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We present the best possible lower and upper bounds for the Neuman-Sándor mean in terms of the
convex combinations of either the harmonic and quadratic means or the geometric and quadratic
means or the harmonic and contraharmonic means.

1. Introduction

For a, b > 0 with a/= b, the Neuman-Sándor mean M(a, b) [1] is defined by

M(a, b) =
a − b

2 sinh−1[(a − b)/(a + b)]
, (1.1)

where sinh−1(x) = log(x +
√
1 + x2) is the inverse hyperbolic sine function.

Recently, the theory of bivariate means have been the subject of intensive research [2–
17]. In particular, many remarkable inequalities for the Neuman-Sándor mean M(a, b) can
be found in the literature [1, 18–20].

Let H(a, b) = 2ab/(a + b), G(a, b) =
√
ab, L(a, b) = (b − a)/(log b − loga), P(a, b) =

(a − b)/(4 arctan
√
a/b − π), A(a, b) = (a + b)/2, T(a, b) = (a − b)/[2 arctan((a − b)/(a +

b))], Q(a, b) =
√
(a2 + b2)/2 and C(a, b) = (a2 + b2)/(a + b) be the harmonic, geometric,
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logarithmic, first Seiffert, arithmetic, second Seiffert, quadratic, and contraharmonic means
of a and b, respectively. Then it is well known that the inequalities

H(a, b) < G(a, b) < L(a, b) < P(a, b) < A(a, b)

< M(a, b) < T(a, b) < Q(a, b) < C(a, b)
(1.2)

hold for all a, b > 0 with a/= b.
In [1, 18], Neuman and Sándor proved that the double inequalities

A(a, b) < M(a, b) < T(a, b),

P(a, b)M(a, b) < A2(a, b),

A(a, b)T(a, b) < M2(a, b) <
A2(a, b) + T2(a, b)

2

(1.3)

hold for all a, b > 0 with a/= b.
Let 0 < a, b < 1/2 with a/= b, a′ = 1 − a and b′ = 1 − b. Then the following Ky Fan

inequalities

G(a, b)
G(a′, b′)

<
L(a, b)
L(a′, b′)

<
P(a, b)
P(a′, b′)

<
A(a, b)
A(a′, b′)

<
M(a, b)
M(a′, b′)

<
T(a, b)
T(a′, b′)

(1.4)

were presented in [1].
The double inequality Lp0(a, b) < M(a, b) < L2(a, b) for all a, b > 0 with a/= b was

established by Li et al. in [19], where Lp(a, b) = [(bp+1 − ap+1)/((p + 1)(b − a))]1/p (p /= − 1, 0),
L0(a, b) = 1/e(bb/aa)1/(b−a) and L−1(a, b) = (b − a)/(log b − loga) is the pth generalized loga-
rithmic mean of a and b, and p0 = 1.843 . . . is the unique solution of the equation (p + 1)1/p =
2 log(1 +

√
2).

Neuman [20] proved that the double inequalities

αQ(a, b) + (1 − α)A(a, b) < M(a, b) < βQ(a, b) +
(
1 − β

)
A(a, b),

λQ(a, b) + (1 − λ)A(a, b) < M(a, b) < μQ(a, b) +
(
1 − μ

)
A(a, b)

(1.5)

hold for all a, b > 0with a/= b if and only if α ≤ 1−log(√2+1)/[(
√
2−1) log(√2+1)] = 0.3249 . . .,

β ≥ 1/3, λ ≤ 1 − log(
√
2 + 1)/ log(

√
2 + 1) = 0.1345 . . . and μ ≥ 1/6.

The main purpose of this paper is to find the least values α1, α2, α3, and the greatest
values β1, β2, β3, such that the double inequalities

α1H(a, b) + (1 − α1)Q(a, b) < M(a, b) < β1H(a, b) +
(
1 − β1

)
Q(a, b),

α2G(a, b) + (1 − α2)Q(a, b) < M(a, b) < β2G(a, b) +
(
1 − β2

)
Q(a, b),

α3H(a, b) + (1 − α3)C(a, b) < M(a, b) < β3H(a, b) +
(
1 − β3

)
C(a, b)

(1.6)

hold true for all a, b > 0 with a/= b.
Our main results are presented in Theorems 1.1–1.3.
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Theorem 1.1. The double inequality

α1H(a, b) + (1 − α1)Q(a, b) < M(a, b) < β1H(a, b) +
(
1 − β1

)
Q(a, b) (1.7)

holds for all a, b > 0with a/= b if and only if α1 ≥ 2/9 = 0.2222 . . . and β1 ≤ 1−1/[√2 log(1+
√
2)] =

0.1977 . . . .

Theorem 1.2. The double inequality

α2G(a, b) + (1 − α2)Q(a, b) < M(a, b) < β2G(a, b) +
(
1 − β2

)
Q(a, b) (1.8)

holds for all a, b > 0with a/= b if and only if α2 ≥ 1/3 = 0.3333 . . . and β2 ≤ 1−1/[√2 log(1+
√
2)] =

0.1977 . . . .

Theorem 1.3. The double inequality

α3H(a, b) + (1 − α3)C(a, b) < M(a, b) < β3H(a, b) +
(
1 − β3

)
C(a, b) (1.9)

holds for all a, b > 0 with a/= b if and only if α3 ≥ 1 − 1/[2 log(1 +
√
2)] = 0.4327 . . . and β3 ≤

5/12 = 0.4166 . . . .

2. Lemmas

In order to prove our main results we need two Lemmas, which we present in this section.

Lemma 2.1 (see [21, Lemma 1.1]). Suppose that the power series f(x) =
∑∞

n=0 anx
n and g(x) =∑∞

n=0 bnx
n have the radius of convergence r > 0 and bn > 0 for all n ∈ {0, 1, 2, . . .}. Let h(x) = f(x)/

g(x), then the following statements are true.

(1) If the sequence {an/bn}∞n=0 is (strictly) increasing (decreasing), then h(x) is also (strictly)
increasing (decreasing) on (0, r).

(2) If the sequence {an/bn} is (strictly) increasing (decreasing) for 0 < n ≤ n0 and (strictly)
decreasing (increasing) for n > n0, then there exists x0 ∈ (0, r) such that h(x) is (strictly)
increasing (decreasing) on (0, x0) and (strictly) decreasing (increasing) on (x0, r).

Lemma 2.2. Let p ∈ (0, 1), λ0 = 1 − 1/[
√
2 log(1 +

√
2)] = 0.1977 . . . and

fp(x) = sinh−1(x) − x
√
1 + x2 − p

(√
1 + x2 −

√
1 − x2

) . (2.1)

Then f1/3(x) < 0 and fλ0(x) > 0 for all x ∈ (0, 1).

Proof. From (2.1), one has

fp(0) = 0, (2.2)

fp(1) = log
(
1 +

√
2
)
− 1√

2
(
1 − p

) , (2.3)

f ′
p(x) =

gp(x)
√
1 − x4

(√
1 + x2 + p

(√
1 − x2 −

√
1 + x2

))2
, (2.4)
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where

gp(x) =
√
1 − x2

(√
1 + x2 + p

(√
1 − x2 −

√
1 + x2

))2 −
√
1 − x2 − p

(√
1 + x2 −

√
1 − x2

)
.

(2.5)

We divide the proof into two cases.

Case 1. (p = 1/3). Then (2.5) leads to

g1/3(0) = 0, g1/3(1) = −
√
2
3

< 0, (2.6)

g ′
1/3(x) =

x3

√
1 − x4

h1/3(x), (2.7)

where

h1/3(x) =
14

9
(√

1 + x2 +
√
1 − x2

) −
(√

1 + x2 +
√
1 − x2

)
−
√
1 − x2

3
. (2.8)

We clearly see that the function
√
1 + x2 +

√
1 − x2 is strictly decreasing in (0, 1). Then from

(2.8), we get

h1/3(x) < h1/3(1) = −2
√
2

9
< 0 (2.9)

for x ∈ (0, 1).
Therefore, f1/3(x) < 0 for all x ∈ (0, 1) follows easily from (2.2), (2.4), (2.6), (2.7), and

(2.9).

Case 2. (p = λ0). Then (2.3) and (2.5) yield

fλ0(1) = gλ0(0) = 0, gλ0(1) = −
√
2λ0 < 0, (2.10)

g ′
λ0
(x) =

x√
1 − x4

hλ0(x), (2.11)

where

hλ0(x) =
[(

2 − 3λ0 − 2λ20
)
− (3 − 6λ0)x2

]√
1 + x2 −

[(
3λ0 − 2λ20

)
+
(
6λ0 − 6λ20

)
x2
]√

1 − x2.

(2.12)

We divide the discussion of this case into two subcases, and all computations are carried out
using MATHEMATICA software.

Subcase A. x ∈ (0.9, 1). Then from (2.12) and the fact that

(
2 − 3λ0 − 2λ20

)
− (3 − 6λ0)x2 <

(
2 − 3λ0 − 2λ20

)
− (3 − 6λ0) × (0.9)2 = −0.1404 · · · < 0,

(2.13)
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we know that

hλ0(x) < 0 (2.14)

for x ∈ (0.9, 1).

Subcase B. x ∈ (0, 0.9]. Then from (2.12), one has

hλ0(0) = 0.8137 · · · > 0, hλ0(0.9) = −0.7494 · · · < 0,

h′
λ0
(x) =

x√
1 − x4

μ(x),
(2.15)

where

μ(x) =
[(

18λ0 − 18λ20
)
x2 −

(
9λ0 − 10λ20

)]√
1 + x2 −

[
(9 − 18λ0)x2 +

(
4 − 9λ0 + 2λ20

)]√
1 − x2.

(2.16)

We conclude that

μ(x) < 0 (2.17)

for all x ∈ (0, 0.9]. Indeed, if x ∈ (0, 1/2), then (2.17) follows from (2.16) and the inequality
(
18λ0 − 18λ20

)
x2 −

(
9λ0 − 10λ20

)
< 5.5λ20 − 4.5λ0 = −0.6747 · · · < 0. (2.18)

If x ∈ [1/2, 0.9], then (2.17) follows from (2.16) and the inequalities
(
18λ0 − 18λ20

)
x2 −

(
9λ0 − 10λ20

)

≤
(
18λ0 − 18λ20

)
× (0.9)2 −

(
9λ0 − 10λ20

)

= 5.58λ0 − 4.58λ20 = 0.9242 . . . ,

(9 − 18λ0)x2 +
(
4 − 9λ0 + 2λ20

)
≥ 1

4
(9 − 18λ0) +

(
4 − 9λ0 + 2λ20

)

= 6.25 − 13.5λ0 + 2λ20 = 3.6589 . . . ,
[(

18λ0 − 18λ20
)
x2 −

(
9λ0 − 10λ20

)]√
1 + x2 −

[
(9 − 18λ0)x2 +

(
4 − 9λ0 + 2λ20

)]√
1 − x2

≤
(
5.58λ0 − 4.58λ20

)√
1 + (0.9)2 −

(
6.25 − 13.5λ0 + 2λ20

)√
1 − (0.9)2

= −0.3514 · · · < 0.

(2.19)

From (2.15) together with (2.17)we clearly see that there exists x0 ∈ (0, 0.9) such that hλ0(x) >
0 for x ∈ [0, x0) and hλ0(x) < 0 for (x0, 0.9].
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Subcases A and B lead to the conclusion that hλ0(x) > 0 for x ∈ [0, x0) and hλ0(x) < 0
for x ∈ (x0, 1). Thus from (2.11), we know that gλ0(x) is strictly increasing in (0, x0] and
strictly decreasing in [x0, 1).

It follows from (2.4) and (2.10) together with the piecewise monotonicity of gλ0(x) that
there exists x1 ∈ (0, 1) such that fλ0(x) is strictly increasing in [0, x1) and strictly decreasing
in [x1, 1).

Therefore, fλ0(x) > 0 for x ∈ (0, 1) follows from (2.2) and (2.10) together with the
piecewise monotonicity of fλ0(x).

3. Proof of Theorems 1.1–1.3

Proof of Theorem 1.1. Since H(a, b), M(a, b) and Q(a, b) are symmetric and homogeneous of
degree 1. Hence, without loss of generality, we assume that a > b. Let x = (a − b)/(a + b) and
t = sinh−1(x). Then x ∈ (0, 1), t ∈ (0, log(1 +

√
2)), M(a, b)/A(a, b) = x/sinh−1(x) = sinh(t)/t,

H(a, b)/A(a, b) = 1−x2 = 1− sinh2(t) = [3− cosh(2t)]/2,Q(a, b)/A(a, b) =
√
1 + x2 = cosh(t)

and

Q(a, b) −M(a, b)
Q(a, b) −H(a, b)

=

√
1 + x2sinh−1(x) − x

[√
1 + x2 − (1 − x2)

]
sinh−1(x)

=
t cosh(t) − sinh(t)

t[(1/2) cosh(2t) + cosh(t) − (3/2)]
:= ϕ(t).

(3.1)

Making use of power series sinh(t) =
∑∞

n=0 t
2n+1/(2n+1)! and cosh(t) =

∑∞
n=0 t

2n/(2n)!,
we can express (3.1) as follows:

ϕ(t) =
∑∞

n=1[2n/((2n + 1)(2n)!)]t2n+1
∑∞

n=1
[(
22n−1 + 1

)
/(2n)!

]
t2n+1

. (3.2)

Let an = 2n/((2n + 1)(2n)!) and bn = (22n−1 + 1)/(2n)! Then an/bn = 2n/[(2n + 1)(22n−1 + 1)].
Moreover, by a simple calculation, we see that

an+1

bn+1
− an

bn
=

2 +
(
2 − 18n − 12n2)22n−1

(2n + 1)(2n + 3)
(
22n−1 + 1

)(
22n+1 + 1

) < 0 (3.3)

for n ≥ 1.
Equations (3.1) and (3.2) together with inequality (3.3) and Lemma 2.1 lead to the

conclusion that ϕ(t) is strictly decreasing in (0, log(1 +
√
2)). This in turn implies that

lim
t→ 0+

ϕ(t) =
2
9
, lim

t→ log(1+
√
2)
ϕ(t) = 1 − 1

√
2 log

(
1 +

√
2
) . (3.4)

Therefore, Theorem 1.1 follows from (3.1) and (3.4) together with the monotonicity of
ϕ(t).
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Proof of Theorem 1.2. Since G(a, b), M(a, b) and Q(a, b) are symmetric and homogeneous of
degree 1. Hence, without loss of generality, we assume that a > b. Let x = (a − b)/(a + b),
p ∈ (0, 1) and λ0 = 1−1/[√2 log(1+

√
2)]. Then making use ofG(a, b)/A(a, b) =

√
1 − x2 gives

Q(a, b) −M(a, b)
Q(a, b) −G(a, b)

=

√
1 + x2sinh−1(x) − x

(√
1 + x2 −

√
1 − x2

)
sinh−1(x)

. (3.5)

Moreover, we obtain

lim
x→ 0+

√
1 + x2sinh−1(x) − x

(√
1 + x2 −

√
1 − x2

)
sinh−1(x)

=
1
3
, (3.6)

lim
x→ 1−

√
1 + x2sinh−1(x) − x

(√
1 + x2 −

√
1 − x2

)
sinh−1(x)

= 1 − 1
√
2 log

(
1 +

√
2
) = λ0. (3.7)

We take the difference between the additive convex combination of G(a, b), Q(a, b),
and M(a, b) as follows:

pG(a, b) +
(
1 − p

)
Q(a, b) −M(a, b)

= A(a, b)

[

p
√
1 − x2 +

(
1 − p

)√
1 + x2 − x

sinh−1(x)

]

=
A(a, b)

[
p
√
1 − x2 +

(
1 − p

)√
1 + x2

]

sinh−1(x)
fp(x),

(3.8)

where fp(x) is defined as in Lemma 2.2.
Therefore, (1/3)G(a, b) + (2/3)Q(a, b) < M(a, b) < λ0G(a, b) + (1 − λ0)Q(a, b) for all

a, b > 0 with a/= b follows from (3.8) and Lemma 2.2. This conjunction with the following
statement gives the asserted result.

(i) If p < 1/3, then (3.5) and (3.6) imply that there exists 0 < δ1 < 1 such thatM(a, b) <
pG(a, b) + (1 − p)Q(a, b) for all a, b > 0 with (a − b)/(a + b) ∈ (0, δ1).

(ii) If p > λ0, then (3.5) and (3.7) imply that there exists 0 < δ2 < 1 such that M(a, b) >
pG(a, b) + (1 − p)Q(a, b) for all a, b > 0 with (a − b)/(a + b) ∈ (1 − δ2, 1).

Proof of Theorem 1.3. Wewill follow, to some extent, lines in the proof of Theorem 1.1. First we
rearrange terms of (1.9) to obtain

β3 <
C(a, b) −M(a, b)
C(a, b) −H(a, b)

< α3. (3.9)

Use of C(a, b)/A(a, b) = 1 + x2 followed by a substitution x = sinh(t) gives

β3 < φ(t) < α3, (3.10)
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where

φ(t) =
t[cosh(2t) + 1] − 2 sinh(t)

2t[cosh(2t) − 1]
, |t| < log

(
1 +

√
2
)
. (3.11)

Since the function φ(t) is an even function, it suffices to investigate its behavior on the
interval (0, log(1 +

√
2)).

Using power series of sinh(t) and cosh(t), then (3.11) can be rewritten as

φ(t) =
∑∞

n=1
[
22n/(2n)! − 2/(2n + 1)!

]
t2n+1

∑∞
n=1

[
22n+1/(2n)!

]
t2n+1

. (3.12)

Let cn = 22n/(2n)! − 2/(2n + 1)! and dn = 22n+1/(2n)!. Then

cn
dn

=
1
2
− 1
(2n + 1)22n

. (3.13)

It follows from (3.13) that the sequence {cn/dn} is strictly increasing for n ≥ 1.
Equations (3.12) and (3.13) together with Lemma 2.1 and the monotonicity of {cn/dn}

lead to the conclusion that φ(t) is strictly increasing in (0, log(1 +
√
2)). Moreover,

lim
t→ 0+

φ(t) =
c1
d1

=
5
12

, lim
t→ log(1+

√
2)
φ(t) = 1 − 1

2 log
(
1 +

√
2
) . (3.14)

Making use of (3.14) and (3.10) together with the monotonicity of φ(t) gives the assert-
ed result.
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