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By applying formal asymptotic analysis and Laplace transformation, we obtain two-dimensional
nonlinear viscoelastic shells model satisfied by the leading term of asymptotic expansion of the
solution to the three-dimensional equations.

1. Introduction

In the case of pure nonlinear elasticity, Ciarlet and his collaborators have studied
membrane shells, flexural shell and Koiter shell (see [1] and the references therein). The
linear viscoelasticity was studied in [2-5], and Li [6-8] studied the global existence and
uniqueness of weak solution, uniform rates of decay, and limit behavior of the solution
to nonlinear viscoelastic Marguerre-von Karmédn shallow shells. Xiao studied the time-
dependent nonlinear elastic shells by the method of asymptotic analysis (see [9]).

Motivated by the above work, we deal with nonlinear viscoelastic shells and give
the identification of two-dimensional variation problem satisfied by the leading term of
of asymptotic expansion of the solution to the three-dimensional equations. The main
contributions of this paper are the following: (a) the problem considered in this paper is
nonlinear viscoelastic shells, to our knowledge this model has not been considered; (b)
applying Laplace transformation, we overcome the difficulties caused by the integral term
in the model; (c) the calculation and derivation are precise.

This paper is organized as follows. Section 2 begins with some preliminaries and then
gives the main result. In Section 3, we give the proof of the main theorem.
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2. Preliminaries and Main Results

We use the following conventions and notations throughout this work: Greek indices and
exponents (except €) belong to the set {1,2}, Latin indices and exponents (except when
otherwise indicated, as, e.g., when they are used to index sequences) belong to the set
{1,2,3}, and the summation convention with respect to the repeated indices and exponents
is systematically used. The sign := indicates that the right-hand side defines the left-hand
side.

Let w C R? be a bounded connected open set with a Lipschitz boundary y, lety = (y,)
denote a generic point in the set w, and let , := 3/dy,. Let  : w — R3 be an injective
mapping of C such that the two vectors a,(y) := 9,0(y) are linear independent at all points
y € w. They form the covariant basis of the tangent plane to the surface S = 0(w) at the point
0(y); the two vectors a“(y) of the same tangent plane defined by the relations a*(y) - ag(y) :=
6% constitute its contravariant basis. We also define the unit vector a3(y) = a>(y) = ai(y) x
ay(y)/lai(y) x ap(y)| which is normal to the S at the point O(y).

One then defines the first fundamental form, also known as metric tensor (aup) or

(a*f), the second fundamental form, also known as the curvature tensor (bap) or (bfi), and the
Christoffel symbols Fgﬁ of the surface S by setting (whenever no confusion should arise, we
henceforth drop the explicit dependence on the variable y € w)

Aup = a4 - Ap, a® .= a*.

7

b.s = 3.6 bﬂ — ﬂab I’ :=a°-o (2'1)
ap = - Opag, v = a""bsg, ap = pay.

Note the symmetries aup = apa, bap = bpa, and Fgﬂ = Fgﬂ. The area element along S is v/ady,
where a := det(a,p). All the functions defined above are at least continuous over the set w. In
particular, there exists a constant ag > 0 such that a(y) > ao, for all y € w.

In addition, let the covariant derivatives bg|,,, and the covariant components ¢, of the

third form of the surface S be defined by
bjla := 0abj + T35, bg — I7b7

at™p ap”T’

(2.2)
Caﬁ = bgbgﬁ.

For each € > 0, we consider a shell with thickness 2¢ and middle surface S, whose lamé
relaxation modules A(t) > 0 and p(t) > 0 (t > 0) are independent of €. We define the sets

QF := w x (—¢,+€), I =wx {e}, I =wx{-¢}, If=7y0x[-¢¢], (2.3)
where yp C y and yp # 0. Note that I'; UT? U T constitutes a partition of the boundary of the
set Q°. Let x* = (x7) denote a generic point in the set Q, and let 0; := 0/0x;; hence x;; = ya
and 0f = Oq.

We then define a mapping © : Q SR by

O(X) = B(y) + x5as(y), ¥x = (y,x5) €Q, (2.4)



Abstract and Applied Analysis 3

then there exists gy > 0 such that for all 0 < ¢ < g the mapping O : Q — R¥isan
injective mapping and the three vectors g (x°) := 9;0(x?) (05, = 0/0x,, 05 = 0/0x3) are linear
independent for each x* € Q. The injectivity of the mapping © : Q" — R3 ensures that the
physical problem described below is meaningful.

The three vectors g7 (x°) form the covariant basis at the point @(x°), and the three

vectors g¢(x?) defined by g/ (x®) - g (x) = 6{ form the contravariant. We define the metric
tensor ( gf].) or (¢'#) and the Christoffel symbols of the manifold O(ﬁs) by setting (we omit
the explicit dependence on x°)

si=g -8, §F=g°g TI;=g" g 25)
Note the symmetries

gi=g, §r=g", TF=T;. (2.6)

. —€ .
The volume element in the set O(Q_) is /g°dx*®, where g := det(g}).
For each 0 < ¢ < g, the set Qs = O(ﬁg) is the reference configuration of a viscoelastic
shell with middle surface S = 8(w) and thickness 2¢. We assume that the material constituting

the shell is homogeneous isotropic and G)(ﬁe) is of a nature state, so that the material is
characterized by its two lamé relaxation modules A(t) > 0 and u(t) > 0 (¢ > 0). Under the
action of forces, the shell undergoes a displacement field.

Letu®(t) = u; (t)g"* in terms of curvilinear coordinates x® of the reference configuration

O(ﬁe). Then, the covariant displacement field u®(t) = (u;)(t) satisfies the following three-
dimensional equations (c.f. [1, 10]):

we () € L®(~o0, T; W(Q))  with W(QF) := {VE € WHA(QF), v =0 on rg},
fQ Uy (v g7\ /gedx + fQ ATRE(0) B (uf (1) Fi (e (1), vF)/gedx®
t ik (2.7)
+I f A (t—T)Ei”l(u‘E(T))I-"l‘?”].(uE(T),v‘E)\/EdTalx‘E

[ pewprvEa s [ neaurvgEar, wew),
Qe e

reu

where the symbol L¥ denotes the subspace of L* > 0 such that there exists a constant T such
that the functions vanish as s < -T. And,

Aijkl,s (t) = )L(t)gij,sgkl,s + ‘l/l(t) (gik,sgjl,s + gil,sgjk,s> (28)
designate the contravariant components of the three-dimensional elasticity tensor,

1
£ £\ . £ £ MNE € £ £ . £ 79E PE_ e
Ei||j(v ) = _(viHj + UjHi + g (9 \|iv"||j>’ where Ul.”]. = a]’l)l = l"l.]. Up’ (29)
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designate the strains in the curvilinear coordinates associated with an arbitrary displacement
field v} ¢" of the manifold ©(Q),

£ £ EY . 1 £ £ mn,e £ £ £ £
F (0 (1), 0°) 1= 5 (0 + 05 + 8" {14y (D05 + 5y (D95, } ). (2.10)

and, finally, fi* € L*(0,T;L*(Q¢)) and h'* € L*(0,T;(T¢ UT?)) denote the contravariant
components of the applied body and surface force densities, respectively, applied to the
interior @(€°) of the shell and to its “uper” and “lower” faces ©(I'Y) and O(I%), and
designate the area element along 0€°. We thus assume that there are no surface forces applied
to the portion @((y — yo) x [—¢, €]) of the lateral face of the shell.

We record in passing the symmetries
Aijkl,e — Ajikl,s — Aklij,e (211)

and the relation

-—€

P [P =0, A%03e = A9 Z 0 in Q. 2.12)

Our final objective consists in showing, by means of the method of formal asymptotic
expansions that, if the data are of an appropriate order with respect to € as ¢ — 0, the above
three-dimensional problems are “asymptotically equivalent” to a “two-dimensional problem
posed over the middle surface of the shell.” This means that the new unknown should be
¢°(t) = (55 (t)), where ¢ (t) are the covariant components of the displacement ¢f (£)a;(y) : w —
R® of the middle surface S = @(w). In other words, Gi(t,y)ai(y) is the displacement of the
point O(y) € S.

“Asymptotic analysis” means that our objective is to study the behavior of the
displacement field u¢(t)g" : Q" - RPase — 0, an endeavour that will be a behavior as
g€ — 0 of the covariant components u; (t) : Q" = Rof the displacement field, that is, the

behavior of the unknown u®(t) = (u:(t)) : Q" — R of the three-dimensional shell problem.

Since these fields are defined on sets Q" that themselves vary with ¢, our first task
naturally consists in transforming the three-dimensional problems into problems posed over
a set that does not depend on €.

Furthermore, we transform problem (2.7) into an equivalent problem independent of
€, posed over the domain.

Let Q := wx (-1,+1), Iy = yo x [-1,1], Ty = w x {+1}, and I := w x {-1}, and
let x = (x;) denote a generic point in Q. With each point x € Q, we associate the point x°
through the bijection 7 : x = (x1,x,x3) € Q - xf = (x7) = (x1,%2,6x3) € ﬁg; we thus
have 8}, = 9, and 85 = (1/€)0s. Let u* = (), I}, g°, Aiikle - Q° R and the vector fields
v® = (v) appearing in the three-dimensional problem (2.7) be associated with the functions
l"fj (€), g(e), Ak (g) : Q — R and the scaled vector fields v = (v;) defined by

ui(e)(t,x) = u; (t,x°), wvi(x) =v{(x) Vx* € ﬁg,

. . 2.13
l"fj(s)(x) = FZ.’E(XE), g(e)(x) = g°(x), ATM(g)(x) = ATF#(x) Vxf € Q°. 219
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Functions fi(e)(t) : Q — Rand K (t)(e) : T, UT_- — R are defined by setting

File)(Ex) = F(t,xF) WX € QF,

Ki(e)(t,x) = W (t,x°) ¥x € T UTE. 214)
Then the scaled unknown u(e)(f) defined above satisfies (c.f. [1])
u(e)(t) € L® (-0, T; W(RQ))  with W(Q) = {v e WH(Q), v=0 on ro},
[ o)t + [ AM0)0) Eupteru(e) )Py (e ue) 0,9y s(e)dx
(2.15)

t ..
+fg AT (- ) Egera(e) (7)) Fiyy e u(e) (1), v g(e)d dx

= f fi(e)(t)vi/g(e)dx + lf hi(e)(H)vin/g(e)dl, VYveW(Q),
Q € Jr,ur.

+

where

iy u(e)(6) 1= 5 (u1(€)(1) + 1) (0) + ™ ()umi ) D1 (€) 1),
Fyj(e;u(e)(t),v) = %(Uillj(g) +0jji(€) + §"" (&) {tmi (&) () Vn)j (€) + 1) (€) () Om)i ) }),
up1e(€) (1) = Batg()(6) ~ Tty ()(B),  Dgiale) = Dus ~ Ty (),
sja(€)(8) = Dutts()(0) ~ TH(E) Do (E)(B),  v1ale) = 803 ~ T (),

s (€) (1) = Z05ua(€)(1) ~ T (Dto()(D), s (€) i= 2050 ~ T (e,

wa(©)(0) = 0us(E)(B),  ap(e) = <0ss
(2.16)

The functions A’¥(¢) are called the contravariant components of the scaled three-
dimensional elasticity tensor of the shell. The functions E;;(&; u(e)(t)) are called the scaled
strains in the curvilinear coordinates because they satisfy

Eqj(&5u(e)(h) (x) = E5; (uf () (x) Vx* e Q. (2.17)

]

Note that the above definitions likewise imply that

Fijj(g;u(e) (), v)(x) = Fj;(u® (), v)(x°),  uyyj(€) (B) (x) = ug; () (x°),

— (2.18)
v (e)(x) = vf”].(xg) VxfeQ .

For notational brevity, the point x of some functions is suppressed where no confusion
can arise.
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The following two requirements constantly guide the procedures of the formal
asymptotic analysis. The first requirement asserts that no restriction should be imposed on
the applied forces entering the right-hand side of the equations used for determining the
leading term. The second requirement asserts that, by retaining only the linear terms in any
relation satisfied by terms of arbitrary order in the formal asymptotic expansion of the scaled
unknown u(¢)(t), a relation of linear theory should be recovered. For brevity, we will call it
“linearization trick” (see [1]).

Theorem 2.1. Assume that the scaled unknown u(e) satisfying problem (2.15) admits a formal
asymptotic expansion of the form

u(e)(t) =u’(t) + eul () + 2u®(t) + - - - (2.19)

withu®(t) € L*(0, T; W(Q)) and u' (t), u?(t) € L®(0, T; W'4(Q)). Then in order that no restriction
be put on the applied forces and that the linearization be satisfied, the components of the applied forces
must be of the form

et x) = fi(t,x), x°€Qf, he(t,x°) = e (t,x), x°eT¢UT®, (2.20)

where the functions f0 € L=(0,T; L*(Q)) and k't € £*(0,T; L*(T, UT.)) are independent of €.
This being the case, the leading term u°(t) is independent of the transverse variable x; and
) =(1/2) ﬁ1 u’ (t)dx; satisfies the following two-dimensional variation problem:
() € L (o0, T; W(w))  with W(w) := {11 e W (w); n=0on yo},

[ somarvaay + | amOF, (FS, (¢ mvady

- (2.21)
+ J- J a o (- T)EguT(T)anﬂ (t,m)Vady dr

= f pPMnivady, VneW(w), ae.—oo<t<T,
where (recall that a™" = a™ - a"):

Eqp(®) = %( 2D+ a0 + ™8 (D5,(1)),

1 mn
Foyp(t ) = 5 (a1 + e+ @ {8010 Ot + 815D 1 } ),
Nallp = Op'a = Tana = bap1s, 13)p := Op13 + bgqg,
a®oT(t) == a(t)a™a’" + p(t) (amaﬂf + a‘”aﬂ">, (2.22)

o[ 2eae) | 2MOu0)
a(t) =L {X(s)+2ﬁ(s)} with a(0) T00) + 240)’

-1

i0 LA o i i1
pr(t) == §<’[ fo(t)dxs + k' (1) + " ('/—1)>,
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X(s), fi(s) denote Laplace transformation of A(t), u(t), respectively, and L™' denotes the inverse
Laplace transformation.

Lemma 2.2. For small € > 0, it is not difficult to verify the following relations:

gij (€) =a’ + 53C3g’7"1 + O<52>, (2.23)
where
al = a;- aj, g"‘ﬂ'1 = Za“"bg, gi?"1 =0,
) 1 (2.24)
() =T + exs?)' + O(2),
where
0 . 3,0 ._ BO . _ B 30 _ wp0 . _
P00 =T, Tofi=bey,  Thyi=-bh, Ty =T% =0,
T = <bfle,  Tji=-blbes, T =-blbg, Toy=Th =0,  (225)
AT () (1)1/3(e) = AT (1) v/a + BT (1) + 2B () + o),
where

Aapor () = )L(t)aaﬂam- +u(t) (aaoa[h' i aa’raﬁ0>,
APB(E) = A(B)a, AP = u(t)a, (2.26)

A3333(t) = .)L(t) + Zﬂ(t), AaﬂoS(t) — Aa333(t) = 0.

Lemma 2.3 (see [1]). Let w be a domain in R?, and let © € C?(w; R®) be an injective mapping such
that the two vectors a, are linear independent at all points of w. The derivatives of the vectors of the
covariant and contravariant basis are given by the formulas of Gauss

Oadp = [jas +bapas,  Oad’ = ~Thoa” + bha’ (2.27)
and Weingarten

daaz = 0qa° = ~bypa’ = -bla,. (2.28)

Lemma 2.4. Let w € L*(Q) be a function such that |, wdsv = 0 for all v € C*(Q) satisfing v = 0
ony x [-1,+1]. Then, w = 0.

Proof. Thanks to Theorem 3.4-1 in [1]. O
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Lemma 2.5. Assume that the scaled unknown satisfying (2.15) admits for each 0 < € < g9 a formal
asymptotic expansion of the form

u(e)(t) = giNu‘N(t) + %u‘l\“l(t) 4o (2.29)

with

w N @), u N € L2, T, W(Q)), W(Q) = {v e W4(Q), v=0on ro}, u Nt #£0,

(2.30)
for some integer N € Z. Then, N = 0.

Proof. The proof is broken into seven parts. Before beginning the proper induction in (iv), we
record several useful preliminaries.

(i) Let the functions A¥X(0) be defined as in Lemma 2.2. Then, for any symmetric
matrices (sx) and (t;;),

Aifkl(O)sklti]- = ()L(O)a”ﬂa‘” + u(0) <a"‘"aﬂ7 + a‘"aﬂ">>swtaﬁ +4u(0)a" sustos

(2.31)
+1(0)a* s33tap + 1(0)a" sortas + (L(0) +2p4(0)) s33tas.

This formula, which immediately follows from the definitions, will be constantly put
to use in the ensuing arguments.

(ii) Let a” := a' - a/. Then, for any y € w and any matrix (tij),

al(y)a™ (Y)timtin >0, @’ (y)a™ (y)timtin =0 & t;j = 0. (2.32)

Given any y € w and any matrix (t;), let t;(y) := tina™(y) and let [t;(y)]? denote the gth
Cartesian component of the vector t;(y). We thus have

@ (y) @™ (Y)tintjn = @ (¥){ (tma™ (1)) - (t2" (¥)) ) = @7 (¥) {t6:(¥) - 1(¥))
=) W W] = (LW ®)) - (5®)]"2 ()

(2.33)
3 . 2
= Y| )| -
p=1
Hence, a’ (y)a™ (y)timtjn > 0 and
ala™ (y)timtjn = 0= [t:(y)]"a'(y) =0, p=12,3,
= ti(y) =tma"(y) =0, i=123, (2.34)

=tim=0, im=1273,

for the three vectors a’(y) are linear independent.
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(iii) Assume that the formal asymptotic expansion of the scaled unknown is of the
form

w(E)®) = gu N +

— u™N*(t) +-..  for some integer N >0, (2.35)

withu™ € L*(0,T; W(Q)) and uN*! € L*(0, T; W(Q)).
Together with the asymptotic behavior of the functions g'/(e) and FZ. (e)ase — 0,

such an expansion induces specific formal asymptotic expansions of the various functions
appearing in the formulation of problem (2.15)

o (€)(8) = SN+, s (0 = i () )+
Eup(eru(@)() = B0+, Eas(eru(@)®) = g AN 0+,
Eyp(eru(@)(0) = o BB 20+, Fappera©)(0,v) = o Fl(6v) +-

Fus(&u(@)(0,9) = g Fa 6w+, Fapleu@)(1),9) = g B 269) + -+,
(2.36)

where, by definition, uln] ), ElH] (t), and Fq‘ (t,v) designate for each g € Z the coefficient of €7
in the induced expansions of u;;(g) (t), E;jj(g; u(e)(t)), and Fyj(g;u(e)(t), v).

Note in passing that, while the functions factorizing the powers of ¢ are by definition
independent of ¢, they are dependent on one or several terms u(t),q > —N. In this respect,

particular caution should be exercised as regards this dependence. For instance,
- 0 _ - - 0
N (1) = 8, N () ~ThmaN (D, N (1) = Bsu, N (0) - T, N (1), (2.37)

that is, the factor of 1/&N in Um|«(€) (t) depends on uN(t) but the one in Upm3(€) () depends
also on u™N*1(t).

Likewise, it should be remembered that the expression of some factor may differ
according to which value of N is considered, for instance,

%a um||a(t)un||ﬂ(t) if N>1,
E;ﬁg (t) = )
5 (ug”ﬂ(t) wul (6) + amd, () ﬁ(t)> N =0,
) (2.38)
(t . Eamn{ ml\a(t)vn”ﬁ + un”ﬁ(t)vmna} if N>1,
Foptv

3 <vallﬁ + Upjla + am”{u%nu(t)vnuﬂ + 115 () }) if N =0,
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where

Umla := OaUm — Famvp (2.39)

We are now in a position to start the cancellation of the factors of the successive powers
of € found in the variational equations of problem (2.15) when u(e)(t) is replaced by its formal
expansion. In what follows, L” designates for any integer » > ~3N — 4 the linear form defined

by

L' (t,v) := f i (Hyvi/adx + f h Y (H)vi/adr. (2.40)
Q r.ur-
(iv) Assume that N > 0. Since the lowest power of ¢ in the left-hand side is e *N~%, we
are naturally led to first try
1 -3N- i i
fie)) = v —= /N, h'(e)(t) = NG =N ). (2.41)

Comparing the coefficients of e 2N~ in (2.15) and using Lemma 2.2 and (2.36), we get
the equations

JQ()L(O) +2p(0)) Exfy 2 (#) F53 2 (t, v)Vadx

f f N(t—7)+24'(t - T))E3H23N 2(7‘)1-"3*”];]’2 (1, v)vadx dr = L3N4(t,v) o
for all v.e W(Q). Since
E3”23N 2(t) = -am"a3u N (tyosu, N (t), F3”];’ 2(t,v) = a™dzu, N (t) 030, (2.43)
we must have
L3N (t,v) = Lz Fi3N"(to/adx + L ) h 3N (Hv;/adl = 0 (2.44)
LU

for all v € W that are independent of x3. Consequently, the first requirement (that there be no
restriction on the applied forces) implies that we must let

i~3N-4(f) = 0, R3N=3 (1) = 0. (2.45)
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By recalling (2.42)—(2.45), we have

% J; (A(0) +2u(0)) [(amn63u;nN(t)83u;N (t)> <am”83u;lN (t)630n>] Jadx

+ % L} ftw(Af(t —T) + 24 (t - T))[(amTlaSu;qN(T)agu;N (7-)) (am"53u;1N(T)63vn>]\/de dr =0,
(2.46)

that is,

% J‘; J‘Q (Mt-7)+2u(t-T1)) [<amna3u;nN (T)a3u;N(T)> <amna3u;lN (T)B;;vn)] dx d < 0.
(2.47)

Therefore,

J‘im fg (/\(t —T)+2u(t - T)) [(amnagu;f\’ (T)agu;N (T)> (a'”"ag,u,;lN (T)a3vn>] dx dr = const,
(2.48)

which implies

f; fQ(A(t — 1)+ 20t = 1)) [ (@™ B3N (10 (7)) (@ B3N ()50, ) | dx dr = 0.

(2.49)
Letting v = uN(7) in (2.49) shows that
t 2
f j (A(t=T) +2u(t - 7)) [am"a3u;nN(T)a3u,;N (T)] dx dr = 0. (2.50)
-0 / Q
Since the symmetric (a'l) is positive definite, we conclude that
dsuN(t) = (63u;nN(t)> =0 inQ, (2.51)
that is, u™N(t) is independent of x3. Inserting (2.51) into (2.43) yields
E;iN 2 () =0, Fin 2 (tv) =0 YveW(Q). (2.52)
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A usual, any function defined on Q that is independent of x3 is identified with a function
defined on w, and (2.36) and (2.52) imply

uN(t) e L2, T; Ww)), W(w) = {11 e W4 (w); =0 on yg}, (2.53)

E;@N-Z(t) =0 inQ, F;”;V-Z(t, v)=0 YwveW(EQ) (2.54)

Noting (2.36) and (2.51), we also have

El.’szN’l(t) =0 in Q. (2.55)

Since E;ﬁév “I(t) = 0 (the leading term in the formal expansion of Eqp(g;u(e)(t)) is order

of -2N) and El.‘”23N “I(t) = 0 (since d;uN(t) = 0, each factor of 1/e?N*! in the expansion of
Eq3(g;u(e)(t)) vanishes because it contains some derivative d;u;,N and the leading term in

the expansion of Ez|3(e;u(e)(t)) is of order strictly higher than (-2N —-1)), our next try is thus

1

flle) = 3i,+3fi’_3N"3(t), hi(e)(t) = SN2 RN (). (2.56)

£

Comparing the coefficient of e3N=3 in (2.15) then yields equations (the functions A7%(0) are
defined in Lemma 2.2)

f Aifk’(O)E;ﬁlN‘l(t)Fi‘HII.V‘Z(t,v)\/de
Q

t (2.57)
+ JQ ) AlR (O)E,;ﬁ;"-l(T)F;”f,V-Z(T, v)Vadxdr = L73N3(t,v)
for all v € W(Q). But since (2.55), we must let f*>N=3(t) = 0 and K" 3N=2(t) = 0 (first
requirement) and accordingly try

O = s f N0, KM = kN ), (258)

-3N-2

In which case the cancellation of the coefficient of € in (2.15) yields the equations

f A"fkl(O)E,;ﬁ,N (t)Fi‘HIJ.\]‘2(t,v)\/de
Q

(2.59)

t ..
+ Jl: f, A (-1 EZN (T FY (7, v)Vadx dr = LN (t,v)

for all v € W(Q). But since (2.54), we must let f*3N=2(t) = 0 and K" 3N-1(t) = 0 (first
requirement).
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(v) Assume that N > 1. Our next try being thus

i i,~3N— i 1 i
f (g)(t) 3N+1f, n 1' h (E) - £3N+2h/ 3N’ (2'60)

the cancellation of the coefficient of e *N~! in the variational equations of problem (2.15) then
yields the equations

f ATRO)EeY (t)F;”flV L(t,v)vadx
Q

; (2.61)
+ J; ) A (g T)E,;ﬁ{\](r)lfl‘nfl\f Yz, v)vadxdr = L3N (¢, v)
for all v e W(Q), where
1
2N (1) = -N-1 _
Etl“ﬁ (t) = Ea m”a(f)un”ﬂ(t), Fa“ﬂ (t,v) =0,
_ 1 B
E.i2 (8) = sa™u (Duis(t), i~ (4 v) = 5a™ 0 (5350, (2.62)

— 1 - _ -
Eaﬁé\](t) = 5a a™u m]ﬁls(t)”nns(t) FBHIQI Lt v) = am"um%(t)ag,vn,

the functions u;fm(t) being those defined in (2.36).

Letting v € W(Q) be independent of x5 then shows that we must let f*N=1(¢) = 0 and
hi=3N = 0; hence,

f ATRO)EY () F 3 (t,v)vadx
Q

t (2.63)
+ f f AR (- T)E;ﬁll\’(T)Fl”] Y, v)vadxdr =0
QJ -0
for all v e W(Q). Let the field w = (w) be defined for all (y, x3) € Q by
wN () = w, N - (1 + x3)[7 3u “N (). (2.64)

Then, w™ (t) € L*(0, T; W(Q)) because both u™ (t) and uN*1(t) are assumed to be in the
space L*(0,T; W(Q)).
Furthermore, ;w? (t) = u;nlﬁg(t), so that

ENT(wNm) =EfN e, BN (LwNm) = 2B 0). (2:69)
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Using Lemma 2.2 and (2.65), we get

Aifkl(o)E;ﬁZN (t)p;HIJV 1( N) =2A(0)am"15;f”f: (t)E;”zé\’ (t) +4ﬂ(0)am"15;n2|g (t)E;ﬁgV (). (2.66)

Since
a™"E, 1 () = —a”a l”m(t)u]”n (t)>0 inQ, (2.67)
(by (ii))
E3”23N (t) = =a™ ;nH3(t)un”3(t) >0, '""EmZHJ;’ (t)Em|3 (H)>0 inQ (2.68)

(the matrix (a™") is positive definite), in a similar way as in (iv), we can obtain from (2.63)
that

j f ARt — 7 EEﬁIN(T)Fz_H]]V Y, v)dxdr =0 (2.69)

for all ve W(Q).
Letting v = w™(7) in (2.69) and noting (2.66)—(2.68), we conclude that

a™E, 2N (HE SN (H) =0 in Q; (2.70)

hence (the matrix (a™") is positive definite)

E;j"{;’ (=0 inQ. (2.71)

In particular then, E;‘%N(t) = (1/2)am”um”3(t)unu3(t) 0 (by (2.62)) and thus (the
matrix (a™") is positive definite)

mHS(t) (2.72)

(vi) Assume that N > 2 (the case N = 1 is considered separately, c.f. (viii)). Our next
try being thus

F@® = 5o f N0, K@M = i N ), 73)
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the cancellation of the coefficient of €N in the variational equations of problem (2.15)
then yields the equations (note that two terms are needed here from the expansions of the
functions A'K (¢)1/g(¢), c.f. Lemma 2.2))

[ am B @6 « BN OF)N v |Vads

+f BUKIE SN (t)F;”l]\’ L(t,v)dx

(2.74)
f j A'”"l(t—T){E,;ﬁ{V (1) FyN (1,v) + BN () Fy 1(T,v)}ﬁdxdr
+ f BT (- T)EIN (1) Fy N (z, v)dc dr = LN (1, v)
Q
for all ve W(Q), where (by (2.62) and (2.72))
E13(t) = —a um”a(t)um”ﬁ(t), E3N () =0,
F;ﬁ; Ytv)=0,  F¥'(tv) = —a " (D030, 337Nt v) =0, (2.75)
FN(t,v) = ( 1N (B 0w + un“ﬂ(t)vm“,x> E3N = @™, (6950,

the last expression of 1—"3”3 (t, v) being valid only if N > 2 (the expressions of F HS( v) are not
needed since A*°7(0) = 0 by Lemma 2.2 and E_2 al3 N(t) = 0 by (2.71)).

Noting that Fal‘\sj Y(v) = FS_III; = 0 if 03v = 0, we thus conclude that the variational
equations (2.74) reduce to

f AaﬂoT(O)E;ﬁfj (t)Fu”ﬂ(t v)vadx

“ t (2.76)

+ f f AP 1 T)E, N (T)F (7, v)Vadx dr = L3N(t,v)
QJ -

for all ve W(Q) that are independent of x3.
Since each term in the sum A”‘ﬂ"T(O)E;ﬁIT\’ (t)Fa”ﬁ(t v) is cubic with respect to the
functions u;n]mx(t), the linearization trick (second requirement) implies that L3N (t,v) = 0 for

all v € W(Q) that are independent of x3. Hence, we must let f3N(t) = 0 and K" 3N*1(t) = 0
Hence

f ATPTTO)ETY (D F 3 (1, v)Vadx + L f AT (¢ = ) EAN (1) ¥ (7, v)v/adx dr = 0.
(2.77)
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In a similar way as in (iv), we can obtain from (2.77) that

f t I AT (t T)E_ZN(T)F;”ﬁ(T, v)dxdr = 0. (2.78)
-0/ Q

ollr

Recalling that uN(t) is independent of x3 by (2.51), we may let v = u™N(7) in (2.78).
This gives

ollr allp

f t f AT (t—1)E N (T)Ef Y (1)dx dT = 0 (2.79)
-0/ Q

since Fanp(T' uN(r)) = E;ﬁé\](t) (by (2.75)). But (see Lemma 2.2)

AT (0) = 1(0)a™ 2" + pu(0) (a‘waﬂf + a“Taﬂf’> (2.80)
and thus (the matrix (a™") is positive definite)

E2N(t) = —a™u N (t)un”ﬂ(t) in Q (2.81)

alp Hona

(to reach this conclusion, observe that a“"aﬂftmtaﬂ > 0 and that a*® aﬂTtUTtaﬂ =0onlyift, =0
by (ii)); these relations in turn imply that

m”a(t) (2.82)
By definition (see (2.36) and Lemma 2.2),

g (t) = 0™ (1) = Thu N (8) = 31N (£) = TN (8) = bagus™ (1),
(2.83)

N (1) = 0ai5™N (1) = TP N () = daus™ (1) + bZugN (1),

Let gi(t) = u;N(t)leo. Then, ¢;(t) € L*(0, T, W(w)) since ui’N(t) € L*(0,T;W(LQ)) and
d5u;N(t) = 0in Q and ¢;(t) = 0 on yp since u; ™ (t) = 0 on Iy. The above relations combined
with the Gauss and Weingarten formulas (Lemma 2.3) then imply that 0,(¢i()a’) = 0 in w
and hence that ¢;(t) = 0. We have thus shown that

u N =0 YN>2. (2.84)

(vii) Finally, assume that N = 1. The only difference from (vi) is that now

F3(t,v) = 0503 + @™ ul, 5 (£)050,. (2.85)
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But since the arguments that led in (vi) to the conclusion that u™ = 0 for N > 2 only required
that consideration of functions v € W that are independent of x3, in which case F3‘H13(t, v) =0,
they can be reproduced verbatim for N = 1, thus showing that

ul(t) =0. (2.86)

The proof is complete. O

3. The Proof of the Main Result

Proof. The proof comprises three parts.
(i) Using Lemma 2.5, u(¢)(t) can be expanded as

u@®) =u N +u N )+, (3.1)

withu™ € L*(0, T; W(Q)). Letting N = 0, we thus infer that 0;u’(#) = 0 in Q, that
0 1t w 14
(1) =5 | WBdx € L2O0,T;WW), Ww)={neWHw); n=00ny}, (32)
-1

and also that (see (2.54) and (2.55))

E?”].(t) =0 Vintegers g<-1, 53
Fg‘j(t, v) =0 Vintegers g <-2VveW(Q), .
and, finally, that we must let f*2(t) = 0 and h*"'(t) = 0.
(ii) Our next try is thus
i L i i
flem=—f7o,  HEw=h, (3.4)

where it is understood as in the proof of Lemma 2.5 that each function fi'r(t) €
L*(0,T; L*(Q)) and each function h'"*1(t) € L*(0,T;L*(I+ UT.)),r > -1, appearing here
and subsequently is independent of ¢; likewise, we again let

L'(t,v) = J; i (H)vi/adx + fr WY (Hoi/adl, r>-1. (3.5)

LUl

The cancellation of the coefficient of ¢! in the variational equations of problem (2.15)
then yields the equations:

t ..
f ATR(0)ER,, (6 F;(t, v)Vadx + f AR - 7)Egy (1) Fy(r, v)Vadx dt = L7\ (t,v)
Q QJ -
(3.6)
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for all v e W(Q), where

1

EQp(®) = 5 (u1p(0) + (0 + ™"y () 50)),
1

Egp(t) = 5 <”:(3|)3(t) + uQH,,(t) +a™"u ?n||a(t)u,(10”)3(t)),

Eg||3(t) = ugﬁ)_%(t) + amn fgﬁg(t)unm(t) (3.7)

_ B 1 .
Fuﬁp(t, v) =0, Pa|}3(t, V) = —<agvu +a um‘la(t)agvn>

F3i(t,v) = 8303 + @™ uly) (£330,

10, (8) 1= 00, (1) = Thntu(H), 1) (1) = dyul, (1) — Thaud (1), (3.8)

Won

The special notation ”53\)|3(t) emphasizes that, by contrast with the functions u?n”u(t),
which only depend on u’(t), the functions ”mus(t) also depend on u!(#).
The expressions of the functions Fl”](t v) imply that L71(t,v) = 0 for all for all

v € W(Q) that are independent of x3. Hence, we must let f*"1(t) = 0 and h**(t) = 0 (first
requirement), so that we are left with the equations

J ATR(O0)EY, (D F;(t,v)Va dx+f I A (- T)EY (T Fy!

i (t,v)vadx dt = (3.9)

for all v e W(Q). When the functions Fz_lﬁ (t, v) are replaced by their expression given in (3.7),

the integrand in (3.9) takes the form (w”03v; + w’d;03).
Then, Lemma 2.4 shows that the functions w” and w? vanish in Q, that is,

<A(0)a“ﬁE°

2D+ (A(0) +20(0) ) ES (1) ) @l (1) + 2u(0) Sy (1) (@ + @™ (1))
+ Lo (V= 9)aEY () + (X (t = 5) + 20 (£ = 9)) ESjo () ) a” w5 (5)
#201/(t = §)EO) 5 (5) <a‘" +a" el (s))]ds -0 nQT=12
(A1) a™ES (1) + (A(0) +20(0)) ES5 (1)) (1 + ulh (1)) + 20a(0)a™ ESy (65, (1)
f [ x t-5)a"Ed (s) + (V(t—5) + 2/ (t - 5)) ES ”3(5)> <1 + ugﬁg(s))

2 (t - s)a“"EOlls(s)u3lla(s)]ds -0 inQ,
(3.10)
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that is,

t
j, [(A(t 1)@ EY 5 (r) + (At = 5) + 2p4(t = 5))ES5(5) ) @™ ull) ()

+2u(t - s)E2”3(s) <a‘” +a* aPul

pno(s))]ds =0 inQ,7=1,2,

(3.11)
t
j_ [()L(t - s)a“ﬁEgnﬂ(s) + (At —s) +2u(t- s))Egm(s)) <1 + uéﬂé(s))

+2u(t - s)a* E°

all

3(s)ugua(s)]ds =0 in Q.

Under the conditions of integral mean value theorem, one obvious solution to this
system of three equations is

E)s() =0 inQ,
R R R . (3.12)
A(s)a™EQ 5(s) + (A(s) + 2ﬁ(s)>EgH3(s) =0 inQ

X(s), H(s), and Egllﬂ(s) denote the Laplace transformation of A(¢), u(t), and Egnﬁ(t) (c.f. [11]).

But there may be other solutions to this nonlinear system. Denoting by [--- 1" the linear part

with respect to (any component of) u’(¢) or u!(t) in the expression [ - -], we have

[152”3(0] " = 62“3(5)1

[1©aPEY y(5) + (105) + 200t = 9)) B (o] = L)ae5(5) + (1(5) +202(5)) s (s),
(3.13)

by definition of the functions E?H 5(t) and e? ;(t) as the coefficient of €Y in the formal expansions
of the functions E;j3(¢, u(e))(t) and e;3(e, u(e))(t), the latter being precisely the linear part in
(2].

Since it was found in the linear case (see [2]) that

ehp) =0 inQ,
_ R (3.14)
1()a™el 5(s) + (A(s) + 2,7(5))@2”3(3) =0 inQ,

the linearization trick (second requirement) suggests that we only retain the “obvious”
solution found above.
(iii) Our next try is thus

flem) = f2m),  H(e)(t) =eh" (b). (3.15)
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The cancellation of the coefficient of £° in the variational equations of problem (2.15)
then leads to the equations

f uy, (t)vja’y/adx +J Aijkl(O){Eg\ll(t) Fi,i(t,v) + Ey Foi(t, V)}fdx
@ Q
! L; .[_oo A - T){Eglll(T) Fijj (7,v) + By (1) Fy (7, v) }fdx dr

+ f BIK(0)EY, (8 Fyh (¢, v)dx + J' J‘ Bt — 1) EQ (r)Fyl (7, v)dx dr = L°(t,v)
(3.16)

for all v. e W(Q), where the functions Elll](t) and F 1” (t) are defined by means of formal
expansions

Ej(eru(e)()) = B () + By, (0 +-, Fuy(eru(e)(6),v) = ZFyj(,v) + Fy(t,v) +--

(3.17)

rl\z

Note that, while the functions EO (t) F ! (t v), and F (t, v) depend only on u’(t) and
ul(t), the functions Eiluj(t) depend also on uz(t) (but not on u 3(t); each term involving u®(t)

vanishes because it contains some derivative d;ul,(t) as a factor). For this reason the formal
asymptotic expansion of u(e) () must be “at least” of the form

u(e)(t) = isquq(t) e (3.18)

q=0

In particular then, we must have (by (3.7))

(t,v)vadx

illj

I u?tt(t)v]-aif\/ﬁdx +I AR (0)EY |u(t)
° t (3.19)
+ L} - AR - T)EkHl(T) Il‘](T,v)fdx dr = L°(t,v)

for all v.e W(Q) that are independent of x3 since Fl“ﬁ (t,v) = 0 for such functions; equivalently,
after performing the usual identification, we must have

J‘ u%t(t)qjaijx/ﬁdx+J‘ AR (0)E? k(D) l”](f 1)/ adx
. (3.20)
f f AT (- 1) B (1) Y (7, )V adx dT = L°(t,v)

forally € W(w) = {1 € W (w); =0 on y}.
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Using Lemma 2.2 and (3.12), (3.20) can be written as

[ et vads s | {ATO)F 0+ AT O ()t vads

f f AT (= T)ED (1) + AP (- 1) Sy (7) | O (7, ) Vad dx

J‘ {A330T(O)Eo-||r(t) +A3333(O)E3”3(t)} 3”3(1’ n)fdx (321)
f f AP (- 1)EY (7) + AP (t - 7)ES (7 )} 3157, M)V adr dx
- [ roomvadx [ wonar
Q T,ur-
forall gy € W(w) = {5 € W (w); =0 on yp}, thatis,
’[ uprja’/adx
Q
2 AT =D (1) + AR =TS (1)} Fyy () ) Vad
LA\ T)Ey (T T)E35(7) [ Fyyp(7, m)dT x
(3.22)
a t
+ fQ &<f_ {47 (=) (7) + APt = 1) Sy (7) | Yy (, )l ) Vadx
- [ rrwnadcs [ W madr.
Q r,ur-
Setting
t
C(t) :=I {Am (¢ = 7)ES, () + A (t = ) EQ s (r) | Y (7, )T
’°: (3.23)
+J_ {A%m(t - T)E)) (7) + AP (¢ = 1) B, (7) | Y5 (7, )i,
we have
C(s) = AP (s)ED () Yy y(s, 1) + AP (s)EJ y (5) * F (s, 1)
(3.24)

i A33UT(S)EU”T(S) % F0H3(S' ) + A3333(S)E3||3 * Fg”?)(s, 11)/
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where * denotes convolution. Substituting (3.12) into (3.24), we get

~ Aapfor il - X(S) Aq oT T I
C(s) = A" (S)ES'HT(S) * anﬂ(s, 1) — MA ﬂ33(s)a Eg”T(s) * Fgllﬂ(s’n)
A(s)

+ AP (5)ED, (s) % Fyys(s,7) -

o|t

mﬁ%%(s)aorﬁgnr@) * ﬁg\w(srﬂ)

24(s)A(s)

= () (a7 @) By (5) Py (s, + 5 S

a“ﬁa”Eg”T(S) * ﬁgnp(S, 7).

(3.25)
Applying the inverse Laplace transformation to (3.25), we obtain
t
C(t) = I ™ (t = 7)E (T)Fyy 4 (T, )T, (3.26)
where
2/\ ~
a(t) = Ll{M},
A(s) +2pu(s) (3.27)

a®Por(t) .= a(t)a®a" + u(t) <a“”aﬂT + a‘"aﬁ“)

Inserting (3.26) into (3.22), we get the equation in Theorem 2.1.
Since u’(t) is independent of x3, it may be identified with a function ) e
L*(0,T; W(Q)). Consequently, the functions

Ep(8) = %<u2”a(t) () + am”u?nna(t)uf;“ﬁ(t)> eL® (o, T; L2(Q)>, .

1 mn [ee]
Fap(tm) =3 (ﬂauﬁ + gl + @ {”?nna(f)ﬂnuﬂ + ”gllﬂ(t)ﬂmlla}) €L (0/ T L2(9)>f

which are thus also independent of x3, may be likewise identified with functions (denoted
for convenience by the same symbols)

Eguﬁ(t) = %(éguﬁ(t) + g?;”a(t) +a™ ?n”a(t)é?,”ﬁ(t)) €L” <01 T; Lz(w)>/

(329)
1
Faptm) =3 (g + 110 + @™ {801 Oty + 855 Ot } ) € L2 (0, T; L (@),

where
Halp = aﬂ’la - ngrla - buﬂTZ?)r 3|y = aS”lS + bgrlaz (330)

for all # € W(w). The last variational problem is thus indeed two-dimensional.
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The definition of a(t) implies
a(s) (X(s) + 2,7(5)) = 2X(s)fi(s). (3.31)

Applying the inverse Laplace transformation to (3.31), we get
¢ ¢
J‘ a(t—7)(Mrt) +2u(t))dr = J‘ 2M(t — T)pu(T)dT. (3.32)
0 0

Therefore

t

a(0) (A(t) +2u(t)) + f a'(t—)(Mrt) +2u(t))dT = 2M(0) u(t) + f; 2X (t-=T)u(r)dr.  (3.33)

0

Letting t = 0in (3.33), we obtain immediately that

20(0)(0) 530

20) = 10y + 2400 o
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