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For a,y > 0 and p < 1, let Wg(a,y) denote the class of all normalized analytic functions f in the
open unit disc E = {z : |z| < 1} such that Re’® (1 — a +2y) (f(2)/z) + (a = 2y) f'(z) + yzf"(z) - B) >
0, z € E for some ¢ € R. It is known (Noshiro (1934) and Warschawski (1935)) that functions
in %p(1,0) are close-to-convex and hence univalent for 0 < < 1. For f € Ws(a,y), we consider

the integral transform F(z) = V\(f)(z) = fé A(t)(f (tz)/t)dt, where \ is a nonnegative real-valued

integrable function satisfying the condition J'; A(t)dt = 1. The aim of present paper is, for given
6 < 1, to find sharp values of f§ such that (i) Vy(f) € W5(1,0) whenever f € Wp(a,y) and (ii)
Vi(f) € Ws(a,y) whenever f € Wg(a, ).

1. Introduction

Let «/ denote the class of analytic functions f defined in the open unit disc E = {z : |z| < 1}
with the normalizations f(0) = f'(0) — 1 = 0, and let S be the subclass of </ consisting of
functions univalent in E. For any two functions f(z) = z+ >, a,z" and g(z) = z+ >,;2, b,2"
in &4, the Hadamard product (or convolution) of f and g is the function f * g defined by

(f *8)(2) = 2+ Dlanbyz". (1.1)
n=2

For f € &, Fournier and Ruscheweyh [1] introduced the integral operator

1
F(z) = Vi(f)(2) = fo U (:Z) dt, (12)
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where 1\ is a nonnegative real-valued integrable function satisfying the condition f; At)dt = 1.
This operator contains some well-known operators such as Libera, Bernardi, and Komatu as
its special cases. Fournier and Ruscheweyh [1] applied the famous duality theory to show
that for a function f in the class

P(B)={fes:3peR | R (f(2)-p) >0, z€ E}, (1.3)

the linear integral operator V,(f) is univalent in E. Since then, this operator has been studied
by a number of authors for various choices of A(t). In another remarkable paper, Barnard et
al. in [2] obtained conditions such that Vi (f) € 1(f) whenever f is in the class

f(2)

Py () = {f€e4 3R fReid’((l—y)T +yf(2) —[5) >0, z € E}, (1.4)

with g < 1, y > 0. Note that for 0 < f < 1, functions in D (B) = P(P) satisfy the condition
Rf'(z) > pin E and thus are close-to-convex in E. A domain D in C is close-to-convex if its
compliment in C can be written as union of nonintersecting half lines.

In 2008, Ponnusamy and Renning [3] discussed the univalence of V)(f) for the
functions in the class

R, (B) := {f et IpeR|Re?(f(z) +yzf'(z) - B) >0, z € E}. (1.5)
In a very recent paper, Ali et al. [4] studied the class

Wp(a,y)

= {f eA:IpeR] %ei¢<(l—a+2)’)@ +(a=2y)f'(z) +yzf"(2) —ﬁ) >0, ZEE},
(1.6)

where a,y > 0 and f < 1. In this paper, they obtained sufficient conditions so that the integral
transform V) (f) maps normalized analytic functions f € ¥Jg(a,y) into the class of starlike
functions. It is evident that 7s(1,0) = P(B), Wp(a,0) = Pa(B) and Ws(1 +2y,y) =R, (B).

In the present paper, we shall mainly tackle the following problems.

(1) For given 6 < 1, find sharp values of f = f(6,a) such that V\(f) € €Ws(1,0)
whenever f € Wg(a, y).

(2) For given 6 < 1, find sharp values of f = (6) such that V) (f) € Ws(a, y) whenever
f €Wp(a,y).

To prove one of our results, we shall need the generalized hypergeometric function ,F,, so
we define it here.
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Let «j (j = 1,2,...,p) and f; (j = 1,2,...,q) be complex numbers with
pi#0,-1,-2,...(j =1,2,...,9). Then the generalized hypergeometric function ,F; is defined
by

(1), - (&
pFa(z) = pF(ar,...,ap;P1,..., By z) = Z(ﬂi (([;3 fz' (p<q+1), (1.7)

where (a),, is the Pochhammer symbol, defined in terms of the Gamma function, by

(a), =

T(a+n) _ {1, n=0, 18)

I'(a) a(a+1)---(a+n-1), nel

In particular, >F; is called the Gaussian hypergeometric function. We note that the ,F, series
in (1.7) converges absolutely for |z| < wifp<g+landforze Eifp=g+1.
We shall also need the following lemma.

Lemma 1.1 (see [5]). Let p1 < 1, po < 1, and n € R. Then, for p,q analytic in E with p(0) =
q(0) =1, the conditions Rp(z) > By and Re™(g(z) — o) > 0 imply Re™ ((p * q)(z) — 6) > 0, where
1-6=2(1-p1)(1- o).

2. Main Results
We use the notations introduced in [4]. Let 4 > 0 and v > 0 satisfy
U+tv=a-y, uv =y. (2.1)

When y = 0, then p is chosen to be 0, in which case, v = a > 0. When a = 1 + 2y, (2.1) yields
u+v=1l+y=1l+uvor (p-1)(1-v) =

(i) For y > 0, then choosing y = 1 gives v = y.

(ii) Fory =0, thenpy =0and v =a = 1.

Theorem 2.1. Let pu >0, v > 0 satisfy (2.1). Further, let 6 < 1 be given, and define p = (6, u, v) by

([ i Y (5-1) [ao ([ 254 a) v
1—%{1—2’[;f(—ﬂdH(%—l)ﬂm)q:1f;lna>dt} 1, F=0(u=0v=as>0).

(2.2)

If f € Wp(a,y), then F = Vy(f) € Ws(1,0) C S. The value of f is sharp.

Proof. The case y = 0 (4 = 0, v = a > 0) corresponds to Theorem 1.5 in [2]. So we assume
thaty > 0.
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Define
(1—zx+2y)@+ (a=2y)f'(z) +yzf"(z) = H(z). (2.3)
Writing f(z) = z+ X, a,2", it follows that

H(z)=1+ ia,ﬁl (nv +1)(np+1)z". (2.4)

n=1

It is a simple exercise to see that

f/(2) = H(z) * 3F, (2 L ! -z>. 2.5)

1
W+l p+1’
Let F(z) = Vi(f)(z), where V,(f) is defined by (1.2). Then for y #0, we can write

ME

tz

11 1 1 Lo
- 2z 2.6
H(Z)*3F2<2 [1 "o+l #+1 Z)*,[Ol—tzdt ( )

1
F(2) = f(2) j

11 1 1
—H(z)*f )»(t)st( st +1;tz>dt.

Since f € Wp(a, y), it follows that R{e'?(H(z) - f)} > 0 for some ¢ € R. Now, for each
y > 0, we first claim that

11 1 1 1-6
U )L(t)3F2<2;ﬁV+1,‘u+1,tz>dt:|>1 0 z€E, (2.7)

which, by Lemma 1.1, implies that F € 705(1,0). Therefore, it suffices to verify the inequality
(2.7). Using the identity (which can be checked by comparing the coefficients of z" on both
sides)

3F2(2,b,¢;d,e;z) = (d-1)3F(1,b,c;d—-1,e;z) — (d-2)3F>(1,b,¢;d, e; z), (2.8)

it follows that

3F2<

<:I'—‘

1
] IR (R | A SR
wr+1l pu+1 v )y l—zst 11—zt
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Thus,

fl(t)g,Fz(z l 1 1 , 1 ;tZ)dt
vou'v+1l p+1

ol 0D

Therefore, for y > 0, we have

! 11 1 1
R[J‘O )L(t) 3P2<2/ ;1 l_ll v+ 1/ ‘Ll+ 1/tz>dt]

> %f: () <I - f;”)dﬂ (- - 1> f A(t)<” 3 iz§v§§y>

__1-6
2(1-p)°

in the view of (2.2).
To prove the sharpness, let f € J0s(a, y) be the function determined by

(1- a+2y)&+(a 2y)f'(z) +yzf"(z) =+ (1 - ﬂ)1+z
Using a series expansion, we see that we can write
_ 2(1-p) n
fz)= Z+n2(nv+1 v)(nu+1- y)z
Then,
F(z) = Vi(f)(2) = z+2(1 - ﬁ)z I 2",

(v +1-v)(np+1- /4)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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where ¢, = f; A(t)t"1dt. Equation (2.2) can be restated as

2 1 ds dnd¢
-l s o (f ) G0 o[l )l
2 1 dndg
—m{ Mﬂ( ot Gl )«)
(2.15)
- 2 1 ( 1)71 1n-1 _1 1_ 1
T 1-6 J‘OJ\ {nz(”ﬂ+1 ‘u)< +<v 1>(nv+1—v)>}dt
2 & (-D)" 'ngn
__1—6nz=2(nv+1—v)(n,u+1—,u)'
Finally,
_ ngn n-1
F(z)=1+2(1- ;3)2(111;+1 SICTES IS #)z , (2.16)
which for z = -1 takes the value
: (1" 'ngs N
F(-1)=1+2(1- ﬁ)z(nw1 v)(n,u+1 " 1+2(1 ﬂ){z(l_ﬂ)}_& (2.17)
This shows that the result is sharp. O

Letting y = 0 and & = 1 in Theorem 1.1, we obtain the following result of Ruscheweyh

[6]-
Corollary 2.2. Let 6 <1, and define p = p(6,1) <1 by

1-6 O E
B(S) =1~ T{1 - fo mdt} : (2.18)

If f €305(1,0) = P1(B), then F = Vi (f) € Ws(1,0) C S. The value of B is sharp.

Theorem 2.3. Let 6 <1and a,y > 0, and define p = p(6) <1 by

Lo A= (1+6)/(1-6)))
- JO A(t) @D dt. (2.19)

If f € Wp(a,y), then Vo (f) € Ws(a,y). The value of B is sharp.
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Proof. The idea of the proof is similar to the one used to prove Theorem 2 in [1].

Let F(z) = Vi(f)(z) = j; A(t)(f(tz)/t)dt. Clearly,
o [FA) :
F (Z) = Jl) Edt*f (Z)

Since, f € Wg(a,y), so with

) - (a2 + (a2 () +y2f'() -
g 1-p

we have R[e?¢(z)] > 0, where ¢ € R.
Fory#a/2,

1- “+2Yf(z) Y
2y z a—Zy

£ = 5 b+ (1-P3) - 2f"(2).

Putting this value in (2.20),

oy A 1- “+2Yf(z) Y
F(z)—fol_tzd (5= B+ (1-p)g() - T2 - Ty @)
Equivalently,
1- 2
F’(Z) (Z)*I:ﬁ+(l ﬂ)f )L(t) ] aﬁ_[;YYP(ZZ)_a_YZYZF”(Z)-
Thus

(1-a+2y)(F(z)/z) + (a = 2y)F'(z) + yzF"(z) = g(Z)*[ﬂ+(1 ﬂ)f Mt)

In the case when y = a/2,

f@)/z+yzf"(2) - p
1-p

g(z) =

Since

I9 i 1-prg@ vz,

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

dt|. (2.25)

(2.26)

(2.27)
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This leads to,

F(z)

z

1
+yzF"(z) = g(z) * [ﬂ +(1-p) J‘o l)t—(tt)z dt], (2.28)

which is clearly (2.25) with y = a/2.
Further F € Ws(a, y) if and only if G(z) := (F(z) —6z)/(1 - 6) € Wy(a,y). Now using
(2.25), we obtain

_6 1-p (1
(1-a+2y) G(ZZ) + (a—-7)G'(2) +yzG"(z) = g(z) * [[15 "7 _g . ﬁf?zdtjl. (2.29)

Since Re'?g(z) > 0 for some ¢ € R, it follows by duality principle [8, page 23] that

(1—a+chf)+(a—2wcxa+qzcwm¢o (2.30)
if, and only if,
-6 1-B (' A 1
%L—6+1—501—mﬂ]>5 (2.31)

Using R(1/(1 -tz)) >1/(1 +t), we get

p-6 1-p (" A 1-p[p-6 (L)
ER[1—5+1—5 01—md4:’1—5[1—p+ 01+tm]‘ (2.32)

By using (2.19), we have

p-1+6)/2 (" A

_—T?ﬁ——_—ﬁ)a+”dt (2.33)
Thus,

-6 (MA@} 1-6

S

1
-0 2.34
1-p Jo1+t 21-p (234

which implies that

p-6 1-p (" A 1-p[p-6 (aw ] 1
ER[1—5*1—5 01—t£ﬂ]>1—6[1—ﬁ+ 01+tﬁ]—§- (2.35)
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Thus, we deduce, using duality principle, that (1 -a+2y)(G(z)/z) + (a—y)G'(z) + yzG"(z) is

contained in a half plane not containing the origin. So, G € Wy(a, y) and hence F € Ws(a, y).
To prove the sharpness, let f(z) = z+2(1 - ) >v, (2" /(np+ 1 — p)(nv + 1 - v)).

1

3 z"wy, 3 el
F(z)=Vi(f)(z) =z+2(1- p)z TS EL where w,, = L Ayttt
(2.36)
Further,
p (1-(A+6)/A-06))t)
15" f I B 27
gives
B 1+@+6)/(1-0))
1— -1+ f A(t) ) tdt, (2.38)
or
t)L(t) 2 & n
1- ﬁ 1- 6,[ Toi? 1—652(_1) “n 239)
Further, assume that
P(Z) ! "
H(z)=(1-a+ 2}/)7 + (a-y)F(z) +yzF"(z). (2.40)
Since F(z) = z+2(1 - ) Xpp(wnz"/(nu+1 - p)(nv +1-v)),
so,
H(z)=1+2(1- ﬁ)iwnz"’l. (2.41)
n=2
Therefore, for z = -1,
H(-1)=1-2(1- p)an( D'=1-2(1- ﬂ)z(1 ﬂ) (2.42)
This shows that the result is sharp. O

Letting y = 0 in Theorem 2.3 above, we obtain the following result of Kim and Renning

[9].
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Corollary 2.4. Let 6 <1and a > 0, and define p = p(6) by

B (. A-(1+6)/1-8)))
e R LG asn " 24

If f €¥0p(a,0) = Po(P), then Vi (f) € Ws(a,0) = Pu(6). The value of p is sharp.
Upon setting A(t) = (1 + c)t° with -1 < ¢, we have the following corollary.
Corollary 2.5. Let 6 <1, a,y > 0, and -1 < ¢ < 0 be given, and let G(z) be defined by

G(z) = “ZLC) L e f (u)du. (2.44)

Suppose that f € Wp(a,y), then G € Ws(a,0), where

_2(1+c¢)2F1(1,2+¢;3+¢,-1) - (2+¢)

24
p 2(1+c¢)2F1(1,2+¢;3+¢,-1) (2:45)
The constant f is sharp.
The special case of Corollary 2.5 (with y = 0) has been obtained by Aghalary et al.
[11].
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