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We present a boundary integral equation method for conformal mapping of unbounded multiply
connected regions onto five types of canonical slit regions. For each canonical region, three
linear boundary integral equations are constructed from a boundary relationship satisfied by an
analytic function on an unboundedmultiply connected region. The integral equations are uniquely
solvable. The kernels involved in these integral equations are the modified Neumann kernels and
the adjoint generalized Neumann kernels.

1. Introduction

In this paper, we present a new method for numerical conformal mapping of unbounded
multiply connected regions onto five types of canonical slit regions. A canonical region
in conformal mapping is known as a set of finitely connected regions S such that each
finitely connected nondegenerate region is conformally equivalent to a region in S. With
regard to conformal mapping of multiply connected regions, there are several types of
canonical regions as listed in [1–4]. The five types of canonical slit regions are disk with
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concentric circular slits Ud, annulus with concentric circular slits Ua, circular slit regions
Uc, radial slit regions Ur , and parallel slit regions Up. One major setback in conformal
mapping is that only for certain regions exact conformal maps are known. One way to
deal with this limitation is by numerical computation. Trefethen [5] has discussed several
methods for computing conformal mapping numerically. Amano [6] and DeLillo et al. [7]
have successfully map unbounded regions onto circular and radial slit regions. Boundary
integral equation related to a boundary relationship satisfied by a function which is analytic
in a simply or doubly connected region bounded by closed smooth Jordan curves has been
given by Murid [8] and Murid and Razali [9]. Special realizations of this integral equation
are the integral equations related to the Szegö kernel, Bergmann kernel, Riemann map, and
Ahlfors map. The kernels arise in these integral equations are the Neumann kernel and
the Kerzman-Stein kernel. Murid and Hu [10] managed to construct a boundary integral
equation for numerical conformal mapping of a bounded multiply connected region onto
a unit disk with slits. However, the integral equation involves unknown radii which lead
to a system of nonlinear algebraic equations upon discretization of the integral equation.
Nasser [11–13] produced another technique for numerical conformal mapping of bounded
and unbounded multiply connected regions by expressing the mapping function in terms
of the solution of a uniquely solvable Riemann-Hilbert problem. This uniquely solvable
Riemann Hilbert problem can be solved by means of boundary integral equation with
the generalized Neumann kernel. Recently, Sangawi et al. [14–17] have constructed new
linear boundary integral equations for conformal mapping of bounded multiply region onto
canonical slit regions, which improves the work of Murid and Hu [10] where in [10], the
system of algebraic equations are nonlinear. In this paper, we extend the work of [14–17]
for numerical conformal mapping of unbounded multiply connected regions onto all five
types of canonical slit regions. These boundary integral equations are constructed from a
boundary relationship satisfied by an analytic function on an unbounded multiply connected
region.

The plan of this paper is as follows: Section 2 presents some auxiliary material.
Section 3 presents a boundary integral equation related to a boundary relationship. In
Sections 4–8, we present the derivations for numerical conformal mapping for all five types
of canonical regions. In Section 9, we give some examples to illustrate the effectiveness of our
method. Finally, Section 10 presents a short conclusion.

2. Auxiliary Material

Let Ω− be an unbounded multiply connected region of connectivity m. The boundary Γ
consists ofm smooth Jordan curves Γj , j = 1, 2, . . . , m and will be denoted by Γ = Γ1 ∪Γ2 ∪ · · · ∪
Γm. The boundaries Γj are assumed in clockwise orientation (see Figure 1). The curve Γj is
parameterized by 2π-periodic twice continuously differentiable complex function ηj(t) with
nonvanishing first derivative, that is,

η′j(t) =
dηj(t)
dt

/= 0, t ∈ Jj = [0, 2π], k = 1, . . . , m. (2.1)
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Figure 1: An unbounded multiply connected region Ω− with connectivitym.

The total parameter domain J is the disjoint union of m intervals J1, . . . , Jm. We define a
parameterization η of the whole boundary Γ on J by

η(t) =

⎧
⎪⎪⎨

⎪⎪⎩

η1(t), t ∈ J1 = [0, 2π],
...
ηm(t), t ∈ Jm = [0, 2π].

(2.2)

Let Φ(z) be the conformal mapping function that maps Ω− onto U−, where U−

represents any canonical region mentioned above, z1 is a prescribed point located inside Γ1,
zm is a prescribed point inside Γm and β is a prescribed point located in Ω−. In this paper, we
determine the mapping functionΦ(z) by computing the derivatives of the mapping function
Φ′(η(t)) and two real functions on J , that is, the unknown function ϕ(t) and a piecewise
constant real function R(t). Let H be the space of all real Hölder continuous 2π-periodic
functions and S be the subspace of H which contains the piecewise real constant functions
R(t). The piecewise real constant function R(t) can be written as

R(t) =

⎧
⎪⎪⎨

⎪⎪⎩

R1, t ∈ J1 = [0, 2π],
...
Rm, t ∈ Jm = [0, 2π],

(2.3)

briefly written as R(t) = (R1, . . . , Rm). Let A(t) be a complex continuously differentiable 2π-
periodic function for all t ∈ J . We define two real kernels formed with A as [18]

N(s, t) =
1
π

Im
(
A(s)
A(t)

η′(t)
η(t) − η(s)

)

,

M(s, t) =
1
π

Re
(
A(s)
A(t)

η′(t)
η(t) − η(s)

)

.

(2.4)
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The kernelN(s, t) is known as the generalizedNeumann kernel formedwith complex-valued
functions A and η. The kernelN(s, t) is continuous with

N(t, t) =
1
π

Im
(
η′′(t)
η′(t)

− A′(t)
A(t)

)

. (2.5)

The kernelM(s, t) has a cotangent singularity

M(s, t) = − 1
2π

cot
s − t
2

+M1(s, t), (2.6)

where the kernelM1(s, t) is continuous with

M1(t, t) =
1
π

Re
(

1
2π

η′′(t)
η′(t)

− A′(t)
A(t)

)

. (2.7)

The adjoint function Ã of A is defined by

Ã =
η′(t)
A(t)

. (2.8)

The generalized Neumann kernel Ñ(s, t) and the real kernel M̃ formed with Ã are defined
by

Ñ(s, t) =
1
π

Im

(
Ã(s)

Ã(t)

η′(t)
η(t) − η(s)

)

,

M̃(s, t) =
1
π

Re

(
Ã(s)

Ã(t)

η′(t)
η(t) − η(s)

)

.

(2.9)

Then,

Ñ(s, t) = −N∗(s, t), M̃(s, t) = −M∗(s, t), (2.10)

whereN∗(s, t) = N(t, s) is the adjoint kernel of the generalized Neumann kernelN(s, t). We
define the Fredholm integral operators N∗ by

N∗υ(t) =
∫

J

N∗(t, s)υ(s)ds, t ∈ J. (2.11)

Integral operators M∗, Ñ, and M̃ are defined in a similar way. Throughout this paper, we
will assume the functions A and Ã are given by

A(t) = 1, Ã(t) = η′(t). (2.12)
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It is known that λ = 1 is not an eigenvalue of the kernelN and λ = −1 is an eigenvalue of the
kernelN with multiplicitym [18]. The eigenfunctions ofN corresponding to the eigenvalue
λ = −1 are {χ[1], χ[2], . . . , χ[m]}, where

χ[j](ξ) =

{
1, ξ ∈ Γj ,
0, otherwise.

j = 1, 2, . . . , m. (2.13)

We also define an integral operator J by (see [14])

Jμ(s) :=
∫

J

1
2π

m∑

j=0

χ[j](s)χ[j](t)μ(t)dt. (2.14)

The following theorem gives us a method for calculating the piecewise constant real function
h(t) in connection with conformal mapping later. This theorem can be proved by using the
approach as in [19, Theorem 5].

Theorem 2.1. Let i =
√−1, γ , μ ∈ H and h ∈ S such that

Af = γ + h + iμ (2.15)

are the boundary values of a function f(z) analytic inΩ−. Then the function h = (h1, h2, . . . , hm) has
each element given by

hj =
(
γ, ρ[j]

)
=

1
2π

∫

Γ
γ(t)ρ[t]dt, (2.16)

where ρ[t] is the unique solution of the integral equation

(I +N∗ + J)ρ[j] = −χ[j], j = 1, 2, . . . , m. (2.17)

3. The Homogeneous Boundary Relationship

Suppose we are given a function D(z) which is analytic in Ω−, continuous on Ω− ∪ Γ, Hölder
continuous on Γ andD(∞) is finite. The boundary Γj is assumed to be a smooth Jordan curve.
The unit tangent to Γ at the point η(t) ∈ Γ will be denoted by T(η(t)) = η′(t)/|η′(t)|. Suppose
further that D(η(t)) satisfies the exterior homogeneous boundary relationship

D
(
η(t)

)
= c(t)

T
(
η(t)

)2
D
(
η(t)

)

P
(
η(t)

) , (3.1)

where c(t) and P are complex-valued functions with the following properties:
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(1) P(z) is analytic in Ω− and does not have zeroes on Ω− ∪ Γ,

(2) P(∞)/= 0, D(∞) is finite,

(3) c(t)/= 0, P(η(t))/= 0.

Note that the boundary relationship (3.1) also has the following equivalent form:

P
(
η(t)

)
= c(t)T

(
η(t)

)2 D
(
η(t)

)2

∣
∣D

(
η(t)

)∣
∣2
. (3.2)

Under these assumptions, an integral equation for D(η(t)) can be constructed by means of
the following theorem.

Theorem 3.1. If the functionD(η(t)) satisfies the exterior homogeneous boundary relationship (3.1),
then

φ(t) +
∫

J

K(s, t)φ(s)ds = ν(t), (3.3)

where

φ(t) = D
(
η(t)

)
η′(t),

K(s, t) =
1

2πi

⎡

⎢
⎣

η′(t)
η(t) − η(s) −

c(t)
c(s)

η′(t)
(
η(t) − η(s)

)

⎤

⎥
⎦,

ν(t) = D(∞)η′(t) + c(t)η′(t)
D(∞)

P(∞)
.

(3.4)

Proof. Consider the integral I1(η(t)),

I1
(
η(t)

)
=

1
2πi

∫

J

D
(
η(s)

)

η(s) − η(t)ds. (3.5)

Since the boundary is in clockwise orientation and D is analytic in Ω−, then by [20, p. 2] we
have

I1
(
η(t)

)
=
D
(
η(t)

)

2
−D(∞). (3.6)

Now, let the integral I2(η(t)) be defined as

I2
(
η(t)

)
=

1
2πi

∫

J

c(t)T
(
η(t)

)2
D
(
η(s)

)

c(s)
(
η(s) − η(t)

)
T
(
η(s)

) |ds|. (3.7)
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Using the boundary relationship (3.1) and the fact that T(η(t))|dt| = dt and P(η(t)) does not
contain zeroes, then by [20, p. 2] we obtain

I2
(
η(t)

)
= −c(t)T(η(t))2D

(
η(t)

)

P
(
η(t)

) + c(t)T
(
η(t)

)2D(∞)

P(∞)
. (3.8)

Next, by taking I2(η(t)) − I1(η(t))with further arrangement yields

D
(
η(t)

)
+

1
2πi

∫

J

⎡

⎣
1

η(t) − η(s) −
c(t)
c(s)

T
(
η(t)

)2

η(t) − η(s)

⎤

⎦D
(
η(s)

)|ds|

= D(∞) + c(t)T
(
η
)2D(∞)

P(∞)
.

(3.9)

Then multiplying (3.9)with T(η(t)) and |η′(t)|, subsequently yields (3.3).

Theorem 3.2. The kernel K(s, t) is continuous with

K(t, t) =
1
2π

Im
η′′(t)
η′(t)

− 1
2πi

c′(t)
c(t)

. (3.10)

Proof. Let the kernel K(s, t) be written as

K(s, t) = K1(s, t) +K2(s, t), (3.11)

where

K1(s, t) =
1

2πi

[
η′(t)

η(t) − η(s) −
η′(t)

η(t) − η(s)

]

,

K2(s, t) =
1

2πi

[

− c(t)
c(s)

η′(t)

η(t) − η(s)
+

η′(t)

η(t) − η(s)

]

=
1

2πi
η′(t)
c(s)

[
c(s) − c(t)
η(t) − η(s)

]

.

(3.12)

Notice thatK1(s, t) is the classical Neumann kernel withK1(t, t) = 1/(2π) Im((η′′(t))/(η′(t))).
Now for K2(s, t), as we take the limit s → t we have,

K2(t, t) =
1

2πi
lim
s→ t

η′(t)
c(s)

lim
s→ t

[
c(s) − c(t)
η(t) − η(s)

]

= − 1
2πi

c′(t)
c(t)

.

(3.13)



8 Abstract and Applied Analysis

Hence, by combining K1(t, t) and K2(t, t), we obtain

K(t, t) =
1
2π

(

Im
η′′(t)
η′(t)

− 1
i
c′(t)
c(t)

)

. (3.14)

Note that when c(t) = 1, the kernel K(s, t) reduces to the classical Neumann kernel.
We define the Fredholm integral operator K by

Kυ(t) =
1

2πi

∫

J

K(s, t)υ(s)ds, t ∈ J. (3.15)

Hence, (3.3) becomes

(I +K)φ(t) = ν(t). (3.16)

The solvability of the integral equation (3.16) depends on the possibility of λ = −1 being
an eigenvalue of the kernel K(s, t). For the numerical examples considered in this paper,
λ = −1 is always an eigenvalue of the kernel K(s, t). Although there is no theoretical proof
yet, numerical evidence suggests that λ = −1 is an eigenvalue of K(s, t). If the multiplicity
of the eigenvalue λ = −1 is m̂, then one need to add m̂ conditions to the integral equation to
ensure the integral equation is uniquely solvable.

4. Exterior Unit Disk with Circular Slits

The canonical region Ud is the exterior unit disk along with m − 1 arcs of circles. We assume
thatw = Φ(z)maps the curve Γ1 onto the unit circle |w| = 1, the curve Γj , where j = 2, 3, . . . , m,
onto circular slit on the circle |w| = Rj , where R2, R3, . . . , Rm are unknown real constants. The
circular slits are traversed twice. The boundary values of the mapping function Φ are given
by

Φ
(
η(t)

)
= R(t)eiθ(t), (4.1)

where θ(t) represents the boundary correspondence function and R(t) = (1, R2, . . . , Rm). By
differentiating (4.1) with respect to t and dividing the result obtained by its modulus, we
have

Φ′(η(t)
)
η′(t)

∣
∣Φ′(η(t)

)
η′(t)

∣
∣
= i sign

(
θ′(t)

)
eiθ(t). (4.2)

Using the fact that unit tangent T(η(t)) = η′(t)/|η′(t)| and eiθ(t) = Φ(η(t))/R(t), it can be
shown that

Φ
(
η(t)

)
= sign

(
θ′(t)

)R(t)
i
T
(
η(t)

) Φ′(η(t)
)

∣
∣Φ′(η(t)

)∣
∣
. (4.3)
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Boundary relationship (4.3) is useful for computing the boundary values of Φ(z) provided
θ′(t), R(t), and Φ′(η(t)) are all known. By taking logarithmic derivative on (4.1), we obtain

η′(t)
Φ′(η(t)

)

Φ
(
η(t)

) = iθ′(t). (4.4)

The mapping function Φ(z) can be uniquely determined by assuming

Φ(∞) = ∞, c = Φ′(∞) = lim
z→∞

Φ(z)
z

> 0. (4.5)

Thus, the mapping function can be expressed as [12]

Φ(z) = c(z − z1)eF(z), (4.6)

where F(z) is an analytic function and F(∞) = 0. By taking logarithm on both sides of (4.6),
we obtain

F
(
η(t)

)
= ln

R(t)
c

+ iθ − log
(
η(t) − z1

)
. (4.7)

Hence (4.7) satisfies boundary values (2.15) in Theorem 2.1 with A(t) = 1,

h(t) =
(

ln
1
c
, ln

R2

c
, . . . , ln

Rm

c

)

, γ(t) = − ln
∣
∣η(t) − z1

∣
∣. (4.8)

Hence, the values of Rj can be calculated by

Rj = ehj−h1 for j = 1, 2, . . . , m. (4.9)

To find θ′(t), we began by differentiating (4.7) and comparing with (4.4) which yields

iθ′(t) = F ′(η(t)
)
η′(t) − η′(t)

η(t) − z1 .
(4.10)

In view of Ã = η′(t) and letting f(z) = F ′(z) − 1/(z − z1), where f(z) is analytic function in
Ω−, (4.10) becomes

Ãf
(
η(t)

)
= iθ′(t). (4.11)

By [18, Theorem 2(c)], we obtain (I − Ñ)θ′ = 0 which implies

(I +N∗)θ′ = 0. (4.12)
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However, this integral equation is not uniquely solvable according to [18, Theorem 12]. To
overcome this, since the image of the curve Γ1 is clockwise oriented and the images of the
curves Γj , j = 2, 3, . . . , m are slits so we have θ1(2π) − θ1(0) = −2π and θj(2π) − θj(0) = 0,
which implies

Jθ′(t) = h̃(t) = (−1, 0, . . . , 0). (4.13)

By adding this condition to (4.12), the unknown function θ′(t) is the unique solution of the
integral equation

(I +N∗ + J)θ′(t) = h̃(t). (4.14)

Next, the presence of sign(θ′(t)) in (4.3) can be eliminated by squaring both sides of (4.3),
that is,

Φ
(
η(t)

)2 = −R(t)2T(η(t))2 Φ′(η(t)
)2

∣
∣Φ′(η(t)

)∣
∣2
. (4.15)

Upon comparing (4.15) with (3.2), this leads to a choice of P(η(t)) = Φ(η(t))2, P(∞) = ∞,
D(η(t)) = Φ′(η(t)), D(∞) = c, c(t) = −R(t)2. Hence,

φ(t) = Φ′(η(t)
)
η′(t) (4.16)

satisfies the integral equation (3.16) with

ν(t) = Φ′(∞)η′(t). (4.17)

Numerical evidence shows that λ = −1 is an eigenvalue of K(s, t) of multiplicity m, which
means one needs to add m conditions. Since Φ(z) is assumed to be single-valued, it is also
required that the unknown mapping function Φ′(z) satisfies [4]

∫

Jj

φ(t)dt =
∫

Γj
Φ′(η

)
dη = 0, j = 1, 2, . . . , m, (4.18)

that is,

Jφ = 0. (4.19)

Then, φ(t) is the unique solution of the following integral equation

(I +K + J)φ(t) = ν(t). (4.20)
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By obtaining φ(t), the derivatives of the mapping function, Φ′(t) can be found using

Φ′(t) =
φ(t)
η′(t)

. (4.21)

By obtaining the values of R(t), θ′(t) and Φ′(η(t)), the boundary value of Φ(η(t)) can be
calculated by using (4.3).

5. Annulus with Circular Slits

The canonical region Ua consists of an annulus centered at the origin together with m − 2
circular arcs. We assume that Φ(z) maps the curve Γ1 onto the unit circle |Φ| = 1, the curve
Γm onto the circle |Φ| = Rm and Γj onto circular slit |Φ| = Rj , where j = 2, 3, . . . , m − 1. The slit
are traversed twice. The boundary values of the mapping function Φ are given by

Φ
(
η(t)

)
= R(t)eiθ(t), (5.1)

where θ(t) represents the boundary correspondence function and R(t) = (1, R2, . . . , Rm) is a
piecewise real constant function. By using the same reasoning as in Section 4, we get

Φ
(
ηj(t)

)
= sign

(
θ′(t)

)Rj(t)
i

T
(
ηj(t)

) Φ′(ηj(t)
)

∣
∣Φ′(ηj(t)

)∣
∣
, (5.2)

η′(t)
Φ′(η(t)

)

Φ
(
η(t)

) = iθ′(t). (5.3)

The mapping function Φ(z) can be uniquely determined by assuming c = Φ(∞) > 0. Thus,
the mapping function can be expressed as [12]

Φ(z) = c
z − zm
z − z1 e

F(z). (5.4)

By taking logarithm on both sides of (5.4), we obtain

F
(
η(t)

)
= ln

R(t)
c

+ iθ − log
η(t) − zm
η(t) − z1 . (5.5)

Hence, (5.5) satisfies boundary values (2.15) in Theorem 2.1 with A(t)=1,

h(t) =
(

ln
1
c
, ln

R2

c
, . . . , ln

Rm

c

)

, γ(t) = − ln
∣
∣
∣
∣
η(t) − zm
η(t) − z1

∣
∣
∣
∣. (5.6)

By obtaining hj , the values of Rj can be computed by

Rj = ehj−h1 , j = 2, 3, . . . , m. (5.7)



12 Abstract and Applied Analysis

By differentiating (5.5) and comparing with (5.3) yields

iθ′(t) = F ′(η(t)
)
η′(t) +

η′(t)
η(t) − zm − η′(t)

η(t) − z1 .
(5.8)

In view of Ã = η′(t) and f(η(t)) = F ′(η(t))+1/(η(t)−zm)−1/(η(t)−z1), where f(z) is analytic
in Ω−, (5.8) is equivalent to

Ãf
(
η(t)

)
= iθ′(t). (5.9)

By [18, Theorem 2(c)], we obtain

(I +N∗)θ′(t) = 0. (5.10)

Note that the image of the curve Γ1 is counterclockwise oriented, Γm is clockwise oriented
and the images of the curves Γj , j = 2, 3, . . . , m − 1 are slits so we have θ1(2π) − θ1(0) = 2π ,
θm(2π) − θm(0) = −2π and θj(2π) − θj(0) = 0, which implies

Jθ′(t) = h̃(t) = (1, 0, . . . ,−1). (5.11)

Hence, the unknown function θ′(t) is the unique solution of the integral equation

(I +N∗ + J)θ′(t) = h̃(t). (5.12)

Next, the presence of sign(θ′(t)) in (5.2) can be eliminated by squaring both sides of the
equation, that is,

Φ
(
η(t)

)2 = −R(t)2T(η(t))2 Φ′(η(t)
)2

∣
∣Φ′(η(t)

)∣
∣2
. (5.13)

Comparing (5.13) with (3.2) leads to a choice of P(η(t)) = Φ(η(t))2, P(∞) = c2, D(η(t)) =
Φ′(η(t)), D(∞) = 0, c(t) = −R(t)2. Hence,

φ(t) = Φ′(η(t)
)
η′(t) (5.14)

satisfies the integral equation (3.16) with

ν(t) = (0, . . . , 0). (5.15)
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Numerical evidence shows that λ = −1 is an eigenvalue ofK(s, t) of multiplicitym+ 1, which
implies one needs to add m + 1 conditions. Since Φ(z) is assumed to be single-valued, hence
it is also required that the unknown mapping function Φ′(z) satisfies [4]

∫

Jj

φ(s)ds =
∫

Γj
Φ′(η

)
dη = 0, j = 1, 2, . . . , m, (5.16)

that is,

Jφ = 0. (5.17)

Since we assume the mapping function Φ(z) can be uniquely determined by c = Φ(∞) > 0,
hence by [20]

Φ(∞) = c =
1
2π

∫

J

η′(t)
θ′(t)

(
η − z1

)φ(t)dt. (5.18)

If we define the Fredholm operator G as

Gμ(s) =
1
2π

∫

J

η′(t)
θ′(t)

(
η − z1

)μ(t)dt, (5.19)

then φ(t) is the unique solution of the following integral equation:

(I +K + J +G)φ(t) = c. (5.20)

By obtaining φ(η(t)), the derivatives of the mapping function, Φ′(t) can be obtained by

Φ′(t) =
φ
(
η(t)

)

η′(t)
. (5.21)

6. Circular Slits

The canonical region Uc consists of m slits along the circle |Φ| = Rj where j = 1, 2, . . . , m and
R1, R2, . . . , Rm are unknown real constants. The boundary values of the mapping function Φ
are given by

Φ
(
η(t)

)
= R(t)eiθ(t), (6.1)
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where θ(t) represents the boundary correspondence function and R(t) = (1, R2, . . . , Rm). By
using the same reasoning as in Section 4, we get

Φ
(
ηj(t)

)
= sign

(
θ′(t)

)Rj(t)
i

T
(
ηj(t)

) Φ′(ηj(t)
)

∣
∣Φ′(ηj(t)

)∣
∣
, (6.2)

η′(t)
Φ′(η(t)

)

Φ
(
η(t)

) = iθ′(t). (6.3)

The mapping function Φ(z) can be uniquely determined by assuming Φ(β) = 0, Φ(∞) = ∞
and Φ′(∞) = 1. Thus, the mapping function Φ can be expressed as [12]

Φ(z) =
(
z − β)eF(z). (6.4)

By taking logarithm on both sides of (6.4), we obtain

F
(
η(t)

)
= lnR(t) + iθ − log

(
η(t) − β). (6.5)

Hence, (6.5) satisfies boundary values in Theorem 2.1 with A(t) = 1,

h(t) = (lnR1, lnR2, . . . , lnRm), γ(t) = − ln
∣
∣η(t) − β∣∣. (6.6)

By obtaining hj , the values of Rj can be obtained by

Rj = ehj . (6.7)

By differentiating (6.5) and comparing with (6.3) yields

iθ′(t) = F ′(η(t)
)
η′(t) +

η′(t)
η(t) − β . (6.8)

In view of Ã = η′(t), f(t) = F ′(η(t)) and g(t) = 1/(η(t) − β) where f(z) is analytic in Ω− and
g(z) is analytic in Ω+, we rewrite (6.8) as

Ãf
(
η(t)

)
= iθ′(t) − Ãg(η(t)). (6.9)

Let Ãg(t) = ψ + iϕ. Then by [18, Theorems 2(c) and 2(d)], we obtain

(I +N∗)
(
θ′(t) − ϕ(t)) = M̃ψ(t), (6.10)

(I −N∗)ϕ(t) = M̃ψ(t). (6.11)
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Subtracting (6.11) from (6.10), we get

(I +N∗)θ′(t) = 2ϕ(t). (6.12)

Since the images of the curve Γ1,Γ2, . . . ,Γm are slits, we have θj(2π) − θj(0) = 0. Thus

Jθ′(t) = (0, 0, . . . , 0). (6.13)

Hence the unknown function θ′(t) is the unique solution of the integral equation

(I +N∗ + J)θ′(t) = 2ϕ(t), (6.14)

where

ϕ(t) = Im
[
Ã(t)g

(
η(t)

)]
= Im

[
η′(t)

η(t) − β
]

. (6.15)

By squaring both sides of (6.2) and dividing the result by (η(t) − β)2, we obtain

Φ
(
η(t)

)2

(
η(t) − β)2

= − R(t)2
(
η(t) − β)2

T
(
η(t)

)2 Φ′(η(t)
)2

∣
∣Φ′(η(t)

)∣
∣2
. (6.16)

Upon comparing (6.16) with (3.2) leads to a choice of P(η(t)) = Φ(η(t))2/(η(t) − β)2,
P(∞) = 1, D(η(t)) = Φ′(η(t)), D(∞) = 1, c(t) = −R(t)2/(η(t) − β2). Hence,

φ(t) = Φ′(η(t)
)
η′(t) (6.17)

satisfies the integral equation (3.16) with

ν(t) = − R(t)2

(
η(t) − β)2

η′(t) + η′(t). (6.18)

Numerical evidence shows that λ = −1 is an eigenvalue of K(s, t) of multiplicity m, thus one
needs to addm conditions. Since Φ(z) is assumed to be single-valued, it is also required that
the unknown mapping function Φ′(z) satisfies [4]

∫

Jj

φ(t)dt =
∫

Γj
Φ′(η

)
dη = 0, j = 1, 2, . . . , m, (6.19)

that is,

Jφ = 0. (6.20)
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Then, φ(t) is the unique solution of the integral equation

(I +K + J)φ(t) = ν(t). (6.21)

By obtaining φ(η(t)), the derivatives of the mapping function, Φ′(t) can be obtained by

Φ′(t) =
φ
(
η(t)

)

η′(t)
. (6.22)

7. Radial Slits

The canonical regionUr consists ofm slits alongm segments of the rays with arg(Φ) = θj , j =
1, 2, . . . , m. Then, the boundary values of the mapping function Φ are given by

Φ
(
η(t)

)
= r(t)eiθ(t) = eR(t)eiθ(t), (7.1)

where the boundary correspondence function θ(t) = (θ1, θ2, . . . , θm) now becomes real con-
stant function and R(t) is an unknown function. By taking logarithmic derivative on (7.1), we
obtain

η′(t)
Φ′(η(t)

)

Φ
(
η(t)

) = R′(t). (7.2)

It can be shown that the mapping function Φ(z) can be determined using

Φ
(
η(t)

)
=
η′(t)Φ′(η(t)

)

R′(t)
. (7.3)

The mapping function Φ(z) can be uniquely determined by assuming Φ(β) = 0, Φ(∞) = ∞
and Φ′(∞) = 1. Thus, the mapping function Φ(z) can be expressed as [12]

Φ(z) =
(
z − β)eiF(z). (7.4)

By taking logarithm on both sides of (7.4) and multiplying the result by −i, we obtain

F
(
η(t)

)
= θ − iR(t) + ilog

(
η(t) − β). (7.5)

Hence, (7.5) satisfies boundary values in Theorem 2.1 with A(t) = 1,

h(t) = (θ1, θ2, . . . , θm), γ(t) = −Arg
(
η(t) − β). (7.6)

By obtaining h(t), one can obtain the values of θ(t) by

θj = hj for j = 1, 2, . . . , m. (7.7)
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Then, by differentiating (7.5) and comparing with (7.2) yields

iR′(t) = −F ′(η(t)
)
η′(t) + i

η′(t)
η(t) − β . (7.8)

In view of Ã = η′(t), f(t) = F ′(η(t)) and g(t) = i/(η(t) − β) where f(z) is analytic in Ω− and
g(z) is analytic in Ω+, we rewrite (7.8) as

Ãf
(
η(t)

)
= iR′(t) − Ãg(η(t)). (7.9)

Let Ãg(t) = ψ + iϕ. Then by [18, Theorems 2(c) and 2(d)], we obtain

(I +N∗)
(
ϕ(t) − R′(t)

)
= −M̃ψ(t),

(I −N∗)ϕ(t) = M̃ψ(t).
(7.10)

Adding these equations, we get

(I +N∗)R′(t) = 2ϕ(t). (7.11)

Since the images of the curve Γ1,Γ2, . . . ,Γm are slits, we have Rj(2π) − Rj(0) = 0. Therefore

JR′(t) = (0, 0, . . . , 0). (7.12)

Hence, the unknown function R′(t) is the unique solution of the integral equation

(I +N∗ + J)R′(t) = 2ϕ(t), (7.13)

where

ϕ(t) = Im
[
Ã(t)g

(
η(t)

)]
= Im

[
iη′(t)
η(t) − β

]

. (7.14)

The boundary relationship (7.3) can be rewritten as

Φ′(η(t)
)
= ±eiθj T(η(t))∣∣Φ′(η(t)

)∣
∣. (7.15)

Squaring both sides of (7.15) yields

Φ′(η(t)
)
= e2iθj T

(
η(t)

)2Φ′(η(t)
)
. (7.16)
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Upon comparing (7.16) with (3.1) leads to a choice of P(η(t)) = 1, P(∞) = 1, D(η(t)) =
Φ′(η(t)), D(∞) = 1, c(t) = ei2θj . Hence,

φ(t) = Φ′(η(t)
)
η′(t) (7.17)

satisfies the integral equation (3.16) with

ν(t) = e2iθj (t)η′(t) + η′(t). (7.18)

Numerical evidence shows that λ = −1 is an eigenvalue of K(s, t) of multiplicity m, which
suggests one needs to add m conditions. Since Φ(z) is assumed to be single-valued, hence it
is also required that the unknown mapping function Φ′(z) satisfies [4]

∫

Jj

φ(t)dt =
∫

Γj
Φ′(η

)
dη = 0, j = 1, 2, . . . , m, (7.19)

that is,

Jφ = 0. (7.20)

Then, φ(t) is the solution of the following integral equation

(I +K + J)φ(t) = ν(t). (7.21)

By obtaining φ(η(t)), the derivatives of the mapping function Φ′(t) can be found using

Φ′(t) =
φ
(
η(t)

)

η′(t)
. (7.22)

8. Parallel Slits

The canonical regionUp consists of am parallel straight slits on thew-plane. Let B = ei(π/2−θ),
then the boundary values of the mapping function Φ are given by

BΦ
(
η(t)

)
= R(t) + iδ(t), (8.1)

where θ is the angle of intersection between the lines Re[BΦ] = Rj and the real axis.
R(t) = (R1(t), R2(t), . . . , RM(t)) is a piecewise real constant function and δ(t) is an unknown
function. It can be shown that (8.1) can be written as

BΦ′(η(t)
)
η′(t) = iδ′(t). (8.2)
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The mapping function Φ(z) can be uniquely determined by assuming Φ(∞) = ∞ and
limz→∞Φ(z) − z = 0. Thus, the mapping function Φ can be expressed as [12]

Φ(z) = z + BF(z), (8.3)

where F(z) is an analytic function with F(∞) = 0. By multiplying both sides of (8.3) with B,
we obtain

F
(
η(t)

)
= BΦ

(
η(t)

) − Bη(t). (8.4)

Hence, (8.4) satisfies the boundary values in Theorem 2.1 with A(t) = 1,

h(t) = (R1, R2, . . . , Rm) γ(t) = −Bη(t). (8.5)

Differentiating (8.4) and comparing the result with (8.2) yield

iδ′(t) = Bη′(t) + η′(t)F ′(η(t)
)
. (8.6)

In view of Ã = η′(t), f(t) = F ′(η(t)) and g(t) = B, where f(z) is analytic in Ω− and g(z) is
analytic in Ω+, we rewrite (8.6) as

Ãf
(
η(t)

)
= iδ′(t) − Ãg(η(t)). (8.7)

Assuming Ãg(t) = ψ + iϕ, then by [18, Theorems 2(c) and 2(d)], we obtain

(I +N∗)
(
δ′(t) − ϕ(t)) = M̃ψ(t),

(I −N∗)ϕ(t) = M̃ψ(t).
(8.8)

These two equations yields

(I +N∗)δ′(t) = 2ϕ(t). (8.9)

Note that, the images of the curves Γ1,Γ2, . . . ,Γm are slits, so we have δj(2π)−δj(0) = 0, which
implies

Jδ′(t) = (0, 0, . . . , 0). (8.10)

Hence, the unknown function δ′(t) is the unique solution of the integral equation

(I +N∗ + J)δ′(t) = 2ϕ(t), (8.11)
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where

ϕ(t) = Im
[
Ã(t)g

(
η(t)

)]
= Im

[
η′(t)B

]
. (8.12)

From (8.1), we introduce an analytic function ϑ(η(t)) such that

ϑ
(
η(t)

)
= eF(z) = e−Bη(t)eR(t)+iδ(t), (8.13)

where ϑ(∞) = 1. By differentiating (8.13)with respect to t, we obtain

ϑ′(η(t)
)
η′(t) =

(
iδ′(t) − Bη′(t))ϑ(η(t)). (8.14)

Let σ(t) be an analytic function such that it has the following representation

σ
(
η(t)

)
= ϑ′(η(t)

)
+ Bϑ

(
η(t)

)
, (8.15)

where σ(∞) = B. From (8.13)–(8.15) it can be shown that, the function ϑ(η(t)) can be re-
written as

ϑ
(
η(t)

)
= eRj e(−Re[Bη(t)]) sign(δ

′(t))
i

T
(
η(t)

) σ
(
η(t)

)

∣
∣σ

(
η(t)

)∣
∣
. (8.16)

By squaring both sides of (8.16), the sign δ′(t) is eliminated, that is,

ϑ
(
η(t)

)2 = −e2Rj e(−2Re[Bη(t)])T(η(t))2 σ
(
η(t)

)2

∣
∣σ(η(t))

∣
∣2
. (8.17)

Comparing (8.17) with (3.2) leads to a choice of P(z) = ϑ(z)2, P(∞) = 1, D(z) = σ(z),
D(∞) = B, c(t) = −e2Rj e(−2Re[Bη(t)]). Hence,

φ(t) = σ
(
η(t)

)
η′(t) (8.18)

satisfies the integral equation (3.16) with

ν(t) = −e2Rj e(−2Re[Bη(t)])η′(t)B + Bη′(t). (8.19)
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Numerical evidence shows that λ = −1 is an eigenvalue of K(s, t) of multiplicity m, which
suggests one needs to add m conditions. Since eBηj (t)ϑ(ηj(t))|2π0 = 0, hence we can have m
additional conditions for the integral equation above as in the following:

∫

Jj

d

dt

(
eBηj (t)ϑj

(
ηj(t)

))
dt = 0,

∫2π

0
eBηj (t)

(
ϑ′
j

(
ηj(t)

)
+ Bϑ

(
ηj(t)

))
η′(t)dt = 0,

∫2π

0
eBηj (t)

(
σ
(
ηj(t)

))
η′(t)dt = 0,

∫2π

0
eBηj (t)φ

(
ηj(t)

)
dt = 0, q = 1, 2, . . . , m.

(8.20)

We define Fredholm operator L as

Lμ(s) =
∫

Jj

eBηj (t)μ(t)dt. (8.21)

Then, φ(t) is the solution of the following integral equation:

(I +K + L)φ(t) = ν(t). (8.22)

Hence, by obtaining φ(η(t)), the function σ(t) can be found by

σ(t) =
φ
(
η(t)

)

η′(t)
. (8.23)

This allows the value for ϑ(η(t)) to be calculated from (8.16), which in turn allows the
boundary values for the mapping function Φ(η(t)) to be calculated by

Φ
(
η(t)

)
= η(t) + B logϑ

(
η(t)

)
. (8.24)

9. Numerical Examples

Since the boundaries Γj are parameterized by η(t) which are 2π-periodic functions, the
reliable method to solve the integral equations are by means of Nyström method with
trapezoidal rule [21]. Each boundary will be discretized by n number of equidistant points.
The resulting linear systems are then solved by using Gaussian elimination. For numerical
examples, we choose regions with connectivities one, two, three and four. For the region
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Table 1: Error norm ‖wj − ŵj‖∞ for Example 9.1.

n Uc Ur Up,π/3

32 6.2 × 10−12 4.6 × 10−14 8.8 × 10−16

64 9.1 × 10−14 9.6 × 10−15 —

with connectivity one, we compare our result with the analytic solution given in [12]. All the
computations were done by using MATLAB R2008a software.

Example 9.1. Consider an unbounded region Ω− bounded by a unit circle

Γ1(t) = e−it, (0 ≤ t ≤ 2π). (9.1)

We choose the special point β = 2.5 + 1.5i. The exact mapping function forUc,Ur , andUp are
given respectively by [12]

wc = z − β +
β − z
1 − βz

,

wr = z − β −
z − β
βz

,

wp = z +
e2iθ

z
.

(9.2)

For this example, we compare the error for each boundary value between our method and
the exact mapping function. See Table 1 for Error Norm of ||wj − ŵj ||∞.

Example 9.2. Consider an unbounded region Ω− bounded by a circle and an ellipse

Γ1(t) = 2 + i + e−it, (0 ≤ t ≤ 2π),

Γ2(t) = −2 + cos t − 2i sin t, (0 ≤ t ≤ 2π).
(9.3)

Figure 2 shows the region and its five canonical images by using our proposedmethod.

Example 9.3. Consider an unbounded region Ω− bounded by 3 circles

Γ1(t) = 2 + e−it, (0 ≤ t ≤ 2π),

Γ2(t) = −1 + i
√
3 + 0.5e−it, (0 ≤ t ≤ 2π),

Γ3(t) = −1 − i
√
3 + 1.5e−it, (0 ≤ t ≤ 2π).

(9.4)
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Figure 2: The original region Ω− and its canonical images with θp = π/3 for parallel slits.

This example has also been considered in [6, 12]. Figure 3 shows the regions and its
five canonical images by using our proposed method. See Table 3 for numerical comparison
between our parameter values (see Table 2) those in [12]. Note that our method has
considered exterior unit diskwith slits as a canonical regionwhile [12] has considered interior
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Figure 3: The original region Ω− and its canonical images with θp = π/2 for parallel slits.

unit disk with slits. Thus, in computing the error for Ud, we need to change the values for
Ud to 1/|Φ(z)|. See Table 4 for Error Norm of max1≤j≤3||wj − ŵj ||∞. We also compared the
condition number of our linear system for each nwith [6, 12], see Figures 4 and 5. The results
show that for our integral equations for finding Φ′(z) that is, (4.20), (5.20), (6.21), (7.21) and
(8.22), the condition numbers are almost constant except for (5.20). This is because the kernel
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Table 2: The values for approximated parameters in Example 9.3 with n = 256.

j Rj(Ud) Rj(Ua) Rj(Uc) θj(Ur) Rj(Up,π/2)

1 1.0000000000 1.0000000000 2.6958524041 −0.23582974094 1.32203173492

2 2.9672620504 0.3515929850 2.9121788457 2.24673051228 −0.78705294688
3 2.7249636495 0.1792099292 2.2653736950 −2.00502589294 −0.69725704737

Table 3: Error norm max1≤j≤3 ‖Rj − R̂j‖∞ of our method with [12] for Example 9.3.

n Ud Ua Uc Ur Up,π/2

32 2.7 × 10−11 3.4 × 10−11 2.9 × 10−01 1.6 × 10−01 2.0 × 10−10

64 5.6 × 10−17 1.1 × 10−16 4.4 × 10−05 2.0 × 10−05 2.2 × 10−16

128 7.8 × 10−16 4.7 × 10−16 2.2 × 10−09 4.1 × 10−10 8.9 × 10−16

256 1.6 × 10−15 9.99 × 10−16 3.8 × 10−12 5.2 × 10−13 1.3 × 10−15

Table 4: Error norm max1≤j≤3 ‖wj − ŵj‖∞ of our method with [12] for Example 9.3.

n Ud Ua Uc Ur Up,π/2

32 1.1 × 10−07 1.1 × 10−07 0.15 0.16 1.5 × 10−06

64 6.1 × 10−14 2.9 × 10−14 6.2 × 10−05 2.0 × 10−05 1.1 × 10−13

128 7.5 × 10−14 2.1 × 10−14 2.2 × 10−09 4.2 × 10−10 4.4 × 10−12

256 2.2 × 10−13 4.7 × 10−13 3.3 × 10−12 4.1 × 10−12 9.5 × 10−12
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Figure 4: Condition numbers of the matrices for our method forUd,Ua,Uc,Ur andUp.
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Figure 5: Condition number of the matrices for generalized Neumann kernel (G.N.K), adjoint generalized
Neumann kernel (Adj.G. N. K), charge simulation for circular slits (C.S. circular) and charge simulation
for radial slits (C.S. radial).

involves θ′(t), which varies with the number of collocation points, n. However, this does not
have any effect on the accuracy of the method.

Example 9.4. Consider an unbounded region Ω− of 4-connectivity with boundaries

Γ1(t) = 3 + 2i + e−it, (0 ≤ t ≤ 2π), (9.5)

Γ2(t) = −3 + 2i + e−it, (0 ≤ t ≤ 2π), (9.6)

Γ3(t) = −3 − 2i + 0.7 cos t − 1.4i sin t, (0 ≤ t ≤ 2π), (9.7)

Γ4(t) = 3 − 2i + 0.7 cos t − 1.4i sin t, (0 ≤ t ≤ 2π). (9.8)

Figure 6 shows the region and its five canonical images by using our proposedmethod.

10. Conclusion

In this paper, we have constructed a unified method for numerical conformal mapping of
unbounded multiply connected regions onto canonical slit regions. The advantage of this
method is that the integral equations are all linear which overcomes the nonlinearity problem
encountered in [10]. From the numerical experiments, we can conclude that our method
works on any finite connectivity with high accuracy. By computing the boundary values of
the mapping function, the exterior points will be calculated by means of Cauchy’s integral
formula.
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Figure 6: The original region Ω− and its canonical images with θp = π/2 for parallel slits.
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