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We find out the general solution of a generalized Cauchy-Jensen functional equation and prove
its stability. In fact, we investigate the existence of a Cauchy-Jensen mapping related to the
generalized Cauchy-Jensen functional equation and prove its uniqueness. In the last section of this
paper, we treat a fixed point approach to the stability of the Cauchy-Jensen functional equation.

1. Introduction

In 1940, Ulam [1] gave a wide-range talk before the Mathematics Club of the University of
Wisconsin in which he discussed a number of important unsolved problems. Among those
was the question concerning the stability of homomorphisms.

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0,
does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there is a homomorphism H : G1 → G2

with d(h(x),H(x)) < ε for all x ∈ G1?
The case of approximately additive mappings was solved by Hyers [2] under the

assumption that G1 and G2 are Banach spaces. In 1978, Rassias [3] gave a generalization
of Hyers’s result. Many authors investigated solutions or stability of various functional
equations (see [4–7]).

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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Note that the only substantial difference of the generalized metric from the metric is
that the range of generalized metric includes the infinity.

In this paper, let X and Y be two real vector spaces.

Definition 1.1. A mapping f : X × X → Y is called a Cauchy-Jensen mapping if f satisfies the
system of equations:

f
(
x + y, z

)
= f(x, z) + f

(
y, z

)
,

2f
(
x,
y + z
2

)
= f

(
x, y

)
+ f(x, z).

(1.1)

WhenX = Y = R, the function f : R×R → R given by f(x, y) := axy+bx is a solution
of (1.1).

For a mappings f : X ×X → Y , consider the functional equation:

nf

⎛

⎝
n∑

i=1

xi,
1
n

n∑

j=1

yj

⎞

⎠ =
n∑

i=1

n∑

j=1

f
(
xi, yj

)
, (1.2)

where n is a fixed integer greater than 1. In 2006, the authors [8] solved the functional
equation:

2f
(
x + y,

z +w
2

)
= f(x, z) + f(x,w) + f

(
y, z

)
+ f

(
y,w

)
, (1.3)

which is a special case of (1.2) for n = 2.

In this paper, we find out the general solution and we prove the generalized Hyers-
Ulam stability of the functional equation (1.2).

2. General Solution of (1.2)

The following lemma ia a well-known fact (see, e.g., [6]).

Lemma 2.1. A mapping g : X → Y satisfies Jensen’s functional equation:

2g
(
y + z
2

)
= g

(
y
)
+ g(z) (2.1)

for all y, z ∈ X if and only if it satisfies the generalized Jensen’s functional equation:

ng

(
y1 + · · · + yn

n

)
= g

(
y1
)
+ · · · + g(yn

)
(2.2)

for all y1, . . . , yn ∈ X.
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Theorem 2.2. A mapping f : X ×X → Y satisfies (1.1) if and only if it satisfies (1.2).

Proof. If f satisfies (1.1), then we get

nf

⎛

⎝
n∑

i=1

xi,
1
n

n∑

j=1

yj

⎞

⎠ = n
n∑

i=1

f

⎛

⎝xi,
1
n

n∑

j=1

yj

⎞

⎠, (2.3)

for all x1, . . . , xn, y1, . . . , yn ∈ X. Hence, we obtain that f satisfies (1.2) by Lemma 2.1.
Conversely, assume that f satisfies (1.2). Letting x1 = · · · = xn = 0 and y1 = · · · = yn = z

in (1.2), we get f(0, z) = 0 for all z ∈ X. Putting x1 = x, x2 = y, x3 = · · · = xn = 0, and
y1 = · · · = yn = z in (1.2), we have

f
(
x + y, z

)
= f(x, z) + f

(
y, z

)
(2.4)

for all x, y, z ∈ X. Setting x1 = x and x2 = · · · = xn = 0 in (1.2), we obtain that

nf

⎛

⎝x,
1
n

n∑

j=1

yj

⎞

⎠ =
n∑

j=1

f
(
x, yj

)
(2.5)

for all x, y1, . . . , yn ∈ X. By Lemma 2.1, we see that

2f
(
x,
y + z
2

)
= f

(
x, y

)
+ f(x, z), (2.6)

for all x, y, z ∈ X.

3. Stability of (1.3) Using the Alternative of Fixed Point

In this section, let Y be a real Banach space. We investigate the stability of functional equation
(1.3) using the alternative of fixed point. Before proceeding the proof, we will state the
theorem which is the alternative of fixed point.

Theorem 3.1 (The alternative of fixed point [9]). Suppose that one is given a complete generalized
metric space (Ω, d) and a strictly contractive mapping T : Ω → Ω with Lipschitz constant L. Then,
for each given x ∈ Ω, either

d
(
Tnx, Tn+1x

)
= ∞ ∀n ≥ 0, (3.1)

Or there exists a positive integer n0 such that

(i) d(Tnx, Tn+1x) <∞ for all n ≥ n0;
(ii) the sequence (Tnx) is convergent to a fixed point y∗ of T ;

(iii) y∗ is the unique fixed point of T in the set Δ = {y ∈ Ω | d(Tn0x, y) <∞};
(iv) d(y, y∗) ≤ 1/(1 − L)d(y, Ty) for all y ∈ Δ.

From now on, let Ω be the set of all mappings g : X ×X → Y satisfying g(0, 0) = 0.
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Lemma 3.2. Let ψ : X × X → [0,∞) be a function. Consider the generalized metric d on Ω given
by

d
(
g, h

)
= dψ

(
g, h

)
:= infSψ

(
g, h

)
, (3.2)

where Sψ(g, h) := {K ∈ [0,∞] | ‖g(x, y) − h(x, y)‖ ≤ Kψ(x, y) forall x, y ∈ X} for all g, h ∈ Ω.
Then, (Ω, d) is complete.

Proof. Let {gn} be a Cauchy sequence in (Ω, d). Then, given ε > 0, there exists N such that
d(gn, gk) < ε if n, k ≥ N. Let n, k ≥ N. Since d(gn, gk) = infSψ(gn, gk) < ε, there exists
K ∈ [0, ε) such that

∥
∥gn

(
x, y

) − gk
(
x, y

)∥∥ ≤ Kψ(x, y) ≤ εψ(x, y) (3.3)

for all x, y ∈ X. So, for each x, y ∈ X, {gn(x, y)} is a Cauchy sequence in Y . Since Y is
complete, for each x, y ∈ X, there exists g(x, y) ∈ Y such that gn(x, y) → g(x, y) as n → ∞.
So g(0, 0) = limn→∞gn(0, 0) = 0. Thus, we have g ∈ Ω. Taking the limit as k → ∞ in (3.3), we
obtain that

n ≥N =⇒ ∥∥gn
(
x, y

) − g(x, y)∥∥ ≤ εψ(x, y), ∀x, y ∈ X
=⇒ ε ∈ Sψ

(
gn, g

)

=⇒ d
(
gn, g

)
= inf Sψ

(
gn, g

) ≤ ε.
(3.4)

Hence, gn → g ∈ Ω as n → ∞.

Using an idea of Cădariu and Radu (see [10] and also [4] where applications of
different fixed point theorems to the theory of the Hyers-Ulam stability can be found), we
will prove the generalized Hyers-Ulam stability of (1.3).

Theorem 3.3. Let L ∈ (0, 1) and ϕ satisfy

ϕ
(
x, y, z,w

) ≤ 6Lϕ
(
x

2
,
y

2
,
z

3
,
w

3

)
(3.5)

for all x, y, z,w ∈ X. Suppose that a mapping f : X × X → Y fulfils f(0, 0) = 0 and the functional
inequality:

∥∥∥2f
(
x + y,

z +w
2

)
− f(x, z) − f(x,w) − f(y, z) − f(y,w)∥∥∥ ≤ ϕ(x, y, z,w)

(3.6)

for all x, y, z,w ∈ X. Then, there exists a unique mapping F : X ×X → Y satisfying (1.3) such that

∥∥f
(
x, y

) − F(x, y)∥∥ ≤ L

1 − Lψ
(
x, y

)
, (3.7)
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where ψ : X ×X → [0,∞) is a function given by

ψ
(
x, y

)

:= ϕ
(
x, x, y,−y) + 2ϕ

(
x, x,−y, y) + ϕ(x, x, y, y) + ϕ(x, x,−y, 3y) + 1

2
ϕ
(
x, x, 3y, 3y

)

(3.8)

for all x, y ∈ X.

Proof. By a similar method to the proof of Theorem 2.3 in [11], we have the inequality:

(∥∥6f
(
x, y

) − f(2x, 3y)∥∥) ≤ ϕ
(
x, x, y,−y) + 2ϕ

(
x, x,−y, y)

+ ϕ
(
x, x, y, y

)
+ ϕ

(
x, x,−y, 3y) + 1

2
ϕ
(
x, x, 3y, 3y

) (3.9)

for all x, y ∈ X. By (3.5), we get

∥∥6f
(
x, y

) − f(2x, 3y)∥∥ ≤ ψ(x, y) ≤ 6Lψ
(
x

2
,
y

3

)
(3.10)

for all x, y ∈ X. Consider the generalized metric d on Ω given by

d
(
g, h

)
= dψ

(
g, h

)
:= infSψ

(
g, h

)
(3.11)

for all g, h ∈ Ω. Then, we obtain

d
(
f, Tf

) ≤ L <∞. (3.12)

By Lemma 3.2, the generalized metric space (Ω, d) is complete. Now, we define a mapping
T : Ω → Ω by

Tg
(
x, y

)
:=

1
6
g
(
2x, 3y

)
(3.13)

for all g ∈ Ω and all x, y ∈ X. Observe that, for all g, h ∈ Ω,

K′ ∈ Sψ
(
g, h

)
, K′ < K

=⇒ ∥∥g
(
x, y

) − h(x, y)∥∥ ≤ K′ψ
(
x, y

) ≤ Kψ(x, y) ∀x, y ∈ X
=⇒ K ∈ Sψ

(
g, h

)
.

(3.14)
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Let g, h ∈ Ω, K ∈ [0,∞] and d(g, h) < K. Then, there is a K′ ∈ Sψ(g, h) such that K′ < K. By
the above observation, we gainK ∈ Sψ(g, h). So, we get ‖g(x, y) − h(x, y)‖ ≤ Kψ(x, y) for all
x, y ∈ X. Thus, we have

∥
∥
∥
∥
1
6
g
(
2x, 3y

) − 1
6
h
(
2x, 3y

)
∥
∥
∥
∥ ≤ 1

6
Kψ

(
2x, 3y

)
(3.15)

for all x, y ∈ X. By (3.5), we obtain that

∥∥
∥
∥
1
6
g
(
2x, 3y

) − 1
6
h
(
2x, 3y

)
∥∥
∥
∥ ≤ LKψ(x, y) (3.16)

for all x, y ∈ X. Hence, d(Tg, Th) ≤ LK. Therefore, we obtain that

d
(
Tg, Th

) ≤ Ld(g, h) (3.17)

for all g, h ∈ Ω, that is, T is a strictly contractive mapping of Ω with Lipschitz constant L.
Applying the alternative of fixed point, we see that there exists a fixed point F of T in Ω such
that

F
(
x, y

)
= lim

n→∞
1
6n
f
(
2nx, 3ny

)
(3.18)

for all x, y ∈ X. Replacing x, y, z,w by 2nx, 2ny, 3nz, 3nw in (3.6), respectively, and dividing
by 4n, we have

∥∥F
(
x + y, z −w)

+ F
(
x − y, z +w) − 2F(x, z) − 2F

(
y,w

)∥∥

= lim
n→∞

1
6n

∥∥f
(
2n
(
x + y

)
, 3n(z −w)

)
+ f

(
2n
(
x − y), 3n(z +w)

)

−2f(2nx, 3nz) − 2f
(
2ny, 3nw

)∥∥

≤ lim
n→∞

1
6n
ϕ
(
2nx, 2ny, 3nz, 3nw

)

(3.19)

for all x, y, z,w ∈ X. By (3.5), the mapping F satisfies (1.3). By (3.5) and (3.10), we obtain that

∥∥∥Tnf
(
x, y

) − Tn+1f(x, y)
∥∥∥ =

1
6n

∥∥∥∥f
(
2nx, 3ny

) − 1
6
f
(
2n+1x, 3n+1y

)∥∥∥∥

≤ L

6n
ψ
(
2n−1x, 3n−1y

)
≤ · · · ≤ L

6n
(6L)n−1ψ

(
x, y

)

=
Ln

6
ψ
(
x, y

)

(3.20)
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for all x, y ∈ X and all n ∈ N, that is, d(Tnf, Tn+1f) ≤ Ln/6 < ∞ for all n ∈ N. By the fixed
point alternative, there exists a natural number n0 such that the mapping F is the unique fixed
point of T in the set Δ = {g ∈ Ω | d(Tn0f, g) <∞}. So, we have d(Tn0f, F) <∞. Since

d
(
f, Tn0f

) ≤ d(f, Tf) + d
(
Tf, T2f

)
+ · · · + d

(
Tn0−1f, Tn0f

)
<∞, (3.21)

we get f ∈ Δ. Thus, we have d(f, F) ≤ d(f, Tm0f) + d(Tm0f, F) <∞. Hence, we obtain

∥
∥f

(
x, y

) − F(x, y)∥∥ ≤ Kψ(x, y) (3.22)

for all x, y ∈ X and a K ∈ [0,∞). Again, using the fixed point alternative, we have

d
(
f, F

) ≤ 1
1 − Ld

(
f, Tf

)
. (3.23)

By (3.12), we may conclude that

d
(
f, F

) ≤ L

1 − L, (3.24)

which implies inequality (3.7).

Theorem 3.4. L ∈ (0, 1) and ϕ satisfy

ϕ
(
x, y, z,w

) ≤ L

6
ϕ
(
2x, 2y, 3z, 3w

)
(3.25)

for all x, y, z,w ∈ X. Suppose that a mapping f : X × X → Y fulfils f(0, 0) = 0 and the functional
inequality (3.6). Then, there exists a unique mapping F : X ×X → Y satisfying (1.3) such that

∥∥f
(
x, y

) − F(x, y)∥∥ ≤ 1
1 − Lψ

(
x, y

)
, (3.26)

where ψ : X ×X → [0,∞) is a function given by

ψ
(
x, y

)
:= ϕ

(
x

2
,
x

2
,
y

3
,−y

3

)
+ 2ϕ

(
x

2
,
x

2
,−y

3
,
y

3

)
+ ϕ

(
x

2
,
x

2
,
y

3
,
y

3

)

+ ϕ
(
x

2
,
x

2
,−y

3
, y

)
+
1
2
ϕ
(x
2
,
x

2
, y, y

) (3.27)

for all x, y ∈ X.
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Proof. By a similar method to the proof of Theorem 2.3 in [11], we have the inequality

∥∥6f
(
x, y

) − f(2x, 3y)∥∥ ≤ ϕ
(
x, x, y,−y)

+ 2ϕ
(
x, x,−y, y) + ϕ(x, x, y, y) + ϕ(x, x,−y, 3y) + 1

2
ϕ
(
x, x, 3y, 3y

)

(3.28)

for all x, y ∈ X. So, we get

∥
∥
∥
∥f

(
x, y

) − 6f
(
x

2
,
y

3

)∥
∥
∥
∥ ≤ ψ(x, y) (3.29)

for all x, y ∈ X. Consider the generalized metric d on Ω given by

d
(
g, h

)
= dψ

(
g, h

)
:= infSψ

(
g, h

)
(3.30)

for all g, h ∈ Ω. Then, we obtain

d
(
f, Tf

) ≤ 1 <∞. (3.31)

By Lemma 3.2, the generalized metric space (Ω, d) is complete. Now, we define a mapping
T : Ω → Ω by

Tg
(
x, y

)
:= 6g

(
x

2
,
y

3

)
(3.32)

for all g ∈ Ω and all x, y ∈ X. By the same argument as in the proof of Theorem 2.3 in [11], T
is a strictly contractive mapping of Ω with Lipschitz constant L. Applying the alternative of
fixed point, we see that there exists a fixed point F of T in Ω such that

F
(
x, y

)
= lim

n→∞
6nf

(
x

2n
,
y

3n

)
(3.33)

for all x, y ∈ X. Replacing x, y, z,w by x/2n, y/2n, z/3n,w/3n in (3.6), respectively, and
multiplying by 6n, we have

∥∥F
(
x + y, z −w)

+ F
(
x − y, z +w) − 2F(x, z) − 2F

(
y,w

)∥∥

= lim
n→∞

6n
∥∥∥∥f

(
x + y
2n

,
z −w
3n

)
+ f

(
x − y
2n

,
z +w
3n

)
− 2f

(
x

2n
,
z

3n

)
− 2f

(
y

2n
,
w

3n

)∥∥∥∥

≤ lim
n→∞

6nϕ
(
x

2n
,
y

2n
,
z

3n
,
w

3n

)
(3.34)
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for all x, y, z,w ∈ X. By (3.25), the mapping F satisfies (1.3). By (3.25), we obtain that

‖Tnf(x, y) − Tn+1f(x, y)

= 6n
∥
∥
∥
∥f

(
x

2n
,
y

3n

)
− 6f

(
x

2n+1
,
y

3n+1

)∥
∥
∥
∥

≤ 6nψ
(
x

2n
,
y

3n

)
≤ 6n−1Lψ

(
x

2n−1
,
y

3n−1

)
≤ 6n−2L2ψ

(
x

2n−2
,
y

3n−2

)
≤ · · · ≤ Lnψ(x, y)

(3.35)

for all x, y ∈ X and all n ∈ N, that is, d(Tnf, Tn+1f) ≤ Ln < ∞ for all n ∈ N. By the same
reasoning as in the proof of Theorem 2.3 in [11], we have

d
(
f, F

) ≤ 1
1 − Ld

(
f, Tf

)
. (3.36)

By (3.31), we may conclude that

d
(
f, F

) ≤ 1
1 − L, (3.37)

which implies inequality (3.26).

Acknowledgment

This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (Grant no. 2012003499).

References

[1] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, NY, USA, 1960.
[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of

Sciences of the United States of America, vol. 27, pp. 222–224, 1941.
[3] T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American

Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978.
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