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This paper is concerned with the integral type boundary value problems of the second order
differential equations with one-dimensional p-Laplacian on the whole line. By constructing a
suitable Banach space and a operator equation, sufficient conditions to guarantee the existence of
at least three positive solutions of the BVPs are established. An example is presented to illustrate
the main results. The emphasis is put on the one-dimensional p-Laplacian term [p(t)®(x'(t))]’
involved with the function p, which makes the solutions un-concave.

1. Introduction

The multipoint boundary-value problems for linear second order ordinary differential
equations (ODEs for short) was initiated by II'in and Moiseev [1]. Since then, more general
nonlinear multi-point boundary-value problems (BVPs for short) were studied by several
authors, see the text books [2—4] and the references cited therein.

Differential equations governed by nonlinear differential operators have been widely
studied. In this setting the most investigated operator is the classical one-dimensional p-
Laplacian, that is, @,(x) = |x[P~2x with p > 1. This operator is involved in some models,
for example, in non-Newtonian fluid theory, diffusion of flows in porous media, nonlinear
elasticity, and theory of capillary surfaces. The related nonlinear differential equation has the
form

[@(x)] = f(t,x,x), t€ (~o0,+x0), (1.1)

where @(x) = |x[P~2x with p > 1 is a one dimensional p-Laplacian. For a comprehensive
bibliography on this subject, see, for example [5-9].
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In this paper, we consider the more generalized BVP for second order differential equa-
tion on the whole line with p-Laplacian coupled with the integral type BCs, that is the BVP

[pHD(X ()] + f(tx(t),x(t) =0, teR,

tErPoox(t) = x(-o0) = fw g(s)x(s)ds, (1.2)
tLiIwa(t) =: x(+00) = f+w h(s)x(s)ds,

where f : R® — R is a nonnegative Caratheodory function, g,h : R — [0,00) satisfy
g, h € LY(R), p € C(R,(0,0)), the integrals in mentioned equations are meant in the sense of
Riemann-Stieljes, ®(x) = |x[P~2x with p > 1 is called a one dimensional p-Laplacian, whose
inverse function is denoted by ®.

The purpose is to establish sufficient conditions for the existence of at least three
positive solutions of BVP(1.2). The result in this paper generalizes and improves some known
ones since the one-dimensional p-Laplacian term [p(t)®(x'(t))]’ involved with the function p,
which makes the solutions unconcave and there exists no paper concerned with the existence
of at least three positive solutions of this kind of integral BVPs on the whole lines. This paper
fills the gap.

The remainder of this paper is organized as follows: the main result (Theorem 2.8) is
presented in Section 2, and the example to show the main result is given in Section 3.

2. Main Results

In this section, we first present some background definitions in Banach spaces and state an
important three fixed point theorem. Then the main results are given and proved.

Definition 2.1. Let X be a real Banach space. The nonempty convex closed subset P of X is
called a cone in X if ax € Pforall x € Pand a > 0 and x € X and —x € X imply x = 0.

Definition 2.2. A map ¢ : P — [0,+00) is a nonnegative continuous concave or convex
functional map provided ¢ is nonnegative, continuous, and satisfies ¢(tx + (1 — t)y) >
tp(x) + (1 -Hp(y), org(tx+ (1 -t)y) <tp(x) + (1 -tH)g(y), forallx,y € Pand t € [0,1].

Definition 2.3. An operator T : X — X is completely continuous if it is continuous and maps
bounded sets into precompact sets.

Definition 2.4. Let a,b,c,d,h > 0 be positive constants, «, ¢ be two nonnegative continuous
concave functionals on the cone P, y, 3, 0 be three nonnegative continuous convex functionals
on the cone P. Define the convex sets as follows:

P.={xeP:|x| <c},
P(y,a;a,c) ={xeP:a(x)>a, y(x)<c},
P(y,0,a;a,b,c) ={xeP:a(x)>a, 6(x)<b, y(x)<c}, (2.1)
Q(y,B;,d,c) ={xeP:p(x)<d, y(x) <c},
Q(y,B yih,d,c) = {x € Pry(x) > h, p(x) <d, y(x)<c}.
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Lemma 2.5 (see [10]). Let X be a real Banach space, P be a cone in X, a, ¢ be two nonnegative
continuous concave functionals on the cone P,y,[,0 be three nonnegative continuous convex
functionals on the cone P. Assume that there exists a constant M > 0 such that

a(x) <P(x),  lxll < My(x), VxeP. (22)

Furthermore, suppose that h,d, a, b, c > 0 are constants withd < a. Let T : P. — P.bea completely
continuous operator. If
(C1) {x e P(y,0,a;a,b,c) | a(x) > a} #0 and a(Tx) > a for every x € P(y,0,a;a,b,c);
(C2) {x€Qy,6,¢;h,d,c) | P(x) <d}#0and p(Tx) < d for every x € Q(y,6,¢;h,d,c);
(C3) a(Tx) > a for x € P(y,a; a,c) with8(Tx) > b;
(C4) B(Tx) < d for each x € Q(y, B;d, c) with ¢(Tx) < h,

then T has at least three fixed points x1, x, and x3 such that p(x1) < d, a(x2) > a, p(x3) >
d, a(x3) <a.

Let us list the assumptions

(H1) g,h: R — [0, 00) satisfy [ g(s)ds <1, [ h(s)ds < 1 and
g(t) <1 - J+m h(s)ds> — h(t) (1 - j+w g(s)ds) >0, teR (2.3)

(H2) p € C(R), p(t) > 0 for t € Rwith [°_ @71(1/p(t))dt = [{ D1 (1/p(t))dt < +oo.

(H3) f(t,c,0)#0 on any finite subinterval of R for each ¢ € R, f : R — Ris a
Carathédory function, that is,

()t — f(t x, (1/D(p(t)))y) is measurable for any (x,y) € R?,
(i) (x,y) — f(t,x,(1/D(p(t)))y) is continuous for a.e. t € R,

(iii) for each r > 0, there exists nonnegative function ¢, € L!(R) such that max{|u|, [v|} <

r implies
f( U, ———— > ‘ < ¢e(t), ae.t€R. (2.4)
‘ 1(p(t))
Choose
( and there exist the limits
tlir}l x(t),
x=JxeCYR): Jim x(2), . (2.5)

Jim @7 (p(8))x' (1)
and tl_i)r){'loc}(D‘1 (p(1))x'(t)
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For x € X, define the norm of x by
|lx|| = max { suplx(t)],sup @ (p(t))x/ () } . (2.6)
teR teR

One can prove that X is a Banach space with the norm ||x|| for x € X.
Let x € X. Consider the following auxiliary BVP

[pOD( (1) + f(tx(t), X)) =0, teR,

yee) = [ glepierds, o)
Y(+o0) = f_ h(s)y(s)ds.

Lemma 2.6. Suppose that (H1)~(H3) hold. If y € CY(R) such that [p®(y')]" € LY(R) is a solution
of BVP(2.7), then

(i) y is bounded and nonnegative on R;
(i) y(t) is concave with respect to T = ﬁw O (1/p(s))ds/ [7Z @1/ p(s))ds;

(iii) for k > O, it holds that min_xxy(t) > psup, gy (t) with p = f:fo @ 1(1/p(s))ds/2
TP o(1/p(s))ds;

(iv) there exists a unique constant A, € [ jf;f f(s,x(s),x'(s))ds, 0] such that

w0 g(1) (1= [ h(s)ds) = h(t) (1- [ g(s)ds)
J—m 1-["7 g(s)ds

x f d! <;%s))®_l (Ax + f:w f(u,x(u),x’(u))du> ds dt (2.8)

+o0 oo
+ f @‘1 (L)(I)_l <Ax + I f(u’x(u)’xl(u))du> ds _ 0
oo p(s) .
Proof. Since x € X, we get

r= max{sup|x(t)|,sup(IY1 (p(t))x’(t)} < +o0. (2.9)
teR teR

Then there exists a nonnegative function ¢, € L' (-0, +0) such that

0< f(t,x(t),x'(t)) = f<t,x(t), @! (p(t))x’(t)> <¢.(t), teR (2.10)

_ 1
D1 (p(t))
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Then

J+w f(s,x(s),x'(s))ds is convergent. (2.11)

(i) We know there exist the limits lim;_, _,p(t)®(y'(t)) and lim;, ,p(£)D(y'(t)). We
claim that there exists 7y € R such that y'(7p) = 0. In fact, if y'(t) > 0 for all t € R, we get
y(—o0) < y(t) < y(+oo) for all t € R. It follows that

+oo

y(—o0) > J: g(s)dsy(—o0), Y(+o0) < f h(s)dsy(+o0). (2.12)

Then (H1) implies y(-o0) > 0 > y(+00), which contradicts to y'(t) > 0 for all ¢ € R. Similarly
we can prove that y'(f) < 0 does not hold. Then there exists 7y € R such that y'(7) = 0.

Since [p(t)D(y' ()] = —f (t, x(t), x'(t)) <0, we know that p(t)D(y'(t)) is decreasing on
R. Then p(t)®(y'(t)) > 0 for all t < 15 and p(t)D(y'(t)) < 0 for all t > 79. Hence

y is increasing for t € (oo, 79] and decreasing for t € [79, +00). (2.13)

One sees that

_p-! <;% It f(u,x(u),x'(u))du> = -G(t), t>m,

OB o (.14)
@t (m L f(u,x(u),x’(u))du) = H(t), t < 7.
Since [ @ 1(1/p(t))dt < +oo and [*7 f(t, x(t),x'(t))dt < +oo, we see that
+oo t
both f G(s)ds, I H(s)ds are convergent. (2.15)
t -0
Then we get that
y(+o0) +J - G(s)ds, t>m,
y(t) = (2.16)

t
t
y(—o0) + H(s)ds, t<mp.

This tells us that y is bounded on R.
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It follows from (2.7) and (2.16) that

To +00 0 t
yY(—o0) = Ji g(s)dsy(—oo)+f g(s)ds y(+o0) +J‘7 g(t) J‘, H(s)dsdt

+ B g(t) - G(s)dsdt,
L’ L ) t 2.17)
Y(+oo0) = f_ h(s)ds y(-o0) + f h(s)ds y(+o0) + j_ h(t) I_ H(s)dsdt

o

+ J;w h(t) f:w G(s)ds dt.
Then
(1-] s )0 - fm g(s)ds y(+o0)

= J._T; g LO tH(s)ds dt + J:o g(t) foo G(s)dsdt,

i . (2.18)
—J h(s)ds y(-o0) + <1 —J h(s)ds)y(+oo)

—o0 70

= f: h(t) J:o H(s)dsdt + J:O h(t) J‘:m G(s)dsdt.

Hence

jfgo g(t) fﬁw H(S)dsdt+j;;)w g(b) j’;w G(s)dsdt — f:ow g(s)ds
[ n(t) [, H(s)dsdt+ j;o“’ h(t) [ G(s)dsdt 1- j;0°° h(s)ds

1-[™ g(s)ds — J':Ow g(s)ds
=™ n(s)ds 1—[:0°° h(s)ds

y(-o0) =

7

(2.19)
1= g(s)ds [ g(t) [' H(s)dsdt+ f:o“’ g(b) [ G(s)dsdt

— [ h(s)ds [ h(t) [ H(s)dsdt+[}™ h(t) [/ G(s)dsdt

0
1-[7, g(s)ds ~ [, g(s)ds
=™ h(s)ds 1—1;0“’ h(s)ds

y(+o0) =

Since

1- JT; g(s)ds - f:o g(s)ds . 1- ft: g(s)ds - J:o g(s)ds

>0, (2.20)

—Jqo h(s)ds 1—I+w h(s)ds ) 1- h(s)ds 1—f+w h(s)ds

—0o0
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we get from (2.19) that y(—o0) > 0 and y(+o0) > 0. Hence (2.16) implies that

y()>0, VteR (2.21)

(ii) We prove that y(t) is concave with respect to 7 on R. It is easy to see that 7 €
C(R,(0,1)) and

7% (o) e o
dt PO/ = (1/p(s))ds
Thus
d_y dy dr d_y af 1 1
dt ~ dr dt dT(D (p(t))f_*:;’ Q)—l(l/P(S))ds' (2.23)
It follows that
AN 1
o) ®<dT>®<I*§;’ @ (1/p<s>>ds>' 220
Hence
o\ Ay dr 1
So
_ 1 [p(h@(dy/dt)] .
de - (I © <p(s)>ds> @ (dy/dr)(dr/dt)’ (2.26)

Since [p(H)®(y'(t))]' <0, @' (y) >0 (y#0) and (dr/dt) > 0, we get that (d*y/dr?) < 0. Hence
y(t) is concave with respect to 7 on R.
(iii) Now, we prove that

mm y(t) > usup y(t). (2.27)

teR

Since dt/dt > 0 for all t € R, there exists the inverse function of T = 7(t). Denote the inverse
function of T = 7(t) by t = (7).
It follows from (2.13) that sup,_,y(t) = y(70). One sees

ter[rirl}(]y(t) = min{y(—k), ]/(k)}- (2.28)
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If min{y(-k),y(k)} = y(k) = y(t(r(k))), note T(k) < 1, then for t € [k, k], one has

1-7(k) +7(10) (k) (k)
T+7(m) 1-7(k) +7(x)  1+7(m)

T(T0)> ) (2.29)

() 2 (e () = v (1

Noting that 1 > 7(k) and y(t) is concave with respect to 7, then, for t € [-k, k],
1-7(k) + 7(70) 7(k) 7(k)

v 2 e (e 7)) * T et (o)

k 1 1
B 2.30
. LOCD (Ms))dszj_*;f (I>‘1(1/p(s))dsy(T0) (230

= psup y(t).
teR

Similarly, if min{y(-k), y(k)} = y(-k) = (y(t(7(-k))), note T(-k) < 1, for t € [-k, k], one has

y(t) 2 y(t((=k)))
:y<t<1+r(ro)—r(—k) 7(-k) L, TR r(r@))

1+ 7(1) 1+7(r) —7(-k) 1+7(10)

>y (o)) * o e @) oy

1+ 7(1) 1+7(m) — 7(-k) 1+t

* 1 1
-1
- .[_m @ (p(S) )dsz [ (1/p(s))dsy(TO)

> psupy (t).
teR

Hence (2.27) holds.
(iv) Finally, we prove the uniqueness of A,. Define

e [ g(t) (1 . h(s)ds) —h(t) (1 . g(s)ds)
x(e) = J‘—oo 1-["7g(s)ds

x Itw o (I%)q"l <c + J’:w £ (u,x(), x'(u))du> ds dt (2:32)

+ Jt: @ <I%>¢)_l <c + J-::o f(u,x(u), x'(u))du) ds.

Then (H1) implies that H, € C(R, R) is increasing on R and H,(0) > 0. Let

c=- J‘+<>o f(u,x(u),x'(u))du, (2.33)
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then Hy(c) < 0. By mean value theorem, there exists an unique A, € [c,0] satisfying
H,(Ax) = 0. Then (iv) holds. This completes the proof of the lemma. O

Choose 1 > k > 0and

) [ @ 1(1/p(s))ds

=== . (2.34)
2(% @1(1/p(s))ds
Define the cone P C X by
x(t) >0, tER,
P=yx€X: min x(t) > pmaxx(t) (- (2.35)
te[-k k] teR

It is easy to see that P is a cone in X.
Define the operator T : P — X by

[ g [, @ (1/p() 07 (A + [ f(r,x(r), x'()dr ) dschu

1- [ g(s)ds (2.36)

+ ftw (I)‘ll%tb_l (Ax + J&OO f(r,x(r),x’(r))dr> ds,

S

(Tx)(t) =

where A, satisfies

w0 g(u) (1~ [*Z h(s)ds) — h(u) (1 [ g(s)ds)
I—m 1- ("7 g(s)ds

x f:o @ ( /%)(D‘l (Ax + fm fr,x(r), x’(r))dr> dsdu (2.37)

+ J‘j: @ (/%)q)—l <Ax n J:oof(r,x(r),x’(r))dr>ds =0.

It follows from Lemma 2.6(iv) that T : P — X is well defined and A, € [- f:: f(s,x(s),
x'(s))ds,0]. It is easy to show that

[OR(Tx) 1)) + £t x(H' (1) =0, teR,
I2)e0) = [ g(6)(Tx)(5)ds, (239)

(Tx)(+00) = f _m h(s)(Tx)(s)ds.

It follows from Lemma 2.6(i) and (iii) that Tx € P forall x € P. Then T : P — P is well
defined.
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Lemma 2.7. Suppose (H1)-(H3) hold. Then T is completely continuous.

Proof. First, we prove that T is continuous.

We claim that the function A, : P — [0, +c0) is continuous in x.

Let {x,} € Pwithx, — xp € Pasn — ooin P. Let {A,,} (n = 1,2,...) be the
constants determined by

10 g(t) (1 — [ h(s)ds) —h(t) (1 . g(s)ds)
foo 1- [ g(s)ds

x J: @ <L>®*l <Axn + fm F(r,xa(r), x'n(r))dr> ds dt (2:39)

+ J‘+°° o! (L)(Irl (Ax,, + f:w f(r, xn(T),x'n(r))dr>ds =0

Since x, — xpin P asn — oo, there exists an r > 0 such that ||x,|| < r. The fact f is a
Carathédory function means that there exists a nonnegative function ¢, € L!(-oo, +o0) such
that

0 < f(t, xa(t), x, (1)) = f<t,xn(t),m®‘l (p(t))x'n(t)> <¢.(t), teR (2.40)
Then
f: £(5,xa(s), ¥,(s))ds is convergent. (2.41)
So
Ay, € [— f: f(s,%a(s),x,(s))ds, 0] C [— f: ¢, (s)ds, 0], (2.42)

which means that { A, } is uniformly bounded.

Suppose that { Ay, } does not converge to Ay,. By the bounded property, we know that
there exist two subsequences {AS,}k} and {Afn)k} of { Axnk} with A;ln)k — ¢ and A;zn)k -
and ¢ # ¢p.
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By the construction of Ay, (n=1,2,...), we have

vo0 g(t) (1 - h(s)ds) - h(t)<1 - g(s)ds>
I 1- ff;’ g(s)ds

g J ; o <f%)‘1”1 (Agcl,i fm (X, (1), X, (u))du> ds dt (2.43)

. J:®< ;% )cp ( A0 f £ty (1), %), (1) )du>

Let k — oo, using Lebesgue’s dominated convergence theorem, the above equality implies

w0 g(F) (1 — [ h(s)ds) —h(t) (1 — [ g(s)ds)
.[ 1- ("7 g(s)ds

’[ (I)—1< >CD <C1 + Jur% f(u, xo (u),xg(u))du> ds dt (2.44)

+ j: o! <F%>(D‘l <c1 + Jjw f (u, x0(u), x’o(u))du> ds =

By Lemma 2.6 (iv), we get ¢ = Ay,. Similarly, ¢, = Ay,. Thus ¢1 = ¢, a contradiction. So, for
any x, — xg, one has Ay, — A, whichmeans A, : P — Ris continuous.

Since A, is continuous, together with the continuity of (x,y) — f(tx, (1/®(p
(t)))y), we get that T is continuous.

Second, we show that T is maps bounded subsets into bounded sets.

Let D C P be bounded. Then, there exists r > 0 such that D C {x € P : ||x|| < r}. Hence

r= max{sup|x(i‘)|,sup(I)1 (p(t))x'(t)} < +oo. (2.45)
teR teR

Then there exists a nonnegative function ¢, € L' (oo, +0) such that

0< f(tx(t),x'(t)) = f<t x(t), @' (p(t))x’(t)> <¢.(t), teR (2.46)

1( (t))

Then

jm £t x(t), X' () dt < I - ¢, (t)dt = L. (2.47)
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Thus |Ax| < L for all x € D. Therefore,

f:: g(b) jfoo @1(1/p(s)) D! <Ax + _f:oo f(u,x(u),x’(u))du) ds dt
1- [T g(s)ds

N fm o <F%)(D_1 <Ax + f:w f(u,x(u),x’(u))du)ds

TEem L @ (1/p(s))dsdt  (t /1 4
S< 1- (" g(s)ds +,[—mq) ( ()>ds e

s<ff§§g(t)f_wq)‘l(l/f’(s))dsm f ‘I’_1<L> >‘D‘1(2L)=

1- ("7 g(s)ds p(s)

(Tx)(t) =

(2.48)

On the other hand, we have

<®(2L) =: M. (2.49)

@ (p(h) |(Tx)'(t)| = 'qu (Ax + L f(u,x(u),x’(u))du>
Then

(Tx)| = max{sup(Tx) (1), sup®! (p(t)) (Tx)'(t) } < oo. (2.50)

teR teR

So, {Tx : x € D} is bounded.
Third, given a bounded set D C P, we prove that both {Tx : x € D} and

{@1(p(t))(Tx)" : x € D} are equicontinuous on each finite subinterval on R.
Then, there exists r > 0 such that D C {x € P : ||x|| < r}. Hence

r = max{ sup|x(t)|, sup®' (p(t))x'(t) } < +co. (2.51)
teR teR
Then there exists a nonnegative function ¢, € L' (-0, +0) such that

0< f(tx(t),x'(t)) = f<t x(t), 1(p(t))x’(t)> <¢.(t), teR (2.52)

1( ()

Then

< f gt = L. (2.553)

Ay + J' 7 x(0), % ()t
t
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For any € > 0, since @d1is uniformly continuous on [-L, L], there exists 6; > 0 such
that

|cp-1(u) - cp-l(v)| <e, wvel-LL], lu-v|l<6. (2.54)
Forany a,b e R, t1,f, € [a,b] and x € D with t; < t,, we have

<[ ¢, (s)ds. (2.55)
31

Ax + - f(tx(t),x'(t)dt — Ay - J‘+oo f(tx(t),x'(t))dt
t

3]

Then there exists & > 0 such that

+oo

A+ fﬂo f(tx(t),x'(t))dt — Ay - f(t,x(t),x'(t))dt

tl t2

<61, t,t€lab], |t-t] <o

(2.56)
Hence t,t; € [a,b], |t; —t2]| < 6 imply that
|07 (p(1)) (T) (1) - 7 (p(12)) (T) (1)
+00 +oo
= 'qu (Ax + f(t,x(t),x’(t))dt> -9t <Ax +J f(t,x(t),x’(t))dt> <e.
ty t
(2.57)
It follows that {Tx : x € D} is equicontinuous on each finite subinterval on R.
On the other hand, we have
ty 1 +oo
(@) - @)= | 07 ()0 (Acs [ f(wxtu, ¥ 0)du)ds
ty S
1)
< f @! <L)dsqr1 (2L) (2.58)
t p(s)

— 0 uniformly as t; — .

Then {®~!(p(t))(Tx)' : x € D} is equicontinuous on each finite subinterval on R.

At last given a bounded set D C P, we show that both {Tx : x € D} and
{1 (p(t))(Tx)' : x € D} are equiconvergent at +oo, respectively.

Then, there exists ¥ > 0 such that D C {x € P : ||x|| < r}. Hence

r= max{sup|x(t)|, sup®™! (p(t))x’(t)} < +00. (2.59)
teR teR



14 Abstract and Applied Analysis

Then there exists a nonnegative function ¢, € L' (-0, +0) such that

0< f(tx(t),x'(t)) = f<t,x(t), ot (p(t))x’(t)> <¢.(t), teR (2.60)

1
D1 (p(t))

Then

A+ Jmo £t x(b), %' (1)) dt| < fm ¢, (B)dt = L. (2.61)
t -

For any ¢ > 0, since @1is uniformly continuous on [-L, L], there exists 6; > 0 such
that

|<Ir1 (u) - qu(v)| <e, wuvel-LL], lu-v|l<6. (2.62)
Since
lp(HD(Tx)' (1) - Ax | = J‘:O f(u,x(u),x'(u))du < I;O ¢r(u)du — 0 (2.63)
uniformly as f — oo, we get that there exists T > 0 such that
[p(HO((Tx) (1) — Ax| <61, t>T. (2.64)
Hence t > T implies that

<e. (2.65)

|7 (p(6) (T (1) - 7 (A,)

- |cp-1 (p(HD((Tx) (1)) - D (Ay)
Furthermore, we get

[z gt [, @ (1/p() D7 (Ac+ [ f(u,x(u), ' (u))du ) ds dt
1- (77 g(s)ds

+ fj: D! (f%)d)‘l (Ax + J:rm f(u,x(w), x’(u))du) ds

= f+oo o <f%>cb‘l <Ax + Lw f(u,x(u), x’(u))du) ds

t
< - o! < I%) ds®1(2L)

t

(Tx)(t) -

(2.66)

— 0 uniformly as t — +oo.

Hence {Tx : x € D} and {® ' (p())(Tx)' : x € D} are equiconvergent at +co.
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Similarly we can how that {Tx : x € D} and {®'(p(t))(Tx)' : x € D} are
equiconvergent at —oo. We omit the details.

Therefore, T : P — P is equiconvergent at +o0. So the operator T : P — P is
completely continuous.

Define the functionals on P by

y(y) = sup o (pt) |y (1), yeP

ply) = i“}f'y(t) , YEP

0(y) = Sulgly(t) , YEP (2.67)
te

a(y) = min ly®)|, yeP,

y(y) = min [y@®)], yeP

It is easy to see that a, ¢ are two nonnegative continuous concave functionals on the cone P,
Y, B, 0 are three nonnegative continuous convex functionals on the cone P and a(y) < p(y) for
ally € P.

Forej, e, c>0and 1 > k > 0, define

M = max { _;'§<1/d+>‘1(p<s>>>ds,1},
1- "7 g(s)ds

e (e

L, = f: o (%)qﬂ (2V/s)ds,

D(c) cD<c>q,< 1-["7 g(s)ds >}

dra’ dvm o\ [72(1/@7 (p(s)))ds

w=o()meto(s) o(z)) -

D(er)
E= ¢V
4+’

Q :min{

t_zl |t| 2 1/
6(t) =4 "1
—, <1,

T

L@ (1/p(s)ds
P Ao (1/p(s)ds
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Theorem 2.8. Suppose that (H1)-(H3) hold. Given positive constants ey, ey, ¢ and k € (0,1), let

Q, W, and E be as above. If

e
c>2se>e>0, Q>Ww
U

and

(A1) f(t,u, (1/D Y (p(t)))v) <6(H)Q forall teR, ue[0,c], ve[-ccl;

(A2) f(t,u, (1/D(p(t)))v) > 6(t)W forall t € [-k, k], u€ [es, ea/p], v € [~

(A3) f(t,u, (1/D(p(t))v) <S(t)E forall t € R, u € [0,e1], v € [-¢c,cl;

then BVP(1.2) has at least three positive solutions x1, x5, x3 such that

sup x1(t) < ey, min x,(t) > ey, sup x3(t) > e, min x3(t) < es.
pxi(t) <e in 2(t) > e pxs(t) > e nin 3(t) <ex

teR s teR

Proof. We prove that all conditions in Lemma 2.5 are satisfied.

¢ cl;

(2.69)

(2.70)

(i) By the definitions, it is easy to show that a, ¢ are two nonnegative continuous
concave functionals on the cone P, y,f,0 are three nonnegative continuous convex
functionals on the cone P and a(y) < (y) for all y € P. One sees x € P is a positive solution

of BVP (1.2) if and only if x is a solution of the operator equation x = Tx.
(ii) For y € P, we have

t
ly(®] = f y'(S)dS+y(—oo)‘
t
<[ WOlds+ Iy
5_[_ miq’_l(P(S))y’(S)(fﬂHJ‘_ 8(s)[y(s)|ds
+00 1 B 1 +oo
B mdssgd) (p®)|y' @ f_w g(s)ds St1611§|3/(t)|-
It follows that

suply(t)] < [ Grsdssup0 () |y 0] s(o)dssuply o]

Then

T2 (/07 (p(s))ds
1- 27 8(s)ds

Stulgly(t)l < O (p(1)) |y (1]

(2.71)

(2.72)

(2.73)
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Hence

Iyl = max{sup|y<t>|, up @ <p<t>>|y'<t>|}
teR teR

N ( o) (2.74)
(/27 (p(s)))ds B )
Smax{ - 1 bsup @ (o) |y 0.
1- f_m g(s)ds teR
It follows that ||y|| < My(y) forall y € P.
(iii) Corresponding to Lemma 2.5,
€2
c=c¢, h=pe, d=e, a=e, b= ;. (2.75)

Now, we prove that all other conditions of Lemma 2.5 hold. One sees that 0 < d < a. The
remainder is divided into five steps.
Step 1. Prove that T : P. — P.0.

Fory € P., wehave ||y|| < c. Then 0 < y(t) < cand —c < @' (p(t))y'(t) < cforallt € R.
So (A1) implies that

1

0.5 0) =1 (430, g5

! (p(t))y'(t)> <6(HQ, teR. (2.76)
We have

@ (p0)| 1) ®)] = |0 (4 + [ v, v 0)aw)

<o <f+: |f(w,y(u),y (u)) |du>

<o ([~ o) o
= 0 (Q)O ! (4 + )
<c.
Similarly to (ii), we can show that
0< (Ty) (1) < Msup@™ (p()|(Ty) )]
< Mo <f_+: 6(s)er> (2.78)

= MO (Q)D (4 + )

<c.
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It follows that
ITyll = max{stulgl (Ty)(®)], sup @~ (p(t)) |(Ty)'®) |} <c. (2.79)

ThenT: P.— P.
Step 2. Prove that

{lyeP(y,6,a;a,b,c) | a(y) >a} = {y € P(y,@ a; ez, #, > |a(y) > ez} 1] (2.80)

and a(Ty) > e, for every y € P(y,0,a;e2,e2/p, ¢).
Choose y(t) = ex/2u forallt € R. Then y € P and

e
a(y) = ﬁ >e,  O(y)= ﬁ ;2 y(y)=0<c. (2.81)

It follows that {y € P(y,0,a;a,b,¢) | a(y) > a} #0.
Fory € P(y,0,a;a,b, c), one has that

e !
a(y) = min y(t) 2e;,  6(y) =supy(h) < =,y =swply®)|<c (282
[-k.k] teR H teR

Then
ex<yt) < % te[-kkl, @ (pM))|y'(®)| <c. (2.83)
Thus (A2) implies that
fy®),y'®)>26MW, te[-kk] (2.84)

Similarly to Lemma 2.6(i), we know that there exists 7y € (0,1) such that (Ty)'(7y) = 0. Then

T = (Ty)(+o0) + I*wcp—1<f%>cp—l< E O f(u,y(u),y'(u))du>ds, t> 1, 055)
(Ty) (- 0°)+J @ <P(5)>®_1<L f(u,y(u),y’(u))du)ds, t < 7.
Since

a(Ty) = min (Ty)(t) 2 psup(Ty)(t) = u(Ty)(m), (2.86)
cl=k, teR
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if 7y > 0, we get

a(Ty) > p —(Ty) (-o0) + fm o Q%)Cbl (f f (u,y(u),y’(u))du) dS]

o [RICD (s

> f (%)@ <f 6(u)Wdu>ds] (2.87)
Zuf ()0 (2v) >ds]® w)

> es.

If 7y <0, we get

[ +00 1 s
o) > | e+ [ "0 (Vo ([ sty )ac]
[~k s
>u f (D‘1</%>CD_1 <j f(u,y(u),y’(u))du)ds]
[k
af Y N\ga/ (2.88)
> # _.[0 @ (5m)" (], 6‘”’Wd”>d5]
- .
-1 L -1 -1
> jo @ (P S)>cp (2\/E>ds](1) W)
> én.
This completes Step 2.
Step 3. Prove that {y € Q(y,0,¢;h,d,c) | B(y) <d} = {y € Q(y,6, ¢; pex, e1,0)|f(y) < e1} #0
and
B(Ty) <e1 for every y € Q(y,0,¢;h,d,c) =Q(y,0,¢; per, e1,c). (2.89)

Choose y(t) = pe;. Then y € P, and
g(y)=perzh,  p(y)=0(y)=per<er=d, y(y)=0<c (2.90)

It follows that {y € Q(y,0,¢; h,d,c) | p(y) <d} #0.



20 Abstract and Applied Analysis

Fory € Q(y, 6, ; h,d, c), one has that

¢(y) = min y(t) > h = peq, O(y) =supy(t) <d=e, y(y) = su15>|y’(t)| <ec.
te

te[-k k] R
(2.91)
Hence we get that
0<y(t)<er, teR, —c<®'(p())y'(t)<c, teR (2.92)
Then (A3) implies that
flby®),y'(#) <6(HE, teR (2.93)
So
P(Ty) = Msup @™ (p(1)) |(Ty)' 0]
< M‘(D‘l (Ay + L f(u,y(u),y’(u))du)
< Mo <f_: |f (e, y(w),y' (W) Idu> (2.94)
< Mo <j_: 6(u)Edu>
< MO 4+ )DY(E)
e =d.
This completes Step 3.

Step 4. Prove that a(Ty) > a for y € P(y,a; a,c) with 6(Ty) > b;
For y € P(y,a;a,c) = P(y,a;e,c) with 6(Ty) > b = ep/p, we have that a(y) =
mine—k kY () > ex and y(y) = supteR(I)‘1 (p(M)|y' ()] < c and sup,_x(Ty)(t) > e2/p. Then

— 1 2 = =
a(Ty) = min (Ty)(t) 2 pp(Ty) > L e (2.95)
This completes Step 4.
Step 5. Prove that f(Ty) < d for each y € Q(y, ; d, ¢) with ¢(Ty) < h.

For y € Q(y, B;d,c) with ¢(Ty) < d, we have y(y) = sup,.x@ ' (p(t) |y (t)| < c and
P(y) = sup,.gy(t) < d = ey and ¢(Ty) = miny[x k] (Ty)(t) < h = e;p. Then

1 1
Ty) = Ty)(t) < — min (Ty)(t) < — e =d. 2.96
P(Ty) =sup(Ty)(t) < -/ min (Ty)() < e =ex (2.96)

This completes the Step 5.
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Then Lemma 2.5 implies that T has at least three fixed points x1, x2, and x3 such that
P(x1) < e, a(xy) > e, P(x3) > e, a(x3) < es. (2.97)

Hence BVP(1.2) has three decreasing positive solutions x1, x, and x3 such that (2.70) holds.
The proof is complete. O

3. Examples

Now, we present an example, whose three positive solutions cannot be obtained by theorems
in known papers, to illustrate the main results.

Example 3.1. Consider the following BVP

[ (¢ 0)] + f L xw), X 0) =0, teR,

x(-o0) =0, (3.1)

x(+00) = 0.

Corresponding to BVP(1.2), one sees that ¢(x) = x3, ¢~ (x) = x'/3, g(t) = h(t) =0, p(t) = &,
f:RxRxR — [0,0) is nonnegative and continuous and is defined by

ftxy) =80 (fox) + go(e ly])),

1
2/
5ty =145

T

[t >1, (3.2)

Choose k =1, e; = 50, e, = 250, ¢ = 40000. By direct computation, we see that Q, W,
and E are given by

{ o (1/07 (p(s)))ds } VT
ax /1 = A/
1-["7 g(s)ds 2

0 0
L= f qu(L)cD—l (2 |s|>ds = 21/3f e |s['/°ds > 0.06,
—k p(s) -1

k 1
L= f o' <i>cp-1 (24/5)ds =23 f e *'s'/%ds > 0.06,
0 p(s) 0
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- _[__fo(b‘l(l/p(s))ds ~ f:; e ds
P E o (pe)ds | v

> 0.37,

1 _ +00 d 12
Q= min 2D 2O 5 L‘f g(s)ds L U T
440" 4+ _w(1/¢) 1(p(s)))ds 4+ o
W = cp<ﬂ> max{®<l>,®<l>} <16.67° x 675.73 < 3.43 x 101,
U Ly L,
_@(er) 2500
E= oo =1 >33 (3.3)

One can show that

c2%>e2>e1>o, Q>2W. (3.4)
Suppose that
166.67, x € [0,50],
44.36 x 10! - 166.67
166.67 -50), x e [50,250],
fo(x) = " 250 — 50 (x=50), x€l ]
44.36 x 101, x € [250,40000], (3.5)
4436 x 1011 gx-40000 x > 40000,
|go(y)| <10, YyeR
From

f(bxey) =60 [fox) + 20(y)], (3.6)

it is easy to show that

(A1) f(tu, e 'v) <853 x 10125(¢) for all t € R, u € [0,400000], v € [-40000,40000];
(A2) f(t,u, e 'v) >3.43 x 10116(t) forall t € [-1,1],u € [250,1000],v € [-40000,40000];
(A3) f(tu, e’tzv) <333.336(t) forall t € R,u € [0,50],v € [-40000,40000];

then Theorem 2.8 implies that BVP(3.1) has at least three positive solutions x1, x3, x3 such that

sup x1 () < 50, min x,(t) > 250,
teR te[-1,1]

(3.7)
sup x3(t) > 50, min x3(t) < 250.
teR te[—l,l]

Remark 3.2. Example 3.1 implies that there is a large number of functions that satisfy the
conditions of Theorem 2.8. In addition, the conditions of Theorem 2.8 are also easy to check.
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