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This paper is concerned with the problem of scattering of time-harmonic electromagnetic waves
by a penetrable, inhomogeneous, Lipschitz obstacle covered with a thin layer of high conductivity.
The well posedness of the direct problem is established by the variational method. The inverse
problem is also considered in this paper. Under certain assumptions, a uniqueness result is
obtained for determining the shape and location of the obstacle and the corresponding surface
parameter λ(x) from the knowledge of the near field data, assuming that the incident fields are
electric dipoles located on a large sphere with polarization p ∈ R

3. Our results extend those in the
paper by F. Hettlich (1996) to the case of inhomogeneous Lipschitz obstacles.

1. Introduction

In this paper we are interested in determining the shape and location of a penetrable, inho-
mogeneous, isotropic, Lipschitz obstacle surrounded by a piecewise homogeneous, isotropic
medium. The obstacle is covered with a thin layer of high conductivity. Such penetrable
obstacles lead to conductive boundary conditions; for the precise mathematical description,
the reader is referred to [1–3]. In this paper, it is shown that the shape and location of
the obstacle and the corresponding surface parameter are uniquely determined from a
knowledge of the near field data of the scattered electromagnetic wave at a fixed frequency.
To this end, we need a well posedness result for the direct problem.

The well posedness of the Helmholtz equation for a penetrable, inhomogeneous,
anisotropic medium has been studied recently in [4]. In [5], the authors provided a proof
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for the well posedness of the scattering problem for a dielectric that is partially coated by a
highly conductive layer in the TM case in 2007.

In the case of exterior Maxwell problem for the partially coated Lipschitz domains,
the authors in [6] have established the well posedness of a unique solution by variational
methods in 2004. For the homogeneous isotropic medium problem, by means of an integral
equation method, Angell and Kirsch proved the existence and uniqueness of the classical
solution for Maxwell’s equations with conductive boundary conditions assuming λ ∈
C0,α(∂D) in [2]. Variational methods for the homogeneous isotropic medium problem were
proposed in [1], under the assumption that the bounded domain D ⊆ R

3 with boundary
∂D in the class C2, and some additional conditions on k, nD, μ, λ. It is also shown that the
obstacle is uniquely determined by the far field patterns of all incident waves with a fixed
wave number. For the inhomogeneous anisotropic media, the well posedness of the direct
problem was proved in [7].

The uniqueness result for the inverse medium scattering problem was first provided
by Isakov (see [8, 9]), in which it is shown that the shape of a penetrable, inhomogeneous,
isotropic medium is uniquely determined by its far field pattern of all incident plane waves.
The idea is to construct singular solutions of the boundary value problem with respect to
two different scattering obstacles with identical far field patterns. Our uniqueness proof is
based on this idea. The idea of Isakov was modified by Kirsh and Kress [10] using potential
theory for the impenetrable obstacle case with Neumann boundary conditions. By the same
technique, the authors in [11] proved the case of a penetrable obstacle with constant index
of refraction. The use of potential theory will require strong smoothness assumptions on
the scattering object. Then D. Mitrea and M. Mitrea [12] improved the previous results to
the case of Lipschitz domains. In [13], they extended Isakov’s approach to the case of a
penetrable obstacle for Hemholtz equations.The uniqueness theorem of Helmholtz equations
for partially coated buried obstacle problem was shown in [14, 15], assuming that the
scattering fields were known with point sources as incident fields.

Recently, uniqueness for the inverse scattering problem in a layered medium has
attracted intensive studies. For the sound-soft or sound-hard obstacle case, based on
Schiffer’s idea, [16] proved a uniqueness result. But their method can not be extended to
other boundary conditions. In recent years, by employing the generalized mixed reciprocity
relation, it was proved in [17, 18] that both the obstacle and its physical property can be
uniquely determined for different boundary conditions. For the inverse acoustic scattering
by an impenetrable obstacle in a two-layered medium case, it is shown in [19] that interface
is uniquely determined from the far field pattern. Unfortunately, this method can not be
extended to the electromagnetic case, but using ideas in [20], a different method was used
in [21] to establish such a uniqueness result for the electromagnetic case.

There are also some uniqueness results for partial differential equations with constant
coefficients by integral equation methods. (see [22, 23]). However, integral equation methods
are not well tailored for partial differential equations having inhomogeneous coefficients of
the highest derivatives. Consequently, in [24], the author brought together the variational
approach and the idea from [8, 9] to provide a uniqueness proof of Helmholtz equations with
inhomogeneous coefficients for a penetrable, anisotropic obstacle. Their method depends
on a regularity theorem for the direct problem and the well posedness of the interior
transmission problem related to the direct problem. This idea has been extended to the case
of electromagnetic scattering problem for anisotropic media in [25].

The outline of this paper is as follows. In Section 2, besides the formulation of the
direct scattering problem in a penetrable, inhomogeneous, Lipschitz domain, we also provide
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a proof of the well posedness for the direct problem by using a variational method. The
uniqueness result for the inverse problem will be shown in Section 3.

2. The Direct Problem

Let D ⊂ R
3 be a bounded penetrable, inhomogeneous, isotropic domain with a Lipschitz

boundary ∂D denoted by Γ and covered with a thin layer of high conductivity. Assume that
the domain D is imbedded in a homogeneous background medium. Define k2D = k2nD(x)
and k2b = k

2nb with k > 0 being the wave number, where nD(x) and nb are the refractive index
of the domain D and the background medium, respectively. Assume that nD ∈ C(D) with
Re[nD(x)] > 0, Im[nD(x)] > 0 for all x ∈ D and nb is a complex constant with Im(nb) ≥ 0.
Assume further that λ ∈ L∞(Γ) with Re[λ(x)] ≥ 0 is a complex-valued function describing
the surface impedance of the coating. The incident field is considered to be an electric dipole
located at x0 on a large sphere SR0 = {x ∈ R

3 : |x| = R0}with polarization p ∈ R
3 given by

Ee
(
x, x0, p, kb

)
=

i

kb
curlxcurlx p

eikb |x−x0|

4π |x − x0| .
(2.1)

Denote byG(x, x0) the free space Green tensor of the backgroundmedium and define Ei(x) =
Ei(x, x0, p) = pG(x, x0) which satisfies

curl curlEi(x) − k2bEi(x) = pδ(x − x0) in R
3, (2.2)

where δ is the Dirac delta function. Note that Ei(x) can be written as

Ei(x) = Ee
(
x, x0, p, kb

)
+ Esb(x), (2.3)

where Es
b
(x) is the scattered electric field due to the background medium and the electric

dipole Ee(x, x0, p, kb).
In order to formulate precisely the scattering problem, recall the following Sobolev

spaces:

H(curl, D) =
{
u ∈

(
L2(D)

)3
, curlu ∈

(
L2(D)

)3
}
,

H(div, D) =
{
u ∈

(
L2(D)

)3
, divu ∈

(
L2(D)

)3
}
,

L2
t (∂D) =

{
u ∈

(
L2(∂D)

)3
, ν · u = 0 on ∂D

}
,
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H−1/2
div (∂D) =

{
u ∈

(
H−1/2(∂D)

)3
, ν · u = 0, div∂D u ∈ H−1/2(∂D)

}
,

H−1/2
curl (∂D) =

{
u ∈

(
H−1/2(∂D)

)3
, ν · u = 0, curl∂D u ∈ H−1/2(∂D)

}
,

H0(curl, D) =
{
u ∈

(
L2(D)

)3
, curlu ∈

(
L2(D)

)3
, ν × u = 0 on ∂D

}
,

(2.4)

where ν denotes the exterior unit normal to ∂D. If D is unbounded, we denote by
Hloc(curl, D) the space of functions u ∈ H(curl, K) for any compact set K ⊂⊂ D. Introduce
the space

X̃ =
{
u ∈ Hloc

(
curl,R3

)
, uT |Γ ∈ L2

t (Γ)
}
, (2.5)

where uT = ν × u × ν. Then the scattering problem can be formulated as follows. Given Ei,
find the field V and the scattered field Es such that

curl curlV − k2DV = 0, inD, (2.6)

curl curlEs − k2bEs = 0, inDe, (2.7)

ν × Es − ν × V = −ν × Ei, on Γ, (2.8)

ν × curlEs − ν × curlV = ikλEsT + ikλE
i
T − ν × curlEi, on Γ, (2.9)

and the scattered field Es = E − Ei is required to satisfy the Silver-Müller radiation condition

lim
r→∞

r(curlEs × x̂ − ikEs) = 0 (2.10)

uniformly in x̂ = x/|x|, where r = |x|.
We first have the following uniqueness result for the above scattering problem.

Theorem 2.1. The scattering problem (2.6)–(2.9) has at most one solution.

Proof. To prove the theorem, it is enough to consider the case Ei = 0 whence E = Es. Taking
the dot product of (2.6)with V overD and of (2.7)with E overDR = De∩BR withDe = R

3\D,
respectively, and integrating by parts, we obtain by using the conductive conditions (2.8) and
(2.9) that

∫

D

(
|curlV |2 − k2D|V |2

)
dx +

∫

DR

(
|curlE|2 − k2b |E|2

)
dx

− ik
∫

Γ
λ|ET |2ds + ik

∫

SR

ν ×H · ETds = 0,

(2.11)
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where H = (1/ik) curlE is the corresponding scattered magnetic field. Taking the complex
conjugate of both sides of (2.11) and using the fact that Im(nD), Im(nb), and Re(λ) are non-
negative gives

Re
∫

SR

ν × E ·Hds = − k−1
∫

D

Im(nD)|V |2dx − k−1
∫

DR

Im(nb)|E|2dx

−
∫

Γ
Re(λ)|ET |2ds ≤ 0.

(2.12)

An application of the Rellich lemma yields that E = 0 in R
3 \ BR (see [26, Theorem 6.10]).

This, together with the unique continuation principle, implies that E = 0 in R
3 \D. From the

trace theorem, it follows that ν × E = 0 on Γ. Thus, taking the imaginary part of (2.11) and
using the assumption that Im[nD(x)] > 0 for all x ∈ D, we have that V = 0 in D.

Introduce the electric-to-magnetic Calderon operator Ge (see [27]), which maps the
electric field boundary data ϕ on the surface of a large ball BR = {x ∈ R

3 : |x| < R} to the
magnetic boundary data x̂ ×H on SR = ∂BR, where (E,H) satisfies

curlE − ikH = 0, in R
3 \ BR, (2.13)

curlH + ikE = 0, in R
3 \ BR, (2.14)

x̂ × E = ϕ, on SR, (2.15)

lim
r→∞

(H × x − rE) = 0. (2.16)

Then the scattering problem (2.6)–(2.10) can be reformulated in the following mixed
conductive boundary value problem (MOCKUP) over a bounded domain:

curl curlV − k2DV = 0, in D, (2.17)

curl curlEs − k2bEs = 0, in DR, (2.18)

ν × Es − ν × V = −ν × Ei, on Γ, (2.19)

ν × curlEs − ν × curlV = ikλEsT + ikλE
i
T − ν × curlEi, on Γ, (2.20)

ν × 1
ik

curlEs = Ge(ν × Es), on SR, (2.21)

where DR = De ∩ BR.
In the following, we introduce some properties of the Calderon operator that will be

frequently used in the rest of this section. The basis functions for tangential fields on a sphere
SR are the vector spherical harmonics of order n given by

Um
n =

1
√
n(n + 1)

∇τ1Y
m
n , Vm

n = x̂ ×Um
n (2.22)
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for n = 1, 2, . . . and m = −n, . . . , n. Here, as usual, ∇τ1 denotes the surface gradient on the
surface of the unit sphere S1.

For ϕ ∈ H−1/2
div (SR) given by ϕ =

∑∞
n=1

∑n
m=−n an,mU

m
n + bn,mVm

n , the operator Ge can be
defined by

Geϕ =
∞∑

n=1

n∑

m=−n

{
−ikRbn,m

δn
Um
n +

an,mδn
ikR

Vm
n

}
, (2.23)

where

δn = kR

(
h
(1)
n

)′
(kR)

h
(1)
n (kR)

+ 1, (2.24)

and h(1)n (kR) is the spherical Hankel function.
If k = i in (2.23), we will obtain another operator G̃e. Properties of Ge and G̃e are

collected in the following lemma (for a proof see [27]).

Lemma 2.2. The operator G̃e is negative definite in the sense that

〈
G̃eϕ, ϕ × x̂

〉

SR
< 0 (2.25)

for any ϕ ∈ H−1/2
div (SR) with ϕ/= 0. Furthermore,

∣∣∣∣
〈
G̃eϕ, ϕ × x̂

〉

SR

∣∣∣∣ ≥ C∥∥ϕ
∥∥2
H−1/2

div (SR)
, ∀ϕ ∈ H−1/2

div (SR),

Ge + ikG̃e : H
−1/2
div (div, SR) −→ H−1/2

div (SR)

(2.26)

is compact, where

H−1/2
div (div, SR) =

{

ϕ =
∞∑

n=1

n∑

m=−n
bn,mV

m
n |

∞∑

n=1

n∑

m=−n

1
√
1 + n(n + 1)

|bn,m|2 <∞
}

. (2.27)

In the remainder of this paper we will refer to (2.17)–(2.21) as (CBP). Here we will
adapt the variational approach used in [6, 27] to prove the existence of a unique solution to
our (CBP). Define

X =
{
u ∈ Hloc(curl, BR), uT |Γ ∈ L2

t (Γ)
}
, (2.28)
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where D ⊂ BR. Then multiplying (2.17) and (2.18) by test function φ ∈ Hloc(curl, BR), using
formally integration by parts and using the conductive boundary conditions on Γ, we can
derive the following equivalent variational formulation for (CBP). Find w ∈ X such that

∫

D

(
curlw · curlφ − k2Dw · φ

)
dx +

∫

DR

(
curlw · curlφ − k2bw · φ

)
dx − ik

∫

Γ
λwT · φTds

+ ik
∫

SR

Ge(ν ×w) · φTds = ik
∫

SR

[
Ge

(
ν × Ei

)
− ν ×Hi

]
· φTds,

(2.29)

whereHi = (1/ikb) curlEi is the incident magnetic field and

w =

{
V, x ∈ D,
E = Ei + Es, x ∈ R

3 \D. (2.30)

We rewrite (2.29) as the problem of finding w ∈ X such that

A
(
w,φ

)
= B

(
φ
)
, (2.31)

where the sesquilinear form A : X ×X → C is defined by

A
(
w,φ

)
=

(
curlw, curlφ

)
D −

(
k2Dw, φ

)

D
+
(
curlw, curlφ

)
DR

−
(
k2bw, φ

)

DR

− ik〈λwT , φT
〉
Γ + ik

〈
Ge(ν ×w), φT

〉
SR
,

B
(
φ
)
= ik

〈
Ge

(
ν × Ei

)
− ν ×Hi, φT

〉

SR
.

(2.32)

Here (·, ·)D denotes the (L2(D))3 scalar product, and 〈·, ·〉∂D denotes the (L2(∂D))3 scalar
product. We will use a Helmholtz decomposition to factor out the nullspace of the curl
operator and then to prove the existence of a unique solution to (CBP).

Define

S =
{
p ∈ H1(D) ∩H1(DR) | p = on Γ

}
, (2.33)

then we seek p ∈ S such that

A
(∇p,∇ξ) = B(∇ξ), ∀ξ ∈ S. (2.34)

The variational problem (2.34) can be rewritten as

A1
(
p, ξ

)
+A2

(
p, ξ

)
= B(∇ξ), ∀ξ ∈ S, (2.35)
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where we define

A1
(
p, ξ

)
= −

(
k2D∇p,∇ξ

)

D
−
(
k2b∇p,∇ξ

)

DR

+ k2
〈
G̃e

(
ν × ∇p),∇τ ξ

〉

SR
,

A2
(
p, ξ

)
= ik

〈
Ge + ikG̃e

(
ν × ∇p),∇τ ξ

〉

SR
.

(2.36)

Here we have used ∇τ ξ to write the tangential component of the gradient of ξ in terms
of the tangential gradient on the sphere SR. By Lemma 2.2, it follows that G̃e is negative
definite, then we obtain that A1(p, ξ) is a coercive sesquilinear form on S × S. Further by
Lax-Milgram theorem, it is easy to see that A1(p, ξ) gives rise to a bijective operator. Since
ν × ∇p ∈ H−1/2

div (div, SR), still by Lemma 2.2, we know that A2(p, ξ) gives rise to a compact
operator. In order to apply the Fredholm alternative to the variational problem (2.34), we
need to prove the following uniqueness lemma.

Lemma 2.3. The variational problem (2.34) has at most one solution.

Proof. It suffices to consider the following equation:

−
(
k2D∇p,∇ξ

)

D
−
(
k2b∇p,∇ξ

)

DR

+ ik
〈
Ge

(
ν × ∇p),∇τ ξ

〉
SR

= 0, ∀ξ ∈ S. (2.37)

Choosing ξ = p, it is easy to see that

ik
〈
Ge

(
ν × ∇p),∇τp

〉
SR

=
(
k2D∇p,∇p

)

D
+
(
k2b∇p,∇p

)

DR

. (2.38)

By the definition of the operator Ge, if Es ∈ Hloc(curl, R
3 \ B) is the weak solution of the

problem

curl curlEs − k2Es = 0, in R
3 \ B,

ν × Es = ν × ∇p, on SR,

lim
r→∞

(curlEs × x − ikrEs) = 0,

(2.39)

then we have

Ge

(
ν × ∇p) = ν ×Hs, on SR, (2.40)

where

Hs =
1
ik

curl Es. (2.41)
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Furthermore, we can compute that

∫

SR

Hs · ν × Esds = − 〈
ν ×Hs,∇τp

〉
SR

= −〈Ge(ν × ∇p),∇τp
〉
SR

= − 1
ik

(
k2D∇p,∇p

)

D
− 1
ik

(
k2b∇p,∇p

)

DR

,

(2.42)

which together with the fact ImnD ≥ 0, Imnb ≥ 0 implies

Re
∫

SR

ν × Es ·Hsds = Re
∫

SR

Hs · ν × Esds

= − 1
k

(
Im k2D∇p,∇p

)

D
− 1
k

(
Im k2b∇p,∇p

)

DR

≤ 0.

(2.43)

Therefore the Rellich lemma ensures us that Es = 0 in R
3 \B. From (2.39), we see that∇τp = 0

on SR and then (k2D∇p,∇p)D + (k2
b
∇p,∇p)DR

= 0 which, together with the fact that p|Γ = 0,
implies p = 0. This completes the proof of Lemma 2.3.

Lemma 2.3 together with the Fredholm alternative implies that there exits a unique
solution p0 ∈ S of the variational problem (2.34).

Lemma 2.4. The space

X0 = {u ∈ X | A(u,∇ξ) = 0, ∀ξ ∈ S} (2.44)

is compactly imbedded in (L2(B))3, where B is a ball with D ⊂ B ⊂ BR.

Proof. Consider a bounded set of functions {uj}∞j=1 ⊂ X0. Each function uj ∈ X0 can be
extended to all of R

3 by solving the exterior Maxwell equation

∇ × (∇ × vj
) − k2bvj = 0, in R

3 \ B,

ν × vj = ν × uj , on SR,

lim
|x|→∞

|x|((∇ × vj
) × ν − ikvj

)
= 0.

(2.45)

Define

uej =

⎧
⎪⎨

⎪⎩

uj, if x ∈ B,

vj , if x ∈ R
3 \ B.

(2.46)
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Since the tangential components of uej are continuous across SR, it follows that uej ∈
Hloc(curl,R3). By using the properties of the Calderon operator Ge and the conditions in X0,
we see that the following equations hold true

div
(
k2Du

)
= 0, in D,

div
(
k2bu

)
= 0, in DR,

k2bν · u = −ik∇τ ·Ge(ν × u), on SR.

(2.47)

Then, by the definition of Ge that Ge(ν × uj) = (1/ik)ν × curl vj and the relationship ∇τ · (ν ×
vj) = −ν · curl vj on SR, we immediately have

k2bν · uj = − ik∇τ ·Ge

(
ν × uj

)
= −∇τ ·

(
ν × curl vj

)
= ν · curl curl vj

= k2bν · vj , on SR.
(2.48)

Thus, uej has a well-defined divergence and ∇ · (k̂2uej ) = 0 in R
3 \ Γ, where

k̂2 =

{
k2D, x ∈ D,
k2
b
, x ∈ R

3 \D. (2.49)

Now we choose a cut-off function χ ∈ C∞
0 (R3) such that χ = 1 in B and χ is supported in a

ball BR1 ⊃ B. Then one can use the general compactness theorem (Theorem 4.7 in [27]) to the
sequence {χuej } and extract a subsequence converging strongly in (L2(B))3. This proves the
lemma.

From the above definitions of S and X0, we have the following Helmholtz decomposi-
tion lemma.

Lemma 2.5. The spaces ∇S and X0 are closed subspaces of X. The space X is the direct sum of the
spaces ∇S and X0, that is,

X = X0 ⊕ ∇S. (2.50)

The proof of this Helmholtz decomposition Lemma is entirely classical (see [27, 28]).
We now look for a solution of the variational problem (2.31) in the formw = w0 +∇p0,

where w0 ∈ X0 and p0 ∈ S is the unique solution of (2.34). We observe that A(w0,∇ξ) = 0 for
all ξ ∈ S by the definition of X0. Hence the problem of determiningw ∈ X is equivalent to the
problem of determining w0 ∈ X0 such that

A
(
w0, φ0

)
= B

(
φ0

) −A(∇p0, φ0
)
, ∀φ0 ∈ X0. (2.51)
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From Chapter 10.3.2 in [27] we know that for ϕ ∈ H−1/2
div (SR)

Geϕ = G1eϕ +G2eϕ, (2.52)

where the operator G1e is a compact operator from X0 into H
−1/2
div (SR) and the operator G2e

satisfies ik〈G2e(ν×ϕ), ϕT〉SR ≥ 0. We now split the sesquilinear formA(·, ·) intoA = a+bwith

a
(
w0, φ0

)
=

(
curlw0, curlφ0

)
D +

(
w0, φ0

)
D +

(
curlw0, curlφ0

)
DR

+
(
w0, φ0

)
DR

− ik〈λ(w0)T ,
(
φ0

)
T

〉
Γ + ik

〈
G2e(ν ×w0),

(
φ0

)
T

〉
SR
,

(2.53)

b
(
w0, φ0

)
= −

((
k2D + 1

)
w0, φ0

)

D
−
((
k2b + 1

)
w0, φ0

)

DR

+ ik〈G1e(ν ×w0),
(
φ0)T

〉
SR
. (2.54)

The sesquilinear form a(·, ·) is obviously bounded and a direct computation verifies that

|a(w0, w0)| � α‖w0‖2X, ∀w0 ∈ X0, (2.55)

with some constant α > 0.
Hence by Lax-Milgram theorem, a(·, ·) gives rise to a bijective operator and by the

compact embedding ofX0 in (L2(B))3 and the fact thatG1e is a compact operator fromX0 into
H−1/2

div (SR), the second term b(·, ·) gives rise to a compact operator. Then a standard argument
implies that the Fredholm alternative can be applied. Finally, the uniqueness theorem yields
the existence result. We summarize the above analysis in the following theorem.

Theorem 2.6. For any incident field Ei, there exists a unique solutionw ∈ X of (CBP) which depends
continuously on the incident field Ei.

3. Uniqueness for the Inverse Problem

In this section we will show that the scattering obstacle D and the corresponding parameter
λ are uniquely determined from the knowledge of the scattered fields Es1,x0(x, x0)|x∈∂Ω for all

x0 ∈ SR0 , where SR0 is the surface of a large ball BR0 with D ⊂ Ω ⊂ BR0 . By some properties
of the scattered fields, we can derive a relationship between them, then constructing special
singular solutions which satisfy the relationship. Finally, we can obtain the uniqueness result
by using the singularities of the singular solutions that we constructed.

Lemma 3.1. Assume that k2
b
is not an eigenvalue of Maxwell equation for the domain Ω0. Then we

have

(i) the restriction to ∂Ω0 of {ν × p(x0)G(x, x0) : x0 ∈ SR0} is complete inH−1/2
div (∂Ω0);

(ii) the restriction to ∂Ω0 of {ν × curlx p(x0)G(x, x0) − ikλp(x0)G(x, x0)T : x0 ∈ SR0} is
complete in L2

t (∂Ω0).
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Proof. For simplicity, we only prove statement (ii). Case (i) can be proved similarly.
Let g ∈ L2

t (∂Ω0) be such that

∫

∂Ω0

[
ν(x) × curlxp(x0)G(x, x0) − ikλp(x0)G(x, x0)T

] · g(x)ds(x) = 0. (3.1)

Then it follows that

∫

∂Ω0

[
curlx0

(
g(x) × ν(x))G(x, x0) − ikλg(x)G(x, x0)

]
ds(x) · p(x0) = 0. (3.2)

Define

F∗
1(x0) =

∫

∂Ω0

curlx0
(
g(x) × ν(x))G(x, x0)ds(x), (3.3)

F∗
2(x0) = −

∫

∂Ω0

ikλg(x)G(x, x0)ds(x), (3.4)

F∗(x0) = F∗
1(x0) + F

∗
2(x0). (3.5)

By (3.2), it is easy to see that for arbitrary polarization p(x0) in the tangential plane to SR0 at
x0, we have

F∗(x0) · p(x0) = 0, ∀x0 ∈ SR0 . (3.6)

From the definition of (3.3), we immediately have

curlx0curlx0F
∗
1(x0) − k2bF∗

1(x0) = 0, ∀x0 ∈ R
3 \ ∂Ω0. (3.7)

Due to the symmetry of the background Green function, F∗
2(x0) as a function of x0 solves

curlx0curlx0F
∗
2(x0) − k2

b
F∗
2(x0) = 0,∀x0 ∈ R

3 \ ∂Ω0. Hence, F∗(x0) satisfies the Maxwell’s
equation in R

3 \ ∂Ω0. By (3.6) and the fact that p(x0) is an arbitrary polarization in the
tangential plane to SR0 at x0, we immediately have that ν × F∗(x0)|SR0 = 0.

The uniqueness of the exterior problem

curlx0curlx0F
∗(x0) − k2bF∗(x0) = 0, in R

3 \ BR0 ,

ν × F∗(x0) = 0, on SR0 ,

lim
|x0|→∞

|x0|(curlx0 F∗(x0) × ν(x0) − ikF∗(x0)) = 0

(3.8)

implies that F∗(x0) = 0 in R
3 \ BR0 . Thus, the unique continuation principle ensures us that

F∗(x0) = 0 inΩe
0 = R

3\Ω0. By trace theorem, it follows that ν×F∗(x0) = 0 and ν×curlx0F∗(x0) =
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0 on ∂Ω0. By the definition of F∗(x0) and the jump relations of the vector potential across ∂Ω0,
it can be checked that F∗(x0) satisfies the following equations:

curlx0curlx0F
∗(x0) − k2bF∗(x0) = 0, in Ω0,

ν × curlx0F
∗(x0) − ikλν × F∗(x0) = 0, on ∂Ω0.

(3.9)

Therefore, the uniqueness theorem of the interior problem for Maxwell’s equations implies
that F∗(x0) = 0 in Ω0. Finally, from the jump relations of the vector potential across ∂Ω0, we
have

0 = [ν × F∗(x0) × ν|∂Ω0
= −g(x0), (3.10)

which completes the proof.

We now consider two obstaclesD1 andD2 with the refractive index nDj and the surface
impedance λj , j = 1, 2. Let U denote the unbounded part of R

3 \ (D1 ∪D2) and D0 = R
3 \U

its open complement. From the proof of Theorem 2.6, it follows that the total fieldwj, j = 1, 2
satisfies

(
curlwj, curlφ

)
BR

−
(
k2j∗wj, φ

)

BR
− ik〈λjwjT , φT

〉
Γj
= −〈ν × curlwj, φ

〉
SR
, (3.11)

for any large ball BR with D ⊂ BR and all test function φ ∈ X̃, where

k2j∗ =

{
k2Dj

, x ∈ Dj ;

k2b, x ∈ R
3 \Dj.

(3.12)

It is convenient to introduce the following space:

Xj =
{
E ∈ H(curl, BR), ET |Γj ∈ L2

t

(
Γj

)}
, j = 1, 2, (3.13)

where Dj ⊂ BR. The relationship derived in the following lemma plays a central role in the
proof of the main result in this section.

Lemma 3.2. Assume that k2
b
is not an eigenvalue of Maxwell equation in Ω. Let BR ⊂ R

3 be a ball
withD0 ⊂ Ω ⊂ BR. Let Es1,x0(x, x0) and Es2,x0(x, x0) be the scattered fields with respect toD1 andD2,
respectively, produced by the same incident field pG(·, x0). Assume that ν ×Es1,x0 |∂Ω = ν ×Es2,x0 |∂Ω for
all x0 ∈ SR0 with the radius R0 > R for a fixed wave number k. Then we have

k2
(
(nD1 − nb)V1, V 2

)

D1
+ ik

〈
λ1(V1)T ,

(
V 2

)

T

〉

Γ1

= k2
(
(nD2 − nb)V1, V 2

)

D2
+ ik

〈
λ2(V1)T ,

(
V 2

)

T

〉

Γ2
.

(3.14)
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Here Vj ∈ X1 ∩X2 satisfies the following variational problem:

(
aj curlVj, curlV

)
BR

− (
κjVj , V

)
BR

− ik
〈
λ̃j

(
Vj

)
T
, VT

〉

Γj
= 0, (3.15)

for all V ∈ H0(curl, BR), where the coefficients aj , κj ∈ L∞(BR) and λ̃j ∈ L∞(Γj) satisfy that aj |D0
=

1, κj |D0
= (k2j∗)|D0

and λ̃j |Γj∩D0
= λj |Γj , j = 1, 2.

Proof. (i) We first prove that for any fixed z ∈ U, the scattered fields Es1,z(x, z) = Es2,z(x, z),
where (Vj,z, Esj,z), j = 1, 2 is the solution of the following problem:

curl curlV − k2Dj
V = 0, in Dj,

curl curlEs − k2bEs = 0, in R
3 \Dj,

ν × (V − Es) = f, on Γj ,

ν × curl(V − Es) = −ikλjEsT + r + h, on Γj ,

(3.16)

with the incident field Ei = pG(·, z) and f = ν ×Ei, h = ν × curlEi, r = −ikλjEiT . By Lemma 3.1
and the fact that k2b is not an eigenvalue of Maxwell equation in Ω, it follows that there exists
a sequence an ∈ R and x(n)

0 ∈ SR0 such that

∥∥∥∥∥
ν × pG(·, z) −

∑

n

anν × pG
(
·, x(n)

0

)
∥∥∥∥∥
H−1/2

div (∂Ω)

< ε, ∀ε > 0. (3.17)

Let E(x) = pG(·, z)−∑
n anpG(·, x(n)

0 ), then it satisfies theMaxwell equation curl curlE−k2
b
E =

0 in Ω \ {z}. Let f = (ν × E)|∂Ω, then the well posedness of the problem

curl curlE − k2bE = 0, in Ω \ {z},
ν × E = f, on ∂Ω

(3.18)

and (3.17) imply that

‖E‖H(curl,Ω) ≤ C1‖ν × E‖H−1/2
div (∂Ω) < C1ε, ∀ε > 0. (3.19)

This, together with the fact that divE = 0, implies (see [28])

‖E‖H1(Ω) ≤ C2

(
‖E‖H(curl,Ω) + ‖E‖H(div,Ω) + ‖ν × E‖H−1/2

div (∂Ω)

)
≤ C2ε, ∀ε > 0. (3.20)
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Then by (3.19), (3.20), and the trace theorem, it can be proved that

‖ν × E‖H−1/2
div (Γj ) + ‖ν × curlE‖L2

t (Γj )
+
∥
∥ν × curlE − ikλjET

∥
∥
L2
t (Γj )

≤ C3

(
‖E‖H(curl,Dj ) + ‖ET‖L2

t (Γj )

)
≤ C4

(
‖E‖H(curl,Dj ) + ‖E‖H1(Dj )

)

≤ C5

(
‖E‖H(curl,Ω) + ‖E‖H1(Ω)

)
≤ C5ε, j = 1, 2, ∀ε > 0.

(3.21)

Denote by Ẽs1 and Ẽs2 the scattered fields with respect to D1 and D2 produced by the same
incident field

∑
n anpG(·, x(n)

0 ). By the assumption ν×Es1,x0 |∂Ω = ν×Es2,x0 |∂Ω for all x0 ∈ SR0 , it is

easy to see that ν×Ẽs1|∂Ω = ν×Ẽs2|∂Ω. Then by the uniqueness theorem of the exterior scattering
problem, it follows that Ẽs1 = Ẽs2 in R

3 \ Ω, which together with the unique continuation
principle ensures that Ẽs1 = Ẽs2 in U. Now, by (3.21) and the well posedness of the direct
problem (2.18), it can be checked that for any compact set K ⊂⊂ U, we have

∥∥∥Es1,z(x, z) − Ẽs1(x)
∥∥∥
H(curl,K)

< ε, ∀ε > 0,

∥∥∥Es1,z(x, z) − Ẽs2(x)
∥∥∥
H(curl,K)

< ε, ∀ε > 0,
(3.22)

for any fixed z ∈ K.
Therefore, the fact Ẽs1 = Ẽ

s
2 inU ensures us that

∥∥∥Es1,z(x, z) − Es2,z(x, z)
∥∥∥
H(curl,K)

< ε, ∀ε > 0. (3.23)

The arbitrarity of ε implies that Es1,z(x, z) = E
s
2,z(x, z) for any fixed z ∈ K.

(ii) Next we will show that the identity (3.14) holds. Set w∗ = w2 −w1, then it follows
from (3.11) that

(curlw∗, curlV )BR −
(
k22∗w

∗, V
)

BR
− ik〈λ2w∗

T , VT
〉
Γ2

= −
((
k21∗ − k22∗

)
w1, V

)

BR
− ik〈λ1(w1)T , VT〉Γ1 + ik〈λ2(w1)T , VT〉Γ2

(3.24)

for all V ∈ X∗ = {V ∈ X1∩X2, VT |SR = 0}. Choose two domainsΩ1,Ω2 ⊂ BR withD0 ⊂ Ω1 ⊂ Ω2

and define a smooth function ψ ∈ C∞(R3) with ψ = 1 in Ω1 and ψ = 0 in R
3 \Ω2. Let a2 = ψ,

κ2 = ψk22∗, λ̃2 = λ2, it is easy to see that a2, κ2, λ̃2 satisfy the assumptions of the lemma.
We further assume V2 satisfies (3.15) with respect to a2 = ψ, κ2 = ψk22∗, λ̃2 = λ2, so that
substituting V = ψV2 into the left hand of (3.24) and noting that w∗ = 0 inU yield that

(
curlw∗, curl

(
ψV2

))

BR
−
(
k22∗w

∗, ψV2

)

BR
− ik

〈
λ2w

∗
T , ψ(V2)T

〉

Γ2

= −(a2 curlV2, curlw
∗)

BR
− (

κ2V2, w
∗)

BR
− ik

〈
λ̃2V2T ,w

∗
T

〉

Γ2
= 0.

(3.25)
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Hence substituting V = ψV2 into (3.24), it follows from the right hand of (3.24) that

−
((
k21∗ − k22∗

)
w1, V 2

)

BR
− ik

〈
λ1(w1)T ,

(
V 2

)

T

〉

Γ1
+ ik

〈
λ2(w1)T ,

(
V 2

)

T

〉

Γ2
= 0. (3.26)

We define f ∈ X1 by

(
f, φ

)
X1

= −
((
k21∗ − k22∗

)
V2, φ

)

BR
− ik〈λ1(V2)T , φT

〉
Γ1
+ ik

〈
λ2(V2)T , φT

〉
Γ2
, (3.27)

for all φ ∈ X1. By Theorem 2.6, it follows that there exists a unique solution w0 ∈ X1 of the
problem

(
curlw0, curlφ

)
BR

−
(
k21∗w0, φ

)

BR
− ik〈λ1(w0)T , φT

〉
Γ1
+ ik

〈
Ge(ν ×w0), φT

〉
SR

=
(
f, φ

)
X1
,

(3.28)

for all φ ∈ X1. Choose two domains Ωe, Ωi ⊆ BR with Ω ⊆ Ωe, D0 ⊂ Ωi ⊂ Ω and define
smooth functions ψe, ψi ∈ C∞(R3) with ψe = 1, x ∈ Ω, ψe = 0, x ∈ R

3 \ Ωe and ψi = 1, x ∈
Ωi, ψi = 0, x ∈ R

3 \Ω. Take j = 1, φ = ψew0 in (3.11), it is seen that

(
curlw1, curl

(
ψew0

))
BR

−
(
k21∗w1, ψew0

)

BR
− ik〈λ1(w1)T , (w0)T〉Γ1 = 0. (3.29)

Equation (3.28) with φ replaced by ψiw1 yields

(
curlw0, curl

(
ψiw1

))
BR

−
(
k21∗w0, ψiw1

)

BR
− ik〈λ1(w0)T , (w1)T〉Γ1 =

(
f, ψiw1

)
X1
. (3.30)

By (3.26) and (3.27), it can be shown that

(
f, ψiw1

)
X1

= −
((
k21∗ − k22∗

)
V2, w1

)

BR
− ik〈λ1(V2)T , (w1)T〉Γ1

+ ik〈λ2(V2)T , (w1)T〉Γ2 = 0.
(3.31)

Taking the difference of (3.29) and (3.30), we have that

0 =
∫

Ω\Ωi

curlw0 · curl
(
ψiw1 −w1

) − k2bw0 ·
(
ψiw1 −w1

)
dx

−
∫

Ωe\Ω
curl

(
ψew0

) · curl w1 − k2b
(
ψew0

) ·w1dx.

(3.32)

By (3.28), we can deduce that w0 is a radiating solution of the corresponding Maxwell’s
equations in BR, then it can be extended to all of R

3 denoted by we
0 by solving the exterior
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Maxwell’s equation in R
3 \ BR with ν × we

0 = ν × w0 on SR, which also satisfies the Silver-
Müler radiation condition at infinity. By applying the vector Green formula to (3.32), it can
be proved that

0 =
∫

∂Ω

[
w1 ·

(
ν × curlwe

0

) −we
0 · (ν × curlw1)

]
ds. (3.33)

In view of the fact w1 = E1 = Es1 + E
i and Ei = pG(·, x0) in R

3 \D1, we immediately have

0 =
∫

∂Ω
Es1 ·

(
ν × curlwe

0

) −we
0 ·

(
ν × curlEs1

)
ds

+
∫

∂Ω

[(
ν × curlwe

0

) · pG(·, x0) −we
0 ·

(
ν × curl

(
pG(·, x0)

))]
ds.

(3.34)

Application of the vector Green formula again and noting that both Es1 and the extended
function we

0 satisfy the Silver-Müler radiation condition, it follows that

∫

∂Ω
Es1 ·

(
ν × curlwe

0

) −we
0 ·

(
ν × curlEs1

)
ds

=
∫

SR

Es1 ·
(
ν × curlwe

0

) −we
0 ·

(
ν × curlEs1

)
ds = 0.

(3.35)

Hence the Stratton-Chu formula combines with (3.34) implies that

0 = p(x0) ·we
0(x0), ∀x0 ∈ SR0 , ∀p(x0) ∈ R

3. (3.36)

Since p(x0) is an arbitrary polarization in the tangential plane to SR0 at x0, we obtain that
ν×we

0(x0)|SR0 = 0. By the fact thatwe
0 is a radiating solution of Maxwell’s equation in R

3 \BR0 ,
it follows thatwe

0 = 0 in R
3 \BR0 . Hence the unique continuation principle implies thatwe

0 = 0
in R

3 \ U. Therefore, we
0 can be used as a test function for V1, which satisfies (3.15) with

a1 = ψi, κ1 = ψik21∗, λ̃1 = λ1. So that from the left hand of (3.30), we deduce that

(
curlwe

0 , curl
(
ψiV1

))

BR
−
(
k21∗w

e
0 , ψiV1

)

BR
− ik

〈
λ1

(
we

0

)
T ,

(
V 1

)

T

〉

Γ1

=
(
a1 curlV1, curlw

e
0
)
BR

− (
κ1V1, w

e
0
)
BR

− ik
〈
λ̃1(V1)T ,

(
we

0
)
T

〉

Γ1
= 0.

(3.37)

Thus, it follows from the right hand of (3.30) that (f, ψiV1)X1
= 0. Furthermore, from (3.27)

with φ replaced by ψiV1, it can be shown that

−
((
k21∗ − k22∗

)
V2, V1

)

BR
− ik〈〈λ1(V1)T , (V2)T〉Γ1 + ik〈λ2(V2)T , (V1)T〉Γ2 = 0. (3.38)



18 Abstract and Applied Analysis

From the definitions of k2j∗, we observe that

k21∗ − k22∗ =

⎧
⎪⎪⎨

⎪⎪⎩

k2nD1 − k2nb, x ∈ D1,

k2nD2 − k2nb, x ∈ D2,

0, x ∈ BR \
(
D1 ∪D2

)
,

(3.39)

which combines (3.38), the definition of the scalar product (·, ·)D, and the fact that
((k21∗ − k22∗)V2, V1)BR = k2((nD1 − nb)V2, V1)D1

−k2((nD2 − nb)V2, V1)D2
implies that (3.14) holds.

This ends the proof of this lemma.

The main result of this section is contained in the following theorem.

Theorem 3.3. Let Es1 and E
s
2 be the scattered fields with respect toD1 andD2, respectively, and λ1, λ2

the corresponding impedances. Suppose that the assumptions in Lemma 3.2 hold true and Γj∩(Di\Dj)
is not empty for i, j = 1, 2, i /= j. If one of the following assumptions holds, then we have D1 = D2.
Consider

(i) Reλj ≥ δ > 0;

(ii) Imλj ≥ δ > 0 or Imλj ≤ −δ < 0.

Proof. Let us assume that D1 is not included in D2. Since De
2 = R

3 \ D2 is connected, we can
find a point z ∈ Γ1 \D2 and a sufficiently small ε > 0 with the following properties:

(i) B2ε(z) ∩D2 = ∅;

(ii) the points zn = z + (ε/n)ν(z) lie in B2ε(z) for all n ∈ N, where ν(z) is the unit
normal to Γ1 at z.

DenoteD = (D1 \D2)
o, the inner part of the domainD1 \D2. We consider the unique solution

of the following problem:

curl curlV − k2DV = 0, in D,

curl curlEs − k2bEs = 0, in R
3 \D,

ν × (Es − V ) = −ν × Em(·, zn), on ∂D,

ν × curl(Es − V ) = ikλ1
(
EsT + Em(·, zn)

) − ν × curlEm(·, zn), on Γ1 ∩ ∂D.

(3.40)

Here Es satisfies the Silver-Müler radiation condition at infinity, and Em denotes the magnetic
dipole defined by

Em(x, zn) = curlx

(

ν(z)
eikb |x−zn|

|x − zn|

)

. (3.41)
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Define

F1(x, zn) =

⎧
⎨

⎩

V (x), if x ∈ D,
Es(x) + Em(x, zn), if x ∈ R

3 \
(
D ∪ zn

)
.

(3.42)

It can be proved that F1(x, zn) is a solution of Maxwell’s equations with homogeneous con-
ductive boundary value conditions on ∂D in any domain Ω ⊂ R

3 with D0 ⊂ Ω and zn /⊆Ω.
Define

κ1(x) =

⎧
⎨

⎩
k21∗(x) if x ∈ R

3 \
(
D1 \D

)
,

k2b if x ∈ D1 \D,
(3.43)

and λ̃1(x) = λ1.
In view of the above definitions of κ1(x) and λ̃1(x), it follows that F1(x, zn) satisfies the

variational equation (3.15) in Lemma 3.2 for the obstacle D. The well posedness of the direct
problem for (CBP) and the fact that zn is bounded away from ∂D imply that the solution
(V, Es) of (3.40) is uniformly bounded in X̃. We now define another singular solution with
respect to D2 by

F2(x, zn) =

⎧
⎨

⎩

Ṽ (x), if x ∈ D2,

Ẽs(x) + Em(x, zn), if x ∈ R
3 \

(
D2 ∪ zn

)
,

(3.44)

where Em is a magnetic dipole defined in (3.41), and (Ṽ , Ẽs) is a solution of the problem

curl curl Ṽ − k2D2
Ṽ = 0, in D2,

curl curl Ẽs − k2bẼs = 0, in R
3 \

(
D2 ∪ zn

)
,

ν ×
(
Ẽs − Ṽ

)
= −ν × Em(·, zn), on ∂D,

ν × curl
(
Ẽs − Ṽ

)
= ikλ2

(
ẼsT + (Em(·, zn))T

)
− ν × curlEm(·, zn), on Γ2.

(3.45)

Here Ẽs satisfies the Silver-Müler radiation condition at infinity. Noting that F2(x, zn) satisfies
the variational equation (3.15) in Lemma 3.2 with κ2(x) = k22∗ and λ̃2 = λ2, it follows that both
F1(x, zn) and F2(x, zn) satisfy the relationship (3.14), then we obtain

k2
(
(nD − nb)F1, F2

)

D
+ ik

〈
λ1(F1)T ,

(
F2

)

T

〉

∂D

= k2
(
(nD2 − nb)F1, F2

)

D2
+ ik

〈
λ2(F2)T ,

(
F1

)

T

〉

Γ2
.

(3.46)

For case (i), by the fact that z ∈ Γ1\D2 and the singularities of the magnetic dipole Em defined
in (3.41), it can be proved that |k2((nD − nb)F1, F2)D + ik〈λ1(F1)T , (F2)T〉∂D| → ∞ as n → ∞,
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this, together with the fact that the other terms in the right hand of (3.46) are bounded, leads
to a contradiction. Hence we have D1 ⊂ D2. By choosing z ∈ Γ2 \ D1 and using the similar
analysis as in the proof above, one can prove that D2 ⊂ D1. Finally, we obtain that D1 = D2.
For other cases, due to the singularities of Fj (j = 1, 2), a contradiction also arises in (3.46) as
n → ∞. This proves the theorem.

Theorem 3.4. Assume D1 = D2 with parameters λj ∈ C(∂Dj) and the scattered fields Esj,x0 , (j =
1, 2) satisfy ν × Es1,x0 |∂Ω = ν × Es2,x0 |∂Ω for all x0 ∈ SR0 , then we have λ1 = λ2 on ∂D.

Proof. From the proof of Theorem 3.3, it follows that there exists two singular solutions F1, F2

of the conductive boundary problem with respect to the obstacle D for some z ∈ ∂D. By
Lemma 3.2 and the identity D1 = D2, it can be checked that

∫

D

(
k21∗ − k22∗

)
F1(x, zn) · F2(x, zn)dx + ik

∫

∂D

(λ1 − λ2)F1(x, zn) · F2(x, zn)ds(x) = 0. (3.47)

The singularities of F1, F2 ensure that λ1 = λ2. This completes the proof of the theorem.
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