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We establish the local well-posedness for the viscous two-component Camassa-Holm system.

Moreover, applying the energy identity, we obtain a global existence result for the system with
(uo,m0) € H'(R) x L*(R).

1. Introduction

We are interested in the global well-pose dness of the initial value problem associated to the
viscous version of the two-component Camassa-Holm shallow water system [1-3], namely,

my + umy + 2u,m — Ay + pp, =0, t>0, x€R,
M=U—-Uy, >0, x€R, (1.1)

pir+ (up) =0, t>0, xeR,

where the variable u(t, x) represents the horizontal velocity of the fluid or the radial stretch
related to a prestressed state, and p(t,x) is related to the free surface elevation from
equilibrium or scalar density with the boundary assumptions, u — 0Oand p — 1as |x| — co.
The parameter A > 0 characterizes a linear underlying shear flow, so that (1.1) models wave-
current interactions [4-6]. All of those are measured in dimensionless units.
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Setp(x) := (1/2)e™™, x € R. Then (1 - afc)*lf =px f forall f € L?(R), where * denotes
the spatial convolution. Let 77 = p—1, (1.1) can be rewritten as a quasilinear nonlocal evolution
system of the type

-1 1 1
ut+uux=—6x<1—8§> <u2+§ui—Au+§q2+q>, t>0, x€eR, 12)

M+ Uty + My +u, =0, t>0, xR

The system (1.1) without vorticity, that is, A = 0, was also rigorously justified
by Constantin and Ivanov [1] to approximate the governing equations for shallow water
waves. The multipeakon solutions of the same system have been constructed by Popivanov
and Slavova [7], and the corresponding integral surface is partially ruled. Chen et al. [8]
established a reciprocal transformation between the two-component Camassa-Holm system
and the first negative flow of AKNS hierarchy. More recently, Holm et al. [9] proposed
a modified two-component Camassa-Holm system which possesses singular solutions in
component p. Mathematical properties of (1.1) with A = 0 have been also studied further
in many works. For example, Escher et al. [10] investigated local well-posedness for the
two-component Camassa-Holm system with initial data (ug,po) € H® x H*™! with s > 2
and derived some precise blow-up scenarios for strong solutions to the system. Constantin
and Ivanov [1] provided some conditions of wave breaking and small global solutions. Gui
and Liu [11] recently obtained results of local well-posedness in the Besov spaces and wave
breaking for certain initial profiles. More recently, Gui and Liu [12] studied global existence
and wave-breaking criteria for the system (1.2) with initial data (ug, po — 1) € H® x H*! with
s> (3/2).

In this paper, we consider the global well-posedness of the viscous two-component
Camassa-Holm system

-1 1 1
U + ULy — Uy =—6x<1—8§> <u2+§ui—Au+ 5112+11>, t>0, xeR,
M+ uty +Quy +u, =0, t>0, xR, (1.3)
u(0,x) =up(x), x€R,

7’[(0, x) = Tl()(X), x eR.

The goal of the present paper is to study global existence of solutions for (1.3) to better
understand the properties of the two-component Camassa-Holm system (1.2). We state the
main result as follows.

Theorem 1.1. For (ug,10) € H'(R) x L?(R), there exists a unique global solution (u,n) of (1.3)
such that

u(t,x) € c([o,oo),-Lg(R)) N c((o,oo);H;(R)>,
(1.4)
n(t,x) € C([0,00); LA(R) ).
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To proof Theorem 1.1, we will first establish global well-posedness of the following
regularized two-component system with ¢ > 0 given:

-1 1 1
ut+uux—uxx:—6x<1—6§> <u2+§u§—Au+ §q2+11>, t>0, xeR,

Mt — ENxx T UNx + QU + U, =0, t>0, x€R, (1.5)
u(O/x) = uo(X), X € Rr

17(0,x) =no(x), x€R,
that is,

My — My + UMy +2Uxm — AUy + N1 + 1, =0, t>0, x €R,

Mt — ENxx + Uy + Uy + U, =0, t>0, x €R,

(1.6)
M=U—-Uy, >0, xeER,
u(0x) =uo(x), 10 x)=mo(x), xeR.
Due to the Duhamel’s principle, we can also rewrite (1.6) as an integral equation
2 t 2
u(t, x) = e'%ug + f e=0% f (u,d,u,n)dr,
° (17)

¢
n(t,x) = egtaino + f ef(t‘T)aig(u, Oy, 1, 0x1)dT,
0
where g(u, 0xu, 1], 0x1]) = —UOx1 — OxU — OxU,
£(u,0,1,1) = -0 (1 - az>'1 <u2 + 20w - Au+ 1;12 + q) _L <u2> (1.8)
7YXy X X 2 X 2 2 X 7

ey = (e (), ey = (6‘4”2“‘5715(@))\/, here and in what follows, we denote the
Fourier (or inverse Fourier) transform of a function f by f (or fY).

The remainder of the paper is organized as follows. In Section 2, we will set up
and introduce some estimates for the nonlinear part of (1.5). In Section 3, we will get
the local well-posedness of (1.3) by constructing the global well-posedness of (1.5) using
the contraction argument and energy identity. The last section is devoted to the proof of
Theorem 1.1.

2. Preliminaries

We will list some lemmas needed in Section 3. First, we state the following lemma which
consists of the crucial inequality involving the operator 0, (1 — ag)‘l.
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Lemma 2.1 (see [13]). For g,h € L*(R),

0.(1-3) " (sh)

<cllg

. 2llklizz, (2.1)

or more generally

0. (1-22) " (gh)

< CIIglngllhlng, (22)
L3

forall s <3/2.
The next two lemmas are regarding the nonlinear part of (1.5).

Lemma 2.2. Consider the following:

¢
HI e(t_T)aif(u, Oxu, 1) (7, x)dT
0

Lflx (2.3)

< C( Ml 2 + 102l 1 + il e + T2 (Ntllzziz + Nl 3.2) )

t
HJ 0 % g (u, 0y, 1, 8,) (7, x)dr

LfLy (2.4)

2 2 1/2
< C<“axu||L%.L§ + ||6x11||L%L§ +TY ||axu||L%L§>

Proof. Let us prove (2.3) firstly. Thanks to Lemma 2.1, the Sobolev embedding theorem
HL(R) — L¥(R), and the Holder’s inequality, we have

¢
'U e(t‘T)aif(u, Oxu, 1) (T, x)dT
0

L¥IZ

¢
< sup I ”e(t‘T)aif(u,axu,q) (T, x)
1Jo

,ar
te[0,T Ly

(2.5)

L 1 (T ) T 1 (T 2
sf ||u||L2dt+—f ||axu||det+Af ||u||det+—f ll7ll7 4t
0 2 2 0 2 0 x 2 0 x

T T
[l [ dsalsat,
0 0
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which yields that

¢
HJ e(t_T)anff(u, Oxu, 1) (T, x)dT
0

1212

T 1 (T T 1/2 1 (T X
gf ||u||§2dt+-f |0xull?. dt + AT'/? f |[ull?, dt +-J' |7l 4t
0 * 2Jo * 0 * 2Jo *

T vz
+T1/2<f ||n||iidt> +f 2]l 2 1Bl 2 At
0 0
< C(luliz s + 10etliz s + nllEzie + T2 (s + lizez) )

Similarly, we can get

¢
HJ‘ eg(t*T)aig(u, Oxut, 1,0x1) (T, x)dT
0

LPI2

t
a2
< sup ee(t T)0%

te[0,T] Y 0

g (1, 01, 1,0,17) (fo)||L§ dr

T T T
sf ||uaxq||L§dt+f ||naxu||L§dt+J‘ |01l 2 At
0 0 0

T
sf e
0

T T 1/2
dx1] Lidt+f ||11||L;o||axu||L;dt+T”2<f ||axu||iidt> :
0 0

and then

t
HJ‘ e D% o (u,0,u,17,0,1) (7, x) dr
0

T
< f il
0

T
< f .
0

LPL2

T T 172
0x1] Lidt’Lj ||11||H}C||axu||L§dt+T1/2<I ||6xu||i§dt>
0 0

T T 1/2
6xq||L§dt+f ||ax71||Lg||axu||L5dt+T1/2<f ||6xu||i§dt>
0 0

T T T 1/2
ng ||axu||i§dt+2J- ||axn||i§dt+T1/2<I ||axu||i§dt> ,
0 0 0

which implies (2.4).

(2.6)

(2.7)

(2.8)
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Lemma 2.3. Consider the following:

¢
Hj e(t*T)aif(u, Oxu, 1) (7, x)dT
0

L7L: (2.9)

< T (el + 00ty 3 + il + T (lizis + liziz)).

¢
HI eE(t_T)aig(u, Ox1t, 1,0x1) (T, x)dT
0

1312 (2.10)

1/2 2 2 1/2
< CT2 (sl + a7z 2 + T2 10x1ul212 )

Proof. We mainly prove (2.9). For this, we have that

1/2
t T t B
f e(t‘T)aif(u, Oxu, 1) (T, x)dr < f f f e(t‘T)aif(T, x)dr ) dx|| dt

0 L%Li 0 R 0 L

t 2

<TV? f e(t’T)BXf(T,x)dT
0 LPI?
(2.11)
Therefore, applying Lemma 2.2, we can easily obtain (2.9).

Similarly, we can also obtain (2.10). O

Let us state the following lemma, which was obtained in [13] (up to a slight modifica-
tion).

Lemma 2.4. For any ug € H'(R) and 6 > 0, there exists Ty = Ty (1) > 0 such that

Tl 1/2
- |a ety |2d dt) <6 212
252 x 0 X =~ U. ( . )
LTLX 0 R

For any 7o € L*(R), € >0, and 6 > 0, there exists T, = T> (1o, €) > 0 such that

T,
L3L% f 0 j R

2
d.e'%u,

2
H axeetax 1o

£to? 2 v
dre xq0| dxdt) <é. (2.13)
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Next, we consider the nonlinear part of (1.7). When written as v = u — et% Uy, p =
1 — e'%1, then we have
6tv = aiv + f(u, axu/ 71)/
Oup = €02t + g (u, 051,17, 0517),
(2.14)
v(x,0) =0,
u(x,0) =0,
that is,
t 2
v(x,t) = f e(f*T)axf(u, Oxu, 1) (T, x)dr,
0
(2.15)
t
p(x, ) = f % g (u, 01,77, 8,1) (7, X)dT.
0
First, we have the following basic estimates.
Lemma 2.5. Consider the following:
2
Il < C(”””im +10xullys 2 + (Il 2 + T1/2<||”||L§Li + ||71||L¢L§>>f (2.16)
2 2
||8||L1TL5 < C(“”“ierg + ||axu||i%L§ + ||77||L§L§ + ”aﬂl”L%Lg + T1/2||6xu||L2TL§>~ (2.17)
Proof. First, let us prove (2.16),
_ It 2 N\, 1 2 1,
iz = 304 +00(1-02)" (s + @07~ Au o) |
! -1 1 ) 1
< fo Eax(uZ) + Oy <1 - 6§> <u2 + E(axu) - Au+ 5112 + 11) Lidt
1 (T 1 T
< EI 0.(1-32) (3w dt+f 0:(1-3)7 ()| at (2.18)
0 L2 0 X

dt
L3

0.(1- af)‘1 (Au)

T
+-]‘
0

T T
+ f [[u0ull 2 dt + f
0 0

dt+ %JT ax(1 - agc)‘l <n2>
12 0

o.(1-22) " (n)

dt,
Ly
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which implies
1 T ) T ) T T
7l < 5 [ V0wulzae+ [ttt il iosutizde = A [ ulza

1 T
w3l

then we can get that

. (2.19)
s [ il

1 T ) T ) T
iy <5 [ N0zt [ e+ | gl
0 0 0

1 (T T 1/2 T 1/2 2.20)
S ([la)eare([Cga) @

< (Ul gz + 10wl s + il e + T2 (lodlizez + 1l 21z )

where we applied Lemma 2.1, Sobolev embedding theorem HL(R) — L¥(R), and Holder’s
inequality. This proves (2.16).
Next, we prove (2.17),

181l 2 2= l|-u0xm = ndte = Bt 112

T
< f ||240x7 + 701 + axu”Lidt
0

T T T (2.21)
<[ vl [ ol s [ poza

T
sj il
0

T T
ol + [l Vol | fosulzet

which yields that

T T
et + [ Wallglosulpde+ [ jo,ul e
0 0

T
Itz < | Tl loon

T T T ) T ) T
sc<fuwém+fn@wgm+f”mmm+f”@ﬂwm+fn¢mmm>
0 0 0 0 0

< C(”””im +l10xull}s ; + ||’1||i;L§ + ||5x’1||i;L§ + Tl/zllaxullL;L§>,
(2.22)

and this ends the proof of (2.17). O
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Then we have some estimates for 0,v and O,p.

Lemma 2.6. Consider the following:

2 2 2 1/2
1:0llz iz < C(IulFs s + sttty s + iz e + T2 (tllizez + nllizz) )

[[0xpl 22 < CE_UZ(”””ing + ||ax”||i§L§ + ||’1||i;L§ + ||ax’1||im + Tl/zllaxullL¢L§> :

Proof. We mainly prove (2.24). We have that

t
”””L;?Li = ”fo e UM% g(u,0,u,1,0.1) (1, x)dT

T
<[ 1e
0

LPL2

Lidt = ”g”LlTLi'

(2.23)

(2.24)

(2.25)

Multiply p to the second equation of (2.14) and integrate with respect to x over R.

After integration by parts, we have
d [12 2 _
¥ J‘R ?dx + SIR (Oxp) "dx = J‘R ugdx,
| wMdx-=| p0)dx+e (Oxp) " dxdt = pugdx dt,
2 ) 2 ) 0JR 0JR
for any € > 0, which implies

T T
EJ‘ f (ax‘u)dedtsf J‘ pugdx dt,
0 Jr 0 Jr

2 1 ("
losplz < % | s s

1
Lﬁdt < E”#“L‘;’Lﬁ g”LlTLi'

By (2.25), together with (2.27), we have that

1
l0xmllizrz < 7z I8 Moy -

By Lemma 2.5, (2.24) follows.
Similarly, we can also obtain (2.23).

(2.26)

(2.27)

(2.28)



10 Abstract and Applied Analysis

3. Local Well-Posedness

t0;

— (U — (€ g‘HO
Letz:=(3), A(z) := <esfa§qo>’

t
f e(t‘T)aif(u, Oxu, 1) (7, x)dr
0

B(Z) = ¢ ’
e 1% g (1, 8,u, 17, 01 (T, x)dT
0 3.1)
Dy = C([0,T);L2R)) nC((0,T); HAR)), Dy :=C([0,T);I2(R)),
Xg = {Z € D1 x Dy : [2] = |z = A(2)lerz + 1022 12p2 + 12ll1212 < a},
and define the mapping @ : XI — XI by
D(z) = A(z) + B(z). (3.2)

Theorem 3.1. Forany € > 0, there exist T = T, > 0 and a > 0 such that CD(XHT) C Xg. In addition,
@ : XTI — X7 is a contraction mapping.

Proof. We first need to show that the map is well defined for some appropriate a and T. Let
z € X7, then we have

[@z] = ||®z - A(Z)”Lg?Li + ||(DZ||L§L§ + ||ax(q)z)||L§L§' (3.3)

Considering the terms in (3.3) one by one, from Lemma 2.2, the first term in (3.3) can
be estimated as follows:

¢
j e(t‘T)aif(u, dxu, 1) (1, x)dr

Dz - A(Z)”L;PLi = ” o

LPL2

t
+ feE(H)aig(u,axu,n,éxn)(r,x)d’r
0

Lk (3.4)
< C(llulfs s + sl + 11l 7z + 10271l 2.2)
+CT2 (llulz iz + 10tz + 1l 3 2)

< C[z]* + CT"?[z].
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From Lemma 2.3, the second term in (3.3) can be estimated as follows:

¢
1Dz]l212 = ey + J. e(t*T)aif(u, Oxu, 1) (1, x)dr
0

213

t
+ egtaiqo + f eg(“T)aig(u, O, 1, 0x1) (T, x)dT
0

1212

(3.5)

2
<o

272 +
212

t
f e(t‘”aif(u, dxu, 1) (1, x)dr
0

1212

£td2
e Mo +
L3212

4

¢
f eg(t*T)aig(u, Oxu, 1, 0x1) (T, x)dT
0 1212

‘|

which implies

t
|@ﬂqgsFHWﬂ@+fe“m%@ﬁwnxnmm
0

212

(3.6)

t
=Tl ¢ | [ e g 0rtn, 00m) (7, 0
0

1212

< TY?||zo|2 + CTY?[2]* + CT[z].
From Lemma 2.6, the third term in (3.3) can be estimated as follows:

t
nm@mm¢=aﬂ@m+mfé”@ﬂwmwm@mm
0

L3213

¢
+ || e 10 + Ox fo eE(t_T)aig(u, Oxt, 1,0x1) (T, x)dT

1212

2 2
< || axetax Uy axestbx 1o

+110x0l 212 +

L%L% L%.Li + ”ax#”L.eri (37)
<26+ CJull}z 2 + 10xtllEz 2 + Nl sz + T2 (Mliziz + 1l 212 )

C
+ =75 (Nl 2 + sl + Ml s + 19xnll T  + 772000l 02

1 1
<26+ c<1 + 517)[[21]2 + CT1/2<1 + m)[{z]}.
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Combining (3.4)—(3.7), we have that

1
[@z] < 26 + T"?||zo]| 2 + C[z]* + CT"?[z]* + c<1 + 517> [2]?

1
+CT[z] + CT'/? <2 + €17> [2]

1 (3.8)
<26+ TV?| 2|2 + C<2 + T1/2> <1 + ﬁ>a2
x 1>

1
1/2
+CTa+CT (24‘817)[1

With appropriate values of 6, a, and T, we are able to have that [@z] < a, that is,
@ : XTI — XT is well defined.

Similar to the above argument, we can show that ® : X! — X7 is a contraction
mapping,

[@z) - Dzo] < C'[z1 - z2], (3.9)

where C' = C(T,a¢, |z1lz12, |zll 212, 1022101212, 18222l 2 2) can be chosen as 0 < C' < 1
with appropriate values of T and a. O

Theorem 3.2. For any € > 0 and (ug,19) € H'(R) x L?(R), there exist a T = T (uo, 10,€) > 0 and a
unique solution (ug, ;) of (1.5) such that

ue(x, 1) € C([0,1); Li(®)) N C((0,7); HA(B)),
(3.10)
ne(x,) € C([0,T); LA(R)).

Proof. Theorem 3.2 is merely Theorem 3.1 with a standard uniqueness argument. O

Theorem 3.3. For any € > 0 and (up,10) € H'(R) x L?(R), there exists a unique global solution
(ue, Me) of (1.5) such that

u:(x,t) € C([0,00); L2(R) ) N C((0, 0); HA(B)),
(3.11)
1e(x,1) € C([0,00); L2(R) ).

Proof. To prove Theorem 3.3, we need only to establish the a priori energy identity. Multiply-
ing the first equation in (1.6) by u and integrating by parts (with respect to x over R), we have
that

’[ <u2 + ui)dx + f <ui + uix>dx L I P ucdx + f utledx =0, (3.12)
R R 2 )r R

N =
SIS
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where we used the relation m = 1 — uy and [ w?u,dx = 0. Multiplying the first equation in
(1.6) by 77 and integrating by parts (with respect to x over R), we have that

1d 2 2 1 2 B
¥ T, IR ndx+e IR 1dx + 3 IR M Uxdx JR utlydx = 0. (3.13)
From (3.12) and (3.13), we obtain the energy identity
d 2,2 .2 2 .2 2 30 _
¥ T} IR<u +uy+1 >dx + J‘R<ux + uxx>dx +€ J‘]R Mydx =0, (3.14)
which gives rise to the following inequality independent of € and T

sup (It Mg + 172 + 2asll gy < ol + 0]l (3.15)
t€[0,T) r

According to Theorem 3.2 and the energy inequality (3.15), one can extend the local solution
to the global one by a standard contradiction argument, which completes the proof of
Theorem 3.3. 0

From Theorem 3.3, one has the local well-posedness of system (1.3).

Theorem 3.4. For (ug,10) € H'(R) x L*(R), there exist a T = T (uo,10) > 0 and a unique local
solution (u,1n) of (1.3) such that

u(x,t) € C(10,T); L2(R)) n C((0,T); HA(R)),
(3.16)
nx,t) € c([o,T);Li(R)).

Similar to the proof of Theorem 4.1 in [12] (up to a slight modification), we may get
the following.

Theorem 3.5. Let zg = (ug, 10) € H® x HS™Y, s > 1, and let z = (u,1) be the corresponding solution
to (1.3). Assume that T} > 0 is the maximal time of existence, then

T;O
T: <o = fo 10524(7) || dT = 0. (3.17)
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4. Proof of Theorem 1.1

Proof of Theorem 1.1. From Theorem 3.4, we have got the local solution of (1.3). On the other
hand, according to the second equation of (1.3), we have

1d 2 2
5 aplllliz < 2M0xule Il + o<z l1nll;

< 4|0xul| 1

112, + 10zullz |2

(4.1)

2 2 1 2
< alBaale |l + lInll + 70,0,

2 1
= (4osullz + 1) [l + 5191l
An application of Gronwall’s inequality yields

1
||11||ii < <||110||ii + Z—L||axu||i%L£>ejé(1+4\|6xu|\L;°)dT' (42)

Similar to the proof of Theorem 3.3, we may get the energy identity

N =

d 2, .2, .2 d 2, .2 _
EJ‘RO{ +uy+1 )dx+a R(ux+uxx>dX—O, (4.3)
which implies

sup (It Mg + 177 + 2aall gy < ol + [l0ll 7 (44)
t€[0,T) r

Due to the Sobolev embedding theorem H!(R) — L*(R) and (4.4), we obtain that for any
T < +oo,

T T
fo [CRATTE fo 0ctll gt < T2 Dl 3 11 < +oo- (45)

Therefore, from Theorem 3.5, we deduce that the maximal existence time T = +oo. This proves
Theorem 1.1. O
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