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Different from the most existing results, in this paper an intermittent control scheme is designed
to achieve lag synchronization of coupled hyperchaotic systems. Several sufficient conditions
ensuring lag synchronization are proposed by rigorous theoretical analysis with the help of the
Lyapunov stability theory. Numerical simulations are also presented to show the effectiveness and
feasibility of the theoretical results.

1. Introduction

Chaos is a highly interesting nonlinear phenomenon that has been much investigated for
its great theoretical challenge and potential applications to many fields. Since the seminal
works of Pecora and Carroll [1], the idea of synchronization of chaotic systems has received
a great deal of interest among researchers from various fields. Over the past decades, several
different regimes of chaos synchronization have been investigated, for example, complete
synchronization [1, 2], generalized synchronization [3], projective synchronization [4], phase
synchronization [5], lag synchronization [6], and anticipating synchronization [7].

On the other hand, it has been shown that the complete synchronization of chaos is
practically impossible for the finite speed of signals. Chaotic lag synchronization appears
as a coincidence of shift-in-time states of interactive systems. It is just synchronization
lag that makes lag synchronization practically available. For instance, in the telephone
communication system, the voice one hears on the receive side at time ¢ is often the voice
from the transmitter side at time ¢ — 7 [8]. So, in many cases, it is more reasonable to require
the slave system to synchronize the master system with a time-delay 7. Moreover, projective
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synchronization of chaotic systems has attracted increasing attention due to its potential
applications in secure communication and control processing.

There are many different methods including continuous control and discontinuous
control that have been proposed for stabilizing and synchronizing chaotic systems,
such as state feedback control [9, 10], adaptive control [11], switching control [12, 13],
impulsive control [14-18], and intermittent control [19-22]. Recently, intermittent control of
nonlinear system has drawn increasing interests in process control, ecosystem management,
synchronizing chaotic systems, and communication, and so on. As a special form of switching
control, intermittent control is also divided into two classes: state-dependent switching rule
and time-switching rule. The former implies that the control operation is activated only when
the states come into the certain region which is often before given, while the latter activates
the control only in some finite time intervals; the system evolves freely when the time goes out
of those intervals. Therefore, these intermittent control systems are open looped. Compared
with continuous control method, and intermittent control method is advantageous for its
efficiency.

Motivated by the above discussions, in this paper, we first investigate lag synchro-
nization of hyperchaotic systems by periodically intermittent control. By using the Lyapunov
stability theory and the intermittent control technique, the intermittent controllers and
the corresponding parameter update rules are designed to obtain lag synchronization of
hyperchaotic systems. Numerical simulations are reported to show their good agreement
with the theoretical results.

The rest of the paper is organized as follows. In Section 2, model description is
given. We will study the lag synchronization of coupled hyperchaotic systems, respectively.
Accordingly, we obtain the control laws for both regimes based on the rigorous theoretical
analysis. In Section 3, numerical examples are given to show the theoretical results, which is
followed by the conclusions in Section 4.

2. Problem Formulations

Now we consider a novel hyperchaotic system described as [23]

X1 = a(xy - x1),

Xo = bx1 — Xy — X1X3 + X4,
2.1)
X3 = CX3 + X1Xp,

X4 = dix1 +doxy,

where x1, x3, x3, and x4 are state variables, and a, b, ¢, dy, and d, are real parameters. It is
shown that this system is hyperchaotic when the parameters are chosen as a = 10, b = 28,
¢ =-8/3,and (dy,dy) = (-9.3,1), as shown in Figure 1.

We divide the system (2.1) into two parts, that is, linear part and nonlinear part. Then,
we rewrite (2.1) as follows:

x(t) = Ax(t) + f(x(t)), (2.2)
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Figure 1: Several projections of hyperchaotic attractors.
where
-a a 00 0
b -101 —x1(£)x3(t)
- T _ _ 1()x3
X(t) = (xl(t)/xZ(t)/ x3(t),.‘X'4(t)) s A= 0 0 cO 7 f(x(t)) X1(t)X2(t)
di d, 00 0
(2.3)
In what follows, the coupled response system with feedback control is given by
y(t) = Ay(t) + f(y(t) +u(t), (2.4)

where y(t) = (y1(t),yz(t),y3(t),y4(t))T is the response state. u(t) is the intermittent control
gain defined by

u(t) = {Ig(y(t)—x(t—’r)), nT <t <nT + 0T, 2.5)

, nT +oT <t<(n+1)T,
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where 7 > 0 is the propagation delay, k denotes control strength, 0 < o < 1 denotes switching
rate and T denotes control period. Let e(t) = y(t) — x(t — T) be the lag synchronization error
between the systems (2.2) and (2.4), then yields the error system

e(t) =yt) - x(t-7)
=Ae(t) + f(y) — f(x(t = 7)) +u(t).

(2.6)

Under the control of the form (2.5), the lag synchronization error (2.6) can be rewritten
as

e(t) = Ae(t) + f(y) — f(x(t—7)) + ke(t), nT <t<nT+oT,
2.7
e(t) =Ae(t) + f(y) - f(x(t-7)), nT+oT<t<(n+1)T. 27

We now state our main results.

Theorem 2.1. Suppose that there exist positive constants g1 > 0, g > 0 such that

(1) 2kI + A+ AT + 2L oI + 11 < 0;
(2) A+ AT + 2L 0 - I <0;

(3) gioc—g(1-0)>0.

Then, the lag synchronization error system (2.7) is globally exponentially stable, and
moreover,

le®ll = llett)l exp( =5 (510 - 21 - 0)) (1= 0T) ). 28)

This implies that the two systems (2.2) and (2.4) are globally exponentially lag
synchronized.

Proof. Consider the following Lyapunov function:

V(e(t)) = e’ (He(t) (2.9)

which implies that V (e(t)) = [le(t)||*.
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When nT < t < nT + oT, the derivative of (2.9) with respect to time t along the
trajectories of the first subsystem of the system (2.7) is calculated and estimated as follows:

Vie(t)) = el (t)e(t) + e(t)e’ (t)
=el () [Ae(t) + f(y) - f(x(t—T)) + ke(t)]
+ [Ae(t) + f(y) - f(x(t-1)) +ke(t)]"e(t)

=T () [2k1 +A+ AT]e(t) +x3(t—T)er(ea(t) — xa(t - T)er (Bes(t)
= eT(O2K1 + A+ AT]e(t) + Lnax(les ()llea(8)] + ler (B)lles (B)])
<el() [2k1 + A+ AT 4 2L + gll]e(t) — g’ (De(t)
< —gq1Vie(t)).
Thus, we have
V(e(t) <-g1V(e(t)), nT<t<nT+oT.
And then
V(e(t)) < V(e(nT)) exp(~gi(t -~ nT)).
Similarly, when nT + 0T < t < (n + 1)T, we have

Vie(t) = €' (t)e(t) + e(t)e” (£)
= (h[Ae®) + f(y) - fx(t-1))]
+[Ae®) + f(y) - fx(t=1)] et
=el(t) [A + AT]e(t) +x3(t = T)er(Hea(t) — xa(t — T)er (Bes(t)
= 'O A+ AT]e(®) + Lsx(er 0)]le2(t)] +ler (B)]les (1))
<el(t) [A + AT + 2L — gzI]e(t) + el (He(t)

< @Vie(t)).
Therefore, we derive that when nT + oT <t < (n+1)T,

Vie(t) < gV(et)),
V(e(t)) < V(e(nT +oT)) exp(g(t - nT — oT)).

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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Hence,

V(e(t)) < V(e(nT))exp(-gi(t—nT)), nT <t<nT+o0T,
2.15
V(e(t)) < V(e(nT +oT))exp(g(t —nT -oT)), nT+oT <t<(n+1)T. 219

Following the same line of argument of the proof of Theorem 1 of [20], we can get
V(e(t) < V(e(t)) exp(=(g10 — g2(1 - 0))(t - oT)). (2.16)
Therefore, for any t > 0,
lle()I* = V(e(t)) < V(e(to) exp(=(810 = g2(1 - 0)) (t - oT)). (2.17)

This implies that the origin of system (2.7) is globally exponentially stable and the
following estimate holds:

le®l = lletw)l exp (= (510 - 21 - ) =0T ), 120, (218)

Hence, the two systems (2.2) and (2.4) are globally exponentially lag synchronized.
The proof is thus completed. O

Remark 2.2. Let A be the largest eigenvalue of A + AT. If we replace the first two conditions in
Theorem 2.1 by the scalar equalities g7 = —2k — A = 2Lay, §5 = A + 2Lmay, Where g7 > ¢1 and
3 < & then, Theorem 2.1 also holds. Furthermore, Theorem 2.1 will reduce the following
corollary.

Corollary 2.3. If there exist constants k, 0 < ¢ < 1, such that gio — g5(1 — o) > 0, where g} =
=2k — A =2Lmax, 8 = A +2Lmax, the lag synchronization error system (2.7) is globally exponentially
stable and the lag synchronization between the systems (2.2) and (2.4) is achieved.

3. Numerical Examples

In this section, we will present some numerical simulations for lag synchronization of the
hyperchaotic system to verify and illustrate the effectiveness of the theoretical analysis in
Section 3. In all these simulations, the constants are set to be a = 10, b = 28, ¢ = -8/3,
and (dj,dz) = (-9.3,1). From Corollary 2.3, one observes that the control strength k can be
estimated as follows:

(A +2Lmax) <0,

k< o

(3.1)

From (3.1), one then estimates the feasible region D of control parameters (k, o), D = {(k,0) |
—(M+2Lnax)/20<0,0< 0 <1}.
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Figure 2: The feasible region D (the region below the curve) of the control parameters (k, o).
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Figure 3: Dynamical behaviors of the hyperchaotic system with 7 = 0.02.

Based on the bound of the hyperchaotic attractor, we can choose Liax = 52. Since the

eigenvalues of the matrix A+AT are -33.5370, —5.3334, 1.2020, and 10.3350, A = Apax (A+AT) =
10.3350.

Therefore, the feasible region of control parameters (k, o) is

D= {(k,0) | k<-57.1675/0 < 0,0 < o < 1} (3.2)

as shown in Figure 2.
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Figure 4: Lag synchronization error of the hyperchaotic system with 7 = 0.02.
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Figure 5: The norm of lag synchronization error of the hyperchaotic system with 7 = 0.02.

To satisfy the conditions in Theorem 2.1, we set T = 4,6 = 0.8, 7 = 0.02, and k =
-60. Figure 3 shows dynamical behaviors of the hyperchaotic system (2.2) and its nonlinear
observer (2.4). Figure 4 shows the time response curves of the lag synchronization error in
the case of T = 0.02. Figure 5 shows the norm of lag synchronization error of the hyperchaotic
system. From Figures 4 and 5, one can see that the state variables of the hyperchaotic systems
achieve lag synchronization, which shows the correctness and effectiveness of our method
via intermittent control.

4. Conclusions

In this paper, we have formulated the lag synchronization problem for hyperchaotic systems
by means of periodically intermittent control and design a general periodically intermittent
controller for hyperchaotic systems. Lag synchronization criteria are established based on the
Lyapunov stability theory and linear matrix inequality techniques. Numerical simulations
have showed the validity of theoretical result.
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