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This paper investigates the problem of robust exponential stability for linear parameter-dependent
(LPD) systems with discrete and distributed time-varying delays and nonlinear perturbations.
Parameter dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, and linear
matrix inequality are proposed to analyze the stability. On the basis of the estimation and
by utilizing free-weighting matrices, new delay-dependent exponential stability criteria are
established in terms of linear matrix inequalities (LMlIs). Numerical examples are given to
demonstrate the effectiveness and less conservativeness of the proposed methods.

1. Introduction

Over the past decades, dynamical systems with state delays have attracted much interest in
the literature over the half century, especially in the last decade. Since time delay is frequently
a source of instability or poor performances in various systems such as electric, chemical
processes, and long transmission line in pneumatic systems [1]. The problems of stability
and stabilization for dynamical systems with or without state delays have been intensively
studied in the past years by many researchers in mathematics and control communities
[2, 3]. Stability criteria for dynamical systems with time delay is generally divided into
two classes: delay-independent one and delay-dependent one. Delay-independent stability
criteria tends to be more conservative, especially for small size delay, such criteria do
not give any information on the size of the delay. On the other hand, delay-dependent
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stability criteria concerned with the size of the delay and usually provide a maximal delay
size. Various stability of linear continuous-time and discrete-time systems subject to time-
invariant parametric uncertainty have received considerable attention. An important class
of linear time-invariant parametric uncertain system is linear parameter-dependent (LPD)
system in which the uncertain state matrices are in the polytope consisting of all convex
combination of known matrices. Most of sufficient (or necessary and sufficient) conditions
have been obtained via Lyapunov-Krasovskii theory approaches in which parameter-
dependent Lyapunov-Krasovskii functional has been employed. These conditions are always
expressed in terms of linear matrix inequalities (LMIs). The results have been obtained for
robust stability for LPD systems in which time delay occurs in state variable such as [4-6]
which present sufficient conditions for robust stability of LPD continuous-time system with
delays.

Recently, many researchers have studied the problem of stability for time-delay
systems with nonlinear perturbations such as [7] which considers the robust stability for
a class of linear systems with interval time-varying delay and nonlinear perturbations. In [8],
exponential stability of time-delay systems with nonlinear uncertainties is studied. Based
on the Lyapunov theory approach and the approaches of decomposing the matrix, a new
exponential stability criterion is derived in terms of LMI. In [9], they propose a new delay-
dependent stability criterion in terms of linear matrix inequality for dynamic systems with
time-varying delays and nonlinear perturbations by using Lyapunov theory. However, many
researchers have studied the problem of stability for systems with discrete and distributed
delays such as [10] which presented some stability conditions for uncertain neutral systems
with discrete and distributed delays. The robust stability of uncertain linear neutral systems
with discrete and distributed delays has been studied in [11]. In [12, 13], they studied
the problem of stability for linear switching system with discrete and distributed delays.
Moreover, a descriptor model transformation and a corresponding Lyapunov-Krasovskii
functionals have been introduced for stability analysis of systems with delays in [14, 15].

In this paper, we will investigate the problems of robust exponential stability for
LPD system with mixed time-varying delays and nonlinear perturbations. Based on the
combination of Leibniz-Newton formula and linear matrix inequality, the use of suitable
Lyapunov-Krasovskii functional, new delay-dependent exponential stability criteria will be
obtained in terms of LMIs. Finally, numerical examples will be given to show the effectiveness
of the obtained results.

2. Problem Formulation and Preliminaries

We introduce some notations, definition, and lemmas that will be used throughout the paper.
R* denotes the set of all real nonnegative numbers; R"” denotes the n-dimensional space with
the vector norm [|-||; ||x|| denotes the Euclidean vector norm of x € R"; R™" denotes the set nxr
real matrices; AT denotes the transpose of the matrix A; A is symmetric if A = AT: I denotes
the identity matrix; 1(A) denotes the set of all eigenvalues of A; Apnax(A) = max{Re A: X €
A(A)}; Amin(A) = min{Re A : X € AMA)}; Amax(A(a)) = max{Amax(A;) 1 i = 1,2,...,N};
Amin(A(a)) = min{Amin(A;) : i =1,2,..., N}; matrix A is called a semipositive definite (A >
0) if xTAx > 0, for all x € R"; A is a positive definite (A > 0) if xT Ax > 0 for all x#0;
matrix B is called a seminegative definite (B < 0) if x’ Bx < 0, for all x € R"; B is a negative
definite (B < 0) if x"Bx < 0 for all x#0; A > Bmeans A~ B > 0; A > Bmeans A - B > (;
C([-h,0], R") denotes the space of all continuous vector functions mapping [~h,0] into R"
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where h = max{h, g}; * represents the elements below the main diagonal of a symmetric
matrix.
Consider the system described by the following state equation of the form

x(t) = A(a)x(t) + B(a)x(t - h(t)) + f(t, x(t)) + g(t, x(t = h(t)))
t

+ C(a) J‘t ()x(s)ds, t>0; (2.1)
-g(t

x(t) = (1), #() =g, te|-h0|,

where x(t) € R" is the state variable, A(a), B(a), C(a) € R™" are uncertain matrices belonging
to the polytope

N N N
A(a) = Y.aiA;, B(a) = D aB;, C(a)=> aC;,
i=1 i=1

i=1

(2.2)
N
>ai=1, a;>0,A;, B,C;eR”, i=1,...,N.
i=1
h(t) and g(t) are discrete and distributed time-varying delays, respectively, satisfying
0<h(ty<h, h(t)<hs, 0<g(t)<g (2.3)

where h, hy, g are given positive real constants. Consider the initial functions ¢(t), ¢(t) €

C([h,0],R") with the norm [|p] = sup,gl$(®)] and llgll = sup,e; e lg(®ll. The
uncertainties f(-), g(-) represent the nonlinear parameter perturbations with respect to the
current state x(¢) and the delayed state x(t—h(t)), respectively, and are bounded in magnitude
of the form

FI(x(0) f (1 x() < nPxT (Bx(t),
g'(tx(t - h(t))g(t, x(t — h(t))) < p*xT (t - h(t))x(t - h(t)),

(2.4)

where 7], p are given real constants.

Definition 2.1. The system (2.1) is robustly exponentially stable, if there exist positive real
numbers ff and M such that for each ¢(t), ¢s(t) € C([-h,0], R"), the solution x(t, ¢, ¢) of the
system (2.1) satisfies

(¢ 9) | < Mmax{[|¢]], [lgll}e, Ve R". (2.5)
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Lemma 2.2 (Schur complement lemma, see [9]). Given constant symmetric matrices X,Y,Z
where Y > 0. Then X+ Z'YZ <0 if and only if

T _
<}Z< fy> <0 or <le/ )Z(> <0. (2.6)

Lemma 2.3 (Jensen’s inequality, see [1]). For any constant matrix Q € R™", Q = QT > 0, scalar
h > 0, vector function x : [0, h] — R" such that the integrations concerned are well defined, then

0 0 T 0
_h,[ T (s +1)Qx(s +t)ds < —<f x(s + t)ds) Q<I x(s+ t)ds>. (2.7)
—h ~h —h

Rearranging the term j?h X(s +t)ds with x(t) — x(t — h), one can yield the following inequality:

h fh T (s + H)Qx(s + B)ds < (’Lf(_t)h)] [ %] [x(’t“(_t)h)]. 2.8)

Lemma 2.4 (see [16]). Let x(t) € R" be a vector-valued function with first-order continuous-
derivative entries. Then, the following integral inequality holds for any matrices X, M; € R™™",
i=1,2,...,5and ascalar function h := h(t) > 0:

T M+ M, -MI+M
—f 1T (s)Xx(s)ds < x(t) ] [ 1 1t 2‘[ x(t)
M,

t-h ~x(t-h)| |[-M;+M] -MT - x(t—h)
(2.9)
L x® TIMs ML) ()
x(t-h)| |MT Ms| |x(t-h)|’
where
X M; M,
My Ms Maf 5 ¢ (2.10)
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3. Main Results

In this section, we first study the robust exponential stability criteria for the system (2.1)
by using the combination of linear matrix inequality (LMI) technique and Lyapunov theory

method. We introduce the following notations for later use:

N N , N , N .
Pj(a) = Y.aP!, Wj(a) = > aW!, Nja)=>aN/, Qi) =>aQl,
P i=1

i=1 i=1
N N N
Mi(a) = > aiMi, Ro(a) = DR, D=1, a>0,
i=1 i=1 i=1
i wi N o al x . _ _ . )
P/, W!/,N,Q/, M, RS e R™", j=1,2,...,6,1=1,2,...,5,5=1,2,3,i=12,...,N;

(=5, =2, =5 =i 50 50 5y

ijk Tijk i,j i,k
2§23 24 25 w26 27
* Zi,j,k Zi,j Zi,j Zi,j 2 Zi,j,k

T
S IV

1

T
* * x X4 2?5 -N¥ 3%

= i i iji |,
1,7,k
/ * * ¥ ok Y» 366 §57
i i i,j
* * * * * 21.66 0
* * * * * * >77
i,k

where
S, = 2PP + Pl Aj + ATP} + P2 + PATP} A - e "P; + Q) + Ql+QM A+ ATQ}
+ NI+ N+ WA + ATWE M+ hMY + M3 + el + P,
%5k =PiBj+Qf - Q! + AT Q7 + Q!'B;+ W AP Bi +e #"P + R — M}

N+ N2+ WY B+ W2 A + hM2 + MY,
SP = NP+ Wi+ ATW? + P+ QY + AT P,
1

sl = NP+ W+ ATWE 4 P+ QY + 2 ATPS,

1

=B = NP - Wl ATW? + QP - QF + ATQS,

(3.1)

(3.2)
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216 QlT NllT n N16r
51 =P ATPSC, + W' C + ATW? + PIC; + Q' C
52 = -Q¥ -+ QY By + BIQ — e P2 + hyP? + W*BI PBy — e #"P? + WR!
- N2 - N2+ W2 B; + BITW? — hR2 — hR? = hM2" — hM? + M + exp*]
52 =W - N} +BIW?+ Q" + I°BI P,
224 WzT _ N4 BiTW;; " QiST i th,-TP]-S,
52— w2 - NP+ BTW? + BIQS - QP - QY
26 = QZT NZT NS¢,
52 = WBIPSCi + WY G+ BTWS + Q3 C
=5 = WfT + WP+ ?P? — e,
=3 = WfT + W} + WP,
53— w3 e WP+ Q6
S = PPIC; + WY Gy + W,
4w L W B2PP - e,
5= Wi WP+ Q8
57 = PIC; + WE G+ WY,
255 W5T W5 QéT Qe h2P3 th4/
256 Q3T N?T/
257 WSTC W6 + Q6T c,
56 = NS - N¢ - e P2,

ST, = —e¥8P0 + *CTPSCy + CTWE + WP C.
(3.3)

Theorem 3.1. For given positive real constants h,hg, g,n and p, system (2.1) is robustly
exponentially stable with a decay rate f, if there exist positive definite symmetric matrices P;, any
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approprmte dimensional matrices W7, QF, N7, M}, Rf., s=12,...,6,r=1,2,...,

i=1,2,...,N and positive real constants e, and e, satisfying the following LMIs:

R} Riz 0, i=1,2 N
* R? >/ l_//-"/ 7

e P3RS MD M2
3
* M} Milso0 i=12... N,

[I<-L i=12...,N,

i1

[T+11+11< i=12,...,N,i#j, j=12,...,N,

ii,j ij,i Jidd (N 1)2 .

i=12,..., N-2, j=i+1,..., N-1,k=j+1,...,N.

Moreover, the solution x(t, ¢, ¢) satisfies the inequality

N
et o)l <\ gy el e, vee

7

5t=1,23,

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

where N = -)tmax(Pl(a)) + h/\max(PZ(‘x)) + h3-/\max(P3(a)) + hS)‘max(Pﬁl(a)) + hs-)‘max(PS(a)) +

Ry (a) Ry(ax)
hs-)tmax([R%(Z) RZ(Z)])

Proof. Choose a parameter-dependent Lyapunov-Krasovskii functional candidate for the

system (2.1) of the form
7
V() = D Vilb),
i=1

where
Vi(t) = x" (b Py (a)x(t)

x(t) 1'[I001[P(a) O 0 x(t)
= [x(t—h(t))] [0 0 0] [Ql(a) Qa(a) Q3(vf)] [x(t—h(t))],
x(t) 0 0 0] LQs(a) Qs(a) Qs(a) x(t)

(3.10)
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Va(t) = f e xT (s)Py(a)x(s)ds,
t—h(t)
0 t
Vi(t) = h I f e (5)Ps(a)x(s)ds d6,
—h Jt+0
0 t
Vi) = h I f 5T (5)Py(a)x(s)ds d6,
t+0
Vs(t) = h f f P %T (s)Ps(a) x(s)ds de,
t+6

sy [£©@—h@E)]" [R1@ Ra(@)] 16 - n(o))
Velt) = f L o) [ #(s) [R§<a> Rs(“)[ i(s) |95

0 t
Vi (t) = gJ f 9ezﬂ(s"t)xT(s)Pé(a)x(s)dsdQ.
-g v+

(3.11)

Calculating the time derivatives of Vi(t),i=1,2,3,...,6, along the trajectory of (2.1) yields

L [Pi(@) Q(a) Qf(a)]

[ x(t) (% (1)
Vi(t) =2 | x(t = h(t)) 0 Qi@ Qi ] o ]
O 1o @ @]t
3.12
e [h@ Gi@ Qi@ (312)
X w
Safxe-nay| | 0 @@ @ wil,
0 1] 0 Qla) Qf(a| Lwa

where

t
w11 = A(a)x(t) + B(a)x(t — h(t)) + f(t, x(t)) + g(t, x(t = h(t))) + C(a) x(s)ds
t-g(t)
t

wn = x(t) - x(t  h(t)) - f #(s)ds,

t-h(t)

t

w3 = A(a)x(t) + B(a)x(t — h(t)) + f(t, x(t)) + g(t, x(t = h(t))) + C(a) L " x(s)ds — x(t).
-
(3.13)
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Taking the time-derivative of V,(t) leads to

Va(t) = X" (1) Pa(@)x(t) = (1 = (1)) e OxT (¢ = h(t)) Pa(@) x(t = h(t)) - 2pVa(t)
< xT () Py(a)x(t) = e P"x (£ = h(t)) Pa(e)x (t = h(t)) + hax (= h(£)) Pa(e)x (¢ = h(1))

—2BVa ().

(3.14)

Obviously, for any scalar s € [t — h,t], we get e 2P < e72(5D < 1. Together with Lemma 2.3
(Jensen’s inequality), we obtain

Va(t) = B2xT (£)P3(a)x(t) — h IO e xT (t + s)Py(a)x(t + s)ds — 2BV;(t)
~h
< W2xT () Py(a)x(t) — h t e 5T (s)Ps () x(s)ds — 2V (t) (3.15)

t-h

< W2xT (1) Ps(a)x(t) — he P! f xT (s)P3(a)x(s)ds — 2BV;(t).
~h

Following the estimation of V;(t), we have

Vi(t) < W2xT (1) Py(a) x(t) — he 2P" Jt %7 (s) Py(a)x(s)ds — 2BVi(t)
t—h

< B2xT (£) Py(a)(t) — 721 f t i (s)dsPy(a) f x(s)ds - 2pVi(t) (3.16)
t—h t-h
t t

< 25T (H) Py(a) k() — €721 f » T (s)dsPy(a) » x(s)ds - 2pVi(t).

From (3.16), it follows that

Vs(t) < W2xT (£) Ps () (t) — e 2h f t " <7 (s)dsPs(a) f » x(s)ds — 2pVs (1)
t-h(t t—h(t

= W2x" (1) Ps(a)x () — e " [xT(t) ~x"(t~ h(t))]Ps(a) [x() = x(t = h(t))] - 2pV5 (1)

T
=n? [A(a)x(t) + B(a)x(t - h(t)) + f(t, x(t)) + g(t, x(t = h(t))) + C(a) t x(s)ds]
t=g(t)
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x Ps5(a) [A(tx)X(t) +B(a)x(t = h(t)) + f(t, x(£))+& (¢, x(t = h(t)))

+C(a) t x(s)ds] L [xT(t) X T (- h(t))]PS(a)[x(t) —x(t=h(t))]
t-g(t)

—2BVs(t).
(3.17)
Taking the time derivative of V;(t) and V(t), we obtain
Vo(t) = hh(t)xT (t — h(t)) Ry (a)x(t — h(t)) + 2hx" (£ — h(t)) Ry(a)x(t)
—2hx" (t - h(t))Ry(a)x(t - h(t)) + h :_h 7 (5)Rs () x(s)ds — 2BVe(F)
< R2x" (£ = h())Ry (a)x(t — h(t)) + 2hx” (t — h(£))Ra(a) x(t) (318)

—2hxT (t = h(t)) Ra(a)x(t - h(t)) + h t T (5)Rs(a)x(s)ds — 2Ve(t);

t-h
Vo (t) < @7 (£) Pe(a)x(t) — e 8 f: Y xT(s)dsPs(a) : Y x(s)ds — 2Vy(t).
-8 -8

From the Leibinz-Newton formula, the following equation is true for any real matrices N;(a),
i=1,2,..., 6 with appropriate dimensions

2[xT<t>N{ (a) +xT(t = h(t))N] () + f7(t, x (1)) N3 (a) + g7 (t, x(t = h(t))) N} ()
(3.19)

t

+5cT(t)N5T(u) + r xT(s)dsNéT(u)] X [x(t) —x(t-h(t)) - I x(s)ds] =0.
~h(b)

From the utilization of zero equation, the following equation is true for any real matrices W;,
i=1,2,...,5 with appropriate dimensions

2[xT(t)W1T (a) + xT(t = (D)W (ar) + fT (£, x(£)) W3 (a) + g7 (¢, x(t — h(t)) W] (a)

t

+xT (W (a) + f

xT(s)dsW] (a)]
t-g(t)

X [A(a)x(t) + B(a)x(t - h(t)) + f(t,x(t)) + g(t, x(t = h(t))) + C(a) t x(s)ds — x(t)] =0.
t-g(t)
(3.20)
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From (2.4), we obtain for any positive real constants ¢; and e,

0 < e’ (x(t) — enf (¢, x() f(t,x (D)),

(3.21)
0 < expx (£ = h()x(t — h(1)) - e2g” (£, x(t ~ (D)) (£, x(t ~ h(£))).

By (3.5), Lemma 2.4 and the integral term of the right-hand side of V3(t) and V;(t), we obtain

—h f % (s) [e-zﬂhp3(a) - R3(a)]x(s)ds
t-h

Jx® T[ M](a) + My(a) -M] (a) + Ma(a) x(t)
[x(t ~h(#)] |-Mi(a) + MI(a) ~M(a) - My(a) [x(t — h(t)) (3:22)
AL ]T M; (@) M4<a>] [ x ]
x(t=h(t)| |Mj(a) Ms(a)] [x(t-h(t))
According to (3.12)—(3.22), it is straightforward to see that
. N N N
V() <O D D aimja ] Jo(t) -2V (1), (3.23)
i=1 j=1 k=1 i,k

where gT(t) = [xT(t)/ xT(t - h(t))/ fT(t/x(t))/ gT(t/ x(t - h(t)))/ xT(t)/ j:—h(t) xT(S)dS/
[, :_g(t) xT(s)ds] and [T is defined in (3.2). The facts that SN a; = 1, we obtain the following
identities:

Mz

$3 Sawn 1= ST+ 3 5 e [H+H+H]

i=1 j=1 k=1 ijk =l iii i=lizjj=1 Qi iji jid
(3.24)
N-2N-1 N
* 2o | [T+TT+TT+TT+T1+11
i=1 j=i+lk=j+1 ijk ik,j jik jk,i ki,j k,ji
We define @ and A as
N N ) N N N
@zZZai(txi—ai) = (N—1)Zai3—z Z aiza,- >0,
i=1 j=1 i=1 i=1j#i;j=1
(3.25)
N N-1 N N-1 N-2N-1
AEZ Z aila; —ak = (N - 2)2211051 Z Zaa,1>0
i=1 j#i;j=1 k#i;k=2 i=1j#i;j=1 i=1 j=i+1 k=j+1
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From (N - 1)® + A > 0, we obtain

N N-2N-1
Z i 22 Z aj = ——3 Z Z Z ajaja; > 0. (3.26)
i=1 i=li#j,j=1 (N 1) i=1 j=i+lk=j+1
By (3.23)—(3.26), if the conditions (3.6)—(3.8) are true, then
V() +2pV(t) <0, VteR", (3.27)
which gives
V() <V(0)e ", VieR". (3.28)

From (3.28), it is easy to see that

Amin (Py(e)[[x(8)]* < V (£) < V (0)e ™"

6 (3.29)
V(0) = D Vi(0),
i=1
where
V1(0) = xT(0) Py (a)x(0),
V2(0) = fth( )ezﬂsxT(s)Pz(a)x(s)ds,
-h(0
0 0
V3(0) = hf f e?PsxT (s)Ps(a)x(s)ds de,
-hJo
0 0
Vi(0) =h Jh L e xT (s)Py(a)x(s)ds dO, (3.30)

0 0
V5(0) =hJ f e?P5xT (s)Ps(a)x(s)ds de,

Y I Wl e e 0

0 0
V7(0) = gf L e?P5xT (s)Ps(a)x(s)ds de.
-8

Therefore, we get

Ain (P (@) (1) < V(0)e " < N 'max [|Igl], llp]]]*e ™", (3.31)
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where N = /\max(Pl (a)) + h)‘max(PZ(a)) + h3-/\max(P3(a)) + h3)‘max(P4(“)) + hS)‘max(P5(a)) +

Ri(@) R
113 A max ( [RZ%EZ; Rigz; ] ). From (3.31), we get

|t d. 0)|| < ‘\/mmaﬂlld)ll, lell]le®, vteR". (3.32)

This means that system (2.1) is robustly exponentially stable. The proof of the theorem is
complete. O

If A(a) = A, B(a) = B and C(a) = 0 when A and B are appropriate dimensional
constant matrices, then system (2.1) reduces to the following system:

x(t) = Ax(t) + Bx(t = h(t)) + f(t, x(t)) + g(t, x(t — h(}))), t>0;

(3.33)
x(t)=¢(t), x(t)=¢(), te[-h0].
Take the Lyapunov-Krasovskii functional as
6
V() = DVi(h), (3.34)
i=1
where
x(t) 1'[L0O0I[P 0 O x(t)
Vi(t) = x" () Pix(t) = [x(t—h(f))] [0 0 0] [Ql Q2 Qa] [x(t—h(t))],
x(t) 000] Qs Q5 Qs x(t)
Vo(t) = ft e xT () Pox(s)ds,
t=h(t)
0 pt
Vs(t) =hf f e 5T (s)Psx(s)ds de,
-nJt+6 (3.35)

0 t
Vi(t) = hj f 2P 5T (5)Pyx(s)ds db,
—h J t+0

0 t
Vs (1) =hj J‘ 2P 5T (5)Psxc(s)ds db,
—h J t+0

o] L oo PO i S e

According to Theorem 3.1, we have the following Corollary 3.2 for the delay-dependent
exponential stability criteria of system (3.33).

Corollary 3.2. For given positive real constants h, hy, 1y and p, system (3.33) is exponentially stable
with a decay rate B, if there exist positive definite symmetric matrices P;,i = 1,2,...,5, any appropriate
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dimensional matrices Q;, N;,i = 1,2,...,6, W;, M;,i = 1,2,...,5, R;,i = 1,2,3 and positive real
constants €1 and e, satisfying the following LMIs:

where

<0,

Ri Ry
[* R3] >0,
e‘zﬂhP3—R3 My M,
* Mz Myl >0,
* *  Ms
(211 210 243 X4 215 26 |
* X Zp3 oy 2ps g
* * 233 234 235 —Ng
* % % Iy S5 -Nj
* ok * 255 256
| ¥ x Dgg

S =2BP+ PLA+ATP + Py + PATPsA—e"Ps + Q1 + QT + QT A + ATQ,
+NT + Ny + WIA+ ATWy + hMT + hM;y + B2 M; + eI,

Sp=PiB+Qy-Q + ATQs + QIB + W ATPsB + e Ps + hRL — hMT

—N{ + N>+ W{B+Wj]A+hM,+h*M,y,

213 = N3+ WlT + ATW3 + P+ QZ + thTP5,

Sia=Na+ W] + ATWy+ P+ Qf + > AT D,

S5 = N5 - W] + ATWs + Q3 - QF + AT

Si6= —Qf - NT + N,

S0 =Q) -Q+QIB+B'Qs - e "P, + hyP, + W*B'PsB — ™" P + W’ Ry

~ NI =Ny + WIB+B"W, - hR} - hRy — hM} — hM, + h* M5 + e2p°1,

Sp = W] - N3+ B'W;s + QI + W*BTPs,
Sou=W, - Ny+B"Wys+Qf + W*B'Ps,

25

6= -Q; - Nj — N,

233 = W3T + W35 + h2P5 —e1l,

Qé/

-WJ] - Ns+B"Ws+B'Q¢ - Qs - QF,

(3.36)
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234 = Wg + W4 + h2P5,
Sss= — WI+Ws+Qs,

244 = WZ + W4 + h2P5 - 621,

S5 = — W] +Ws+Qs,
255 = —Wg—W5—Qg—Q6+h2P3+h2P4,
_Qg_Ng/

~ NI - Ng-ehp,.

M
&
I

M
&
I

(3.37)

Moreover, the solution x(t, §, ¢) satisfies the inequality

IIx(tw)ll_\/ N( max[||¢]|, [l¢[|]]e?”, VteR, (3.38)

where N = )tmax(Pl) + h)‘max(PZ) + h3)‘max(p3) + h3-)‘max(P4) + hs-)‘max(P5) +h Amax([ﬁ% gz]

4. Numerical Examples

In order to show the effectiveness of the approaches presented in Section 3, four numerical
examples are provided.

Example 4.1. Consider the LPD time-delay system (2.1) with the following parameters (N =

3):
-2 0 -3 1 -3 0
Al—[l _3], Az—[o _4], Aa—[o _2],

10 -1 1 -1 0
Bl_[l _1]/ BZ_[O _1]/ B3_[0 _1]/

0.2 0.1 -0.3 0.2 -04 0.1
Ci= [0.1 —0.3]’ C2= [0.1 0.2]’ G = [0.1 0.5]’ (1)
_ [0.2sin tx (t) _ [0.3sintxq(t = h(t))
fltx(®) = [0.2 cos txlz(t) ! 8t x(t=h(t)) = [0.3 cos txlz(t - h()|’
h(t) = 0.2134 sin (%) g(t) = 0.4cos’(t), o(t) = [ ] [-0.4,0].

It is easy to see that hy = 0.3, = 0.2, p = 0.3, and g = 0.4. Find the discrete delay time h to
guarantee system (2.1) with the above parameters to be robustly exponentially stable with a
decay rate § = 0.15.
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Solution 1. By using the LMI Toolbox in Matlab (with accuracy 0.01) and conditions (3.4)-
(3.8) of Theorem 3.1, this system is robustly exponentially stable for discrete delay satisfying
h =0.2134 and

1 [225.4987 —143.6565] 1 [316.6633 0.3122]
Pl = , P2 = 7

361.5534 -0.4974
-143.6565 300.6876 0.3122 426.8816 !

P =
37 | -0.4974 306.5360

P2 = 153.3987 -105.3621 P2 = 284.5598 -17.5849 P2 283.8792 -0.3896
17 [-105.3621 242.2669 |’ 2 [-17.5849 306.8985]’ 3 1-0.3896 254.6003|"

[391.5353 —0.0741 ]
| -0.0741 392.5712]

380.0951  9.9856 ]
| 9.9856 387.3373]

[484.7945 31.1598 |
| 31.1598 398.0539]

)—‘E
I
S
3,
I
S
3,
I
S

[239.9236  0.0430 ]
| 0.0430 251.9889]

[229.7296 —0.3010]
| —0.3010 239.7532]

[285.1892 —5.6549 ]
| —5.6549 230.3520]

-3
I
S
oL
I
S
51
I
S

[239.9146 —0.0007 ]
| —0.0007 251.9987|

[231.9963 —0.7154 ]
| —0.7154 239.6643]

[285.3879 —8.7124 ]
| -8.7124 227.7653]

=3,
I
N
%,
I
N
<%
I
N

195.2662 —48.4444] Pb = [285.1103 —2.8941] Ps - [291.3897 2.4418 ]
7 2 = 7 3 = 4

6 _
b= [—48.4444 261.3741 —2.8941 286.4945 2.4418 303.1851

1 [153.8322 —6.2058] 0! [1,057.7 119.5]
s 2= s

0! - —4424 26
17 [-6.2058 511.1849 1195 1,113.8 '

1 _
Qs = [ 26 -1,9426

-1,438.7 472.6 > |-3,162.4 -435.4

0 = 0 _[1,3832 -0.1
17| 4726 5034|’ 27 | -4354 -107.8}" ’

2
Qs = -0.1 1,8745

Q= -1,217.0 -623.5 Q3 = -9.6 -1,232.0 Q3 = 564.8910 -1.6044
1| -6235 -135.3]’ 27 1-1,2320 910 |’ 37 |-1.6044 -90.0137|"

0 = -61.6 -1,470.3 0t = -4,191.2  13.6 0 = 3,768.2 -0.5
17 1-1,470.3 —4,166.8|" 2 13.6  —4,402.9|’ s -05 -89.7)

7,593.6 7,529.0] QS = [3,542.1 0.0 ]

2140 -15,185.0 03 -
’ 27 |7,529.0 1,325.3 371 00 -3,023.0

Q=
1 —-15,185.0 15,214.0

0 - [404375 9.9389 06 - [547453 6.5632 06 - [334114 ~0.2701
17199389 28.8514)’ 27 |-6.5632 45.3682|" 37 |-02701 42.9778|
N1 [F123.7682 93117 N1 [F1,007.0 1196 N1 4831 29
17| 93117 4614212 27 | 1196 -1,067.4 37 [-29 1,9629]’
N2 o [14159 4644 N2 o [31226 4341 N2 [LA94 01
U7 | 4644 -5349]| 27 | 4341 648) 371 01 -1,9220]

-13.4412 6.7579] N? = [—9.1322 —0.0352]
’ 3~ 7

N? = 38.2260 -6.0579
e ! 6.7579 9.3172 —0.0352 —24.2347

3_
-6.0579 -13.3891 N; = [

6.0573 7.3776 0.0282 -23.7517

-14.1576 6.0573 N = -9.6531 0.0282
—6.3425 -14.6572 ! 3 !

Nf _ [31.0135 —6.3425],

N§=[

1,234.7 657.0]

~182 1,241.1 ~604.6748 1.6013
5 _ ’ 5 _
657.0 110.7 Nz = [ ] N3 = [ ]

N7 =
! 1,241.1 -1342 16013  49.2281
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ON = O

L
NN
T

The state x(t)

|
o]

0.5

(e}

x1 ()
— x2(t)

25 3 3.5

Time (s)

2

4.

5

Figure 1: State trajectories x1(t) and x,(t) of LPD time-delay system (2.1) with (4.1), a1 = a, = a3 =1/3 by

using program dde45lin with Matlab.

N16 _ [14.9282 —0.7772]/

-0.7772 33.2457

222.2533 104.5561

1_
M = [104.5561 54.1789

M2 = -11.9251 -13.1913
17 1-13.1913 -5.6759 |’
Moo 393.2821 56.3348
17 [ 56.3348 295.3780|’
M = —-63.2823 —34.4679
17 |-34.4679 -20.2534|’
—-29.9392]
252.5413

208.1212
5 _

M= [-29.9392
~36.7812]
248.7283]

196.3135
-36.7812

~

R%:[

R2 = 28.5196 7.4817
17174817 4.9413]

~

158.8158 —17.7934]
-17.7934 171.3160|

~

Ri:[

6

N7y =

[36.9436 0.4195 N =

0.4195 33.4742] !

M; =

2.1314 0.0476
0.0476 3.1486|’

M%:[

M;

1.4344 -2.6047
—-2.6047 3.3445 |’

M§=[

M= 269.8280 -0.1703
27 [-0.1703 270.2562|"
-0.8017 -0.1312

4
-0.1312 —0.8706] ! M

M; = [
[268.6888  0.6640
| 0.6640 268.0517|"

[268.6863  0.6631
| 0.6631 268.0488]”

el

[178.2539  4.6824
| 4.6824 181.6405

R; =

[ 1.4407 -2.6031
|-2.6031 3.3546

| s

M; =

M3=

33.2443 -0.0821
-0.0821 25.6059

|
|
|

270.0284
—-0.0192

|

268.9342
-0.0012

1.0720 -0.0153
—-0.0153 0.0894

|

|
|

1.0670 -0.0153
—0.0153 0.0826

2.0463 -0.0108
—-0.0108 1.4850

|

-0.0192
268.5208]"

—-0.6584
—0.0064

—-0.0064
-1.2408]"

-0.0012
268.6650]"

268.9326 -0.0013
—-0.0013 268.6593]"

183.6198 —0.0347
-0.0347 184.1092|"

(4.2)

and e; = 414.9151 and e; = 381.9944. It is known that the maximum value of h for the stability
of this system is h = 0.6246. The stability is also assured for h < 0.6246. The numerical solution
x1(t) and x,(t) of (2.1) with (4.1) are plotted in Figure 1.

Example 4.2. Consider the following linear systems, which are considered in [17]:
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Table 1: Upper bounds of time delays in Example 4.2 for various conditions.

n1=0,p=01 n=0p=01 n1=01,p=01 n1=01,p=01

hy =05 hg>1 hy =05 ha>1
Cao and Lam [18] (2000) 0.5467 — 0.4950 —
Zuo and Wang [3] (2006) 1.1424 — 1.0097 —
Chen et al. [17] (2008) 1.1425 0.7355 1.0097 0.7147
Corollary 3.2 2.0925 0.8412 1.8235 0.8406

Table 2: Upper bounds of time delays in Example 4.3 for various conditions.

1n=0.05p=0.1
p=0 p=01 p=03 p=05
Kwon and Park [19] (2008) 3.40 1.36 0.76 0.55
Corollary 3.2 2.87 1.53 0.97 0.75

Table 3: Comparison of convergence rate obtained for Corollary 3.2 and from [8, 20] in Example 4.4.

Method Year Convergence rate f3
Mondié and Kharitonov [20] 2005 0.470
Nam [8] 2009 1.153
Corollary 3.2 2012 1.410

. -1.2 0.1 -0.6 0.7

0 = [ o7 x50 S xe-nen+ pex@) +gexe-no, @

where || f (¢, x(E)]| < nllx(®)l, Ig (¢, x(t = k()] < pllx(t = h(E)]-

By Corollary 3.2 to the system (4.3), we can obtain the maximum upper bounds of the
time delay under different values of 7, p, and hy as shown in Table 1. From Table 1, we see
that Corollary 3.2 gives larger delay bounds than some of the recent results in literatures.

Example 4.3. Consider the following linear systems, which are considered in [19]:
. -2 0 -1 0
w0 =[5 S|+ [ Gfre-me s xw) +gtxe-my, (44)

where ||f (¢, x(t))|| < nllx@)||, lg(t, x(t = h(t)))|| < pllx(t — h(t))||. By using Corollary 3.2 to the
system (4.4), we obtain the maximum upper bounds of the time delay for different values of
1, p, and hy as shown in Table 2. From Table 2, it can be seen that Corollary 3.2 gives larger
delay bounds than the recent results in [19].

Example 4.4. Consider the following linear systems, which is considered in [8]:

x(t) = [‘04 _14]x(t) + [041 091]x(t— h) + f(t, x(t) + g(t, x(t - ), (4.5)



Abstract and Applied Analysis 19

where |[f(t,x(®))]| < 02[|x()|l, llg(t, x(t — h))|| < 0.2||x(t — h)||. The maximum value of

convergence rate is 1.410 by using Corollary 3.2 for system (4.5). From Table 3, we can see
that Corollary 3.2 gives larger convergence rate than the results in [8, 20].

5. Conclusions

The problem of robust exponential stability for LPD systems with time-varying delays and
nonlinear perturbations was studied. Based on the combination of Leibniz-Newton formula
and linear matrix inequality, the use of suitable Lyapunov-Krasovskii functional, new delay-
dependent exponential stability criteria are formulated in terms of LMIs. Numerical examples
have shown significant improvements over some existing results.
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