√
2/40 9.869612641692 9.869612641692 243.23 243.23

3
√
2/10 2

√
2/80 9.869604919289 9.869604919288 14.90 14.90

3
√
2/10 3

√
2/160 — 9.869604433575 — 14.92

5
√
2/10 1

√
2/40 11.389671749018 11.389671749041 28.83 28.83

5
√
2/10 2

√
2/80 11.389519405478 11.389519405477 3.81 3.81

5
√
2/10 3

√
2/160 — 11.389487122250 — 4.18
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In Tables 1–3, λ1,hl , λ2,hl , . . . , λ5,hl denote the first five eigenvalues obtained by using the
mixed element on Khl directly; λhl1 , λ

hl
2 , . . . , λ

hl
5 denote the first five eigenvalues obtained by

Scheme 1:

e(λk,hl) = |λk,hl − λk|, e
(

λhl
k

)

=
∣
∣
∣λ

hl
k
− λk

∣
∣
∣,

η(λk,hl) = θ|λk,hl − λk,hl−1 |, η
(

λhlk

)

= θ
∣
∣
∣λ

hl
k − λhl−1k

∣
∣
∣, (θ = 1).

(5.2)

From Tables 1–3, we can see that (1) λhl
k
and λk,hl have the same accuracy. (2) It fails

to find λk,hl by direct computation by using the mixed element on Khl with hl =
√
2/128 in

the case of the square domain and hl =
√
2/160 in the case of the L-shaped domain (here

Matlab shows that Sparse lu with 4 outputs (UMFPACK) failed), but Scheme 1 still works.
(3) η(λhl

k
) = |λhl

k
− λhl−1

k
| is an efficient and reliable error indicator of λhl

k
.

It can be seen from Tables 1–3 that, in the calculation of error indicators, θ should be
selected as follows: in the case of the square domain, θ = 1/15; in the case of the L-shaped
domain, θ is equal to 1, 3/5, 1/15, and 3/5, respectively when r = 0.5, and θ is equal to
1, 1/4, 1/15 and 1/4 respectively, when r = 0.95.

Remark 5.1. Taking Table 1, for example, we illustrate how to select ti next. In Table 1, h0 =√
2/8, h1 =

√
2/32, h2 =

√
2/64, and h3 =

√
2/128. According to hi = htii−1, by calculation, we

get that t1 ≈ 1.80, t2 ≈ 1.22, and t3 ≈ 1.18.
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