
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 242354, 12 pages
doi:10.1155/2012/242354

Research Article
Strong Convergence of Non-Implicit Iteration
Process with Errors in Banach Spaces

Yan Hao, Xiaoshuang Wang, and Aihua Tong

School of Mathematics, Physics, and Information Science, Zhejiang Ocean University,
Zhoushan 316004, China

Correspondence should be addressed to Yan Hao, zjhaoyan@yahoo.cn

Received 1 September 2012; Accepted 17 October 2012

Academic Editor: Xiaolong Qin

Copyright q 2012 Yan Hao et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The purpose of this paper is to study the strong convergence of a non-implicit iteration
process with errors for asymptotically I-nonexpansive mappings in the intermediate sense in
the framework of Banach spaces. The results presented in this paper extend and improve the
corresponding results recently announced.

1. Introduction and Preliminaries

Let K be a nonempty, closed, and convex subset of a real Banach space X and let T : K → K
be a mapping. In this paper, we use F(T) to stand for the set of fixed points of T , that is
F(T) = {x ∈ K : Tx = x}.

Recall that T is said to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ K. (1.1)

T is said to be asymptotically nonexpansive if there exists a sequence {hn} with hn ⊂
[1,+∞)with limn→∞hn = 1 such that

∥
∥Tnx − Tny

∥
∥ ≤ hn

∥
∥x − y

∥
∥, ∀x, y ∈ K, n ≥ 1. (1.2)
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T is said to be asymptotically nonexpansive in the intermediate sense if it is continuous
and the following inequality holds:

lim sup
n→∞

sup
x,y∈k

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0. (1.3)

Observe that if we define an = supx,y∈k(‖Tnx − Tny‖ − ‖x − y‖), σn = max{0, an}, then
σn → 0 as n → ∞ and (1.3) reduces to

∥
∥Tnx − Tny

∥
∥ ≤ ∥

∥x − y
∥
∥ + σn, ∀x, y ∈ K, n ≥ 1. (1.4)

It is easy to see that every nonexpansive mapping is asymptotically nonexpansive.
And every asymptotically nonexpansive mapping is asymptotically nonexpansive in the
intermediated sense. In [1], Goebel and Kirk proved that, if K is a nonempty closed convex
bounded subset of a real uniformly convex Banach space X, and T is an asymptotically
nonexpansive self-mapping onK, then T has a fixed point inK. The class of mappings which
are asymptotically nonexpansive in the intermediat sense was investigated by Bruck et al.
[2] and Kirk [3]. Since then, many authors have investigated the fixed point problem of
these mappings based on implicit iterative methods or non-implicit iterative methods; see,
for example, [4–21].

Let I : K → K be a mapping. Recall that T is said to be asymptotically I-nonexpansive
if there exists a sequence {hn}with {hn} ⊂ [1,+∞) with limn→∞hn = 1 such that

∥
∥Tnx − Tny

∥
∥ ≤ hn

∥
∥Inx − Iny

∥
∥, ∀x, y ∈ K, n ≥ 1. (1.5)

Recently, weak and strong convergence theorems for fixed points of I-nonexpansive
mappings, and asymptotically I-nonexpansive mappings have been established by many
scholar, see, for example, [22–25].

In this paper, we consider a new mapping based on asymptotically nonexpansive
mappings in the intermediate sense and asymptotically I-nonexpansive mappings.

Let T : K → K, I : K → K be two mappings. T is said to be asymptotically I-
nonexpansive in the intermediate sense if it is continuous and the following inequality holds:

lim sup
n→∞

sup
x,y∈k

(∥
∥Tnx − Tny

∥
∥ − ∥

∥Inx − Iny
∥
∥
) ≤ 0. (1.6)

Observe that if we define an = supx,y∈k(‖Tnx − Tny‖ − ‖Inx − Iny‖), σn = max{0, an}, then
σn → 0 as n → ∞ and (1.6) reduces to

∥
∥Tnx − Tny

∥
∥ ≤ ∥

∥Inx − Iny
∥
∥ + σn, ∀x, y ∈ K, n ≥ 1. (1.7)

Note that if I = Id, where Id is the identity mapping, then (1.7) reduces to (1.4).
In this paper, we investigate asymptotically I-nonexpansive mappings in the

intermediate sense based on a non-implicit iterative algorithm. Strong convergence of the
implicit iterative algorithm is obtained in the framework of Banach spaces.

In order to prove our main results, we need the following lemmas.
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Lemma 1.1 (see [21]). let X be a uniformly convex Banach space. Let b and c be two constants with
0 < b < c < 1. Suppose that {tn} is a sequence in [b, c]. Let {xn} and {yn} be two sequences in X
such that

lim sup
n→∞

‖xn‖ ≤ d, lim sup
n→∞

∥
∥yn

∥
∥ ≤ d,

lim
n→∞

∥
∥tnxn + (1 − tn)yn

∥
∥ = d

(1.8)

hold for some d ≥ 0, then limn→∞‖xn − yn‖ = 0.

Lemma 1.2 (see [26]). Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the
following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0, (1.9)

where n0 is some nonnegative integer,
∑∞

n=1 bn < ∞ and
∑∞

n=1 cn < ∞. Then the limit limn→∞an

exists.

2. Main Results

Lemma 2.1. Let X be a real Banach space and K a nonempty closed and convex subset of X. Let
T : K → K be a asymptotically I-nonexpansive in the intermediate sense and I : K → K a
asymptotically nonexpansive in the intermediate sense. Assume that F := F(T) ∩ F(I)/= ∅. Let σn =
max{0, supx,y∈k(‖Tnx−Tny‖−‖Inx−Iny‖)} and σn = max{0, supx,y∈k(‖Tnx−Tny‖−‖x−y‖)}.
Let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, {γ̂n} be six real number sequences in (0, 1). Let {xn} be a sequence
generated in the following iterative process:

x1 ∈ C,

yn = α̂nxn + β̂nI
nxn + γ̂nvn,

xn+1 = αnxn + βnT
nyn + γnun, n ≥ 1,

(2.1)

where {un} and {vn} be two bounded sequences in K. Assume that the following restrictions are
satisfied:

(a) αn + βn + γn = α̂n + β̂n + γ̂n = 1;

(b)
∑∞

n=1 σn < ∞,
∑∞

n=1 σn < ∞;

(c)
∑∞

n=1 γn < ∞,
∑∞

n=1 γ̂n < ∞.

Then limn→∞‖xn − p‖ exists for all p ∈ F.
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Proof. Letting p ∈ F, we see that

∥
∥yn − p

∥
∥ =

∥
∥
∥

(

1 − β̂n − γ̂n
)

xn + β̂nI
nxn + γ̂nvn − p

∥
∥
∥

≤
(

1 − β̂n − γ̂n
)∥
∥xn − p

∥
∥ + β̂n

∥
∥Inxn − p

∥
∥ + γ̂n

∥
∥vn − p

∥
∥

≤
(

1 − β̂n − γ̂n
)∥
∥xn − p

∥
∥ + β̂n

(∥
∥xn − p

∥
∥ + σn

)

+ γ̂n
∥
∥vn − p

∥
∥

=
(

1 − γ̂n
)∥
∥xn − p

∥
∥ + γ̂n

∥
∥vn − p

∥
∥ + β̂nσn

≤ ∥
∥xn − p

∥
∥ + γ̂n

∥
∥vn − p

∥
∥ + β̂nσn,

(2.2)

∥
∥xn+1 − p

∥
∥ =

∥
∥
(

1 − βn − γn
)

xn + βnT
nyn + γnun − p

∥
∥

≤ (

1 − βn − γn
)∥
∥xn − p

∥
∥ + βn

∥
∥Tnyn − p

∥
∥ + γn

∥
∥un − p

∥
∥

=
(

1 − βn − γn
)∥
∥xn − p

∥
∥ + βn

∥
∥Tnyn − Tnp

∥
∥ + γn

∥
∥un − p

∥
∥

≤ (

1 − βn − γn
)∥
∥xn − p

∥
∥ + βn

(∥
∥Inyn − Inp

∥
∥ + σn

)

+ γn
∥
∥un − p

∥
∥

=
(

1 − βn − γn
)∥
∥xn − p

∥
∥ + βn

∥
∥Inyn − Inp

∥
∥ + βnσn + γn

∥
∥un − p

∥
∥

≤ (

1 − βn − γn
)∥
∥xn − p

∥
∥ + βn

(∥
∥yn − p

∥
∥ + σn

)

+ βnσn + γn
∥
∥un − p

∥
∥

=
(

1 − βn − γn
)∥
∥xn − p

∥
∥ + βn

∥
∥yn − p

∥
∥ + γn

∥
∥un − p

∥
∥ + βn(σn + σn)

≤ (

1 − βn
)∥
∥xn − p

∥
∥ + βn

∥
∥yn − p

∥
∥ + γn

∥
∥un − p

∥
∥ + βn(σn + σn).

(2.3)

Substituting (2.2) into (2.3),we obtain that

∥
∥xn+1 − p

∥
∥ ≤ (

1 − βn
)∥
∥xn − p

∥
∥ + βn

(∥
∥xn − p

∥
∥ + γ̂n

∥
∥vn − p

∥
∥ + β̂nσn

)

+ γn
∥
∥un − p

∥
∥ + βn(σn + σn)

=
∥
∥xn − p

∥
∥ +

[

βnγ̂n
∥
∥vn − p

∥
∥ + γn

∥
∥un − p

∥
∥ + βnσn + βnσn

(

1 + β̂n
)]

.

(2.4)

Let an = ‖xn − p‖, bn = 0, and

cn = βnγ̂n
∥
∥vn − p

∥
∥ + γn

∥
∥un − p

∥
∥ + βnσn + βnσn

(

1 + β̂n
)

. (2.5)

It follows from (2.4) that

an+1 ≤ an + cn. (2.6)

In view of the restrictions (b) and (c), we see that
∑∞

n=1 cn < ∞. We can easily conclude the
desired conclusion with the aid of Lemma 1.2. This completes the proof of Lemma 2.1.
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Theorem 2.2. Let X be a real Banach space and K a nonempty closed and convex subset of X. Let
T : K → K be a asymptotically I-nonexpansive in the intermediate sense and I : K → K a
asymptotically nonexpansive in the intermediate sense. Assume that F := F(T) ∩ F(I)/= ∅. Let σn =
max{0, supx,y∈k(‖Tnx−Tny‖−‖Inx−Iny‖)} and σn = max{0, supx,y∈k(‖Tnx−Tny‖−‖x−y‖)}.
Let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, {γ̂n} be six real number sequences in (0, 1). Let {xn} be a sequence
generated in the following iterative process:

x1 ∈ C,

yn = α̂nxn + β̂nI
nxn + γ̂nvn,

xn+1 = αnxn + βnT
nyn + γnun, n ≥ 1,

(2.7)

where {un} and {vn} be two bounded sequences in K. Assume that the following restrictions are
satisfied:

(a) αn + βn + γn = α̂n + β̂n + γ̂n = 1;

(b)
∑∞

n=1 σn < ∞,
∑∞

n=1 σn < ∞;

(c)
∑∞

n=1 γn < ∞,
∑∞

n=1 γ̂n < ∞.

If both T and I are continuous, then the sequence {xn} strongly converges to a common fixed point of
T and I if and only if

lim inf
n→∞

d(xn, F) = 0. (2.8)

Proof. The necessity is obvious. Next, we prove the sufficiency part of the theorem. Note that
continuity of T and I implies that the set F(T) and F(I) are closed. It follows from (2.6) that

∥
∥xn+1 − p

∥
∥ ≤ ∥

∥xn − p
∥
∥ + cn. (2.9)

This implies in turn that

d(xn+1, F) ≤ d(xn, F) + cn. (2.10)

Now applying Lemma 1.2 to (2.10), we obtain the existence of the limit limn→∞d(xn, F). By
condition (2.8), we have

lim
n→∞

d(xn, F) = lim inf
n→∞

d(xn, F) = 0. (2.11)
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Next we prove that the sequence {xn} is a Cauchy sequence in K. For any positive
integers n, m, from (2.9) it follows that

∥
∥xn+m − p

∥
∥ ≤ ∥

∥xn+m−1 − p
∥
∥ + cn+m−1

≤ (∥
∥xn+m−2 − p

∥
∥ + cn+m−2

)

+ cn+m−1

≤ · · ·

≤ ∥
∥xn − p

∥
∥ +

n+m−1∑

i=n

ci

≤ ∥
∥xn − p

∥
∥ +

∞∑

i=n

ci.

(2.12)

Since limn→∞d(xn, F) = 0, and
∑∞

n=1 cn < ∞, for any given ε > 0, there exists a positive integer
n0 such that

d(xn, F) <
ε

8
,

∞∑

i=n

ci <
ε

2
, ∀n ≥ n0. (2.13)

Therefore there exists p1 ∈ F such that d(xn, p1) < (ε/4), ∀n ≥ n0. Consequently, for any
n ≥ n0 and for all m ≥ 1, we have

‖xn+m − xn‖ ≤ ∥
∥xn+m − p1

∥
∥ +

∥
∥xn − p1

∥
∥

≤ 2
∥
∥xn − p1

∥
∥ +

∞∑

i=n

ci

≤ ε

4
· 2 + ε

2
= ε.

(2.14)

This implies that {xn} is a Cauchy sequence in K. Let xn → x∗ ∈ K. Since F is closed, this
implies that x∗ ∈ F. This shows that {xn} strongly converges to a common fixed of T and I.
This completes the proof of Theorem 2.2.

Lemma 2.3. Let X be a real Banach space and K a nonempty closed and convex subset of X. Let
T : K → K be a asymptotically I-nonexpansive in the intermediate sense and I : K → K a
asymptotically nonexpansive in the intermediate sense. Assume that F := F(T) ∩ F(I)/= ∅. Let σn =
max{0, supx,y∈k(‖Tnx−Tny‖−‖Inx−Iny‖)} and σn = max{0, supx,y∈k(‖Tnx−Tny‖−‖x−y‖)}.
Let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, {γ̂n} be six real number sequences in (0, 1). Let {xn} be a sequence
generated in the following iterative process:

x1 ∈ C,

yn = α̂nxn + β̂nI
nxn + γ̂nvn,

xn+1 = αnxn + βnT
nyn + γnun, n ≥ 1,

(2.15)
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where {un} and {vn} be two bounded sequences in K. Assume that the following restrictions are
satisfied:

(a) αn + βn + γn = α̂n + β̂n + γ̂n = 1, ∀n ≥ 1;

(b)
∑∞

n=1 σn < ∞,
∑∞

n=1 σn < ∞;

(c) there exist constants τ1, τ2 ∈ (0, 1) such that τ1 ≤ βn, β̂n ≤ τ2, ∀n ≥ 1;

(d)
∑∞

n=1 γn < ∞,
∑∞

n=1 γ̂n < ∞.

Then

lim
n→∞

‖xn − Tnxn‖ = 0, (2.16)

lim
n→∞

‖xn − Inxn‖ = 0. (2.17)

Proof. According to Lemma 2.1, for any p ∈ F, we have limn→∞‖xn − p‖ exists. Without loss
of generality, we may assume that

lim
n→∞

∥
∥xn − p

∥
∥ = d, (2.18)

where d > 0 is some constant. It follows that

lim
n→∞

∥
∥xn+1 − p

∥
∥ = lim

n→∞
∥
∥
(

1 − βn
)[

xn − p + γn(un − xn)
]

+ βn
[

Tnyn − p + γn(un − xn)
]∥
∥ = d.

(2.19)

Notice that

∥
∥xn − p + γn(un − xn)

∥
∥ ≤ ∥

∥xn − p
∥
∥ + γn‖un − xn‖. (2.20)

It follows from the restriction (d) and (2.18) that

lim sup
n→∞

∥
∥xn − p + γn(un − xn)

∥
∥ ≤ d. (2.21)
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Notice that

lim sup
n→∞

∥
∥Tnyn − p + γn(un − xn)

∥
∥ ≤ lim sup

n→∞

∥
∥Tnyn − p

∥
∥ + lim sup

n→∞
γn‖un − xn‖

= lim sup
n→∞

∥
∥Tnyn − p

∥
∥

≤ lim sup
n→∞

(∥
∥Inyn − Inp

∥
∥ + σn

)

≤ lim sup
n→∞

(∥
∥yn − p

∥
∥ + σn + σn

)

= lim sup
n→∞

∥
∥yn − p

∥
∥

≤ lim sup
n→∞

(∥
∥xn − p

∥
∥ + γ̂n

∥
∥vn − p

∥
∥ + β̂nσn

)

= d.

(2.22)

In view of (2.19), (2.21) and (2.22), we obtain from Lemma 1.1 that

lim
n→∞

∥
∥xn − Tnyn

∥
∥ = 0. (2.23)

Notice that

‖xn+1 − xn‖ =
∥
∥βn

(

Tnyn − xn

)

+ γn(un − xn)
∥
∥

≤ βn
∥
∥Tnyn − xn

∥
∥ + γn‖un − xn‖.

(2.24)

It follows from (2.23) and the restriction (d) that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.25)

Notice that

∥
∥Inxn − p

∥
∥ ≤ ∥

∥xn − p
∥
∥ + σn. (2.26)

It follows that

lim sup
n→∞

∥
∥Inxn − p

∥
∥ ≤ d. (2.27)

On the other hand, we have

lim
n→∞

∥
∥yn − p

∥
∥ = lim

n→∞

∥
∥
∥

(

1 − β̂n
)[

xn − p + γ̂n(vn − xn)
]

+ β̂n
[

Inxn − p + γ̂n(vn − xn)
]
∥
∥
∥ = d.

(2.28)
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Notice that

∥
∥xn − p + γ̂n(vn − xn)

∥
∥ ≤ ∥

∥xn − p
∥
∥ + γ̂n‖vn − xn‖. (2.29)

It follows that

lim sup
n→∞

∥
∥xn − p + γ̂n(vn − xn)

∥
∥ ≤ d. (2.30)

Notice that

∥
∥Inxn − p + γ̂n(vn − xn)

∥
∥ ≤ ∥

∥Inxn − p
∥
∥ + γ̂n‖vn − xn‖. (2.31)

It follows from (2.27) that

lim sup
n→∞

∥
∥Inxn − p + γ̂n(vn − xn)

∥
∥ ≤ d. (2.32)

In view of (2.28), (2.30), and (2.32), we obtain from Lemma 1.1 that

lim
n→∞

‖xn − Inxn‖ = 0. (2.33)

On the other hand, we have

‖xn − Tnxn‖ ≤ ∥
∥xn − Tnyn

∥
∥ +

∥
∥Tnyn − Tnxn

∥
∥

≤ ∥
∥xn − Tnyn

∥
∥ +

∥
∥yn − xn

∥
∥ + σn + σn

≤ ∥
∥xn − Tnyn

∥
∥ + β̂n‖Inxn − xn‖ + γ̂n‖vn − xn‖ + σn + σn.

(2.34)

In view of (2.23) and (2.33), we have limn→∞‖xn − Tnxn‖ = 0. This completes the proof of
Lemma 2.3.

Theorem 2.4. Let X be a real Banach space and K a nonempty closed and convex subset of X. Let
T : K → K be a asymptotically I-nonexpansive in the intermediate sense and I : K → K a
asymptotically nonexpansive in the intermediate sense. Assume that F := F(T) ∩ F(I)/= ∅. Let σn =
max{0, supx,y∈k(‖Tnx−Tny‖−‖Inx−Iny‖)} and σn = max{0, supx,y∈k(‖Tnx−Tny‖−‖x−y‖)}.
Let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, {γ̂n} be six real number sequences in (0, 1). Assume that both T and
I are Lipschitz continuous. Let {xn} are a sequence generated in the following iterative process:

x1 ∈ C,

yn = α̂nxn + β̂nI
nxn + γ̂nvn,

xn+1 = αnxn + βnT
nyn + γnun, n ≥ 1,

(2.35)
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where {un} and {vn} be two bounded sequences in K. Assume that the following restrictions are
satisfied:

(a) αn + βn + γn = α̂n + β̂n + γ̂n = 1, ∀n ≥ 1;

(b)
∑∞

n=1 σn < ∞,
∑∞

n=1 σn < ∞;

(c) there exist constants τ1, τ2 ∈ (0, 1) such that τ1 ≤ βn, β̂n ≤ τ2, ∀n ≥ 1;

(d)
∑∞

n=1 γn < ∞,
∑∞

n=1 γ̂n < ∞.

If at least one of the mappings T and I is compact, then the sequence convergence strongly to a common
fixed point of T and I.

Proof. Without loss of generality, we may assume that T is compact; this means that there
exists a subsequence {Tnkxnk} of {Tnxn} such that {Tnkxnk} converges strongly to x∗ ∈ K,
then (2.16) implies that {xnk} converges strongly to x∗. Since T is continuous, then {Tnk+1xnk}
converges strongly to Tx∗. On the other hand, according to (2.17) and the continuity
of I, we obtain that {Inkxnk}, {Ink+1xnk} converge strongly to x∗, Ix∗, respectively. Since
limk→∞‖xnk+1 − xnk‖ = 0, then

∥
∥
∥Ink+1xnk+1 − Ink+1xnk

∥
∥
∥ ≤ ‖xnk+1 − xnk‖ + σnk −→ 0, as k −→ ∞,

∥
∥
∥Tnk+1xnk+1 − Tnk+1xnk

∥
∥
∥ ≤

∥
∥
∥Ink+1xnk+1 − Ink+1xnk

∥
∥
∥ + σnk

≤ ‖xnk+1 − xnk‖ + σnk + σnk −→ 0, as k −→ ∞.

(2.36)

Observe that

‖x∗ − Tx∗‖ ≤ ‖x∗ − xnk+1‖ +
∥
∥
∥xnk+1 − Tnk+1xnk+1

∥
∥
∥

+
∥
∥
∥Tnk+1xnk+1 − Tnk+1xnk

∥
∥
∥ +

∥
∥
∥Tnk+1xnk − Tx∗

∥
∥
∥,

‖x∗ − Ix∗‖ ≤ ‖x∗ − xnk+1‖ +
∥
∥
∥xnk+1 − Ink+1xnk+1

∥
∥
∥

+
∥
∥
∥Ink+1xnk+1 − Ink+1xnk

∥
∥
∥ +

∥
∥
∥Ink+1xnk − Ix∗

∥
∥
∥.

(2.37)

Taking limit as k → ∞ in the above inequality, we find x∗ = Tx∗, x∗ = Ix∗, which means
x∗ ∈ F. However, due to Lemma 2.1, the limit limn→∞‖xn − x∗‖ exists, therefore

lim
n→∞

‖xn − x∗‖ = lim
k→∞

‖xnk − x∗‖ = 0, (2.38)

whichmeans that {xn} converges strongly to x∗ ∈ F. This completes the proof of Theorem 2.4.
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