
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 358027, 11 pages
doi:10.1155/2012/358027

Research Article
Relations between Solutions of Differential
Equations and Small Functions

Wei Liu and Zong-Xuan Chen

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

Correspondence should be addressed to Zong-Xuan Chen, chzx@vip.sina.com

Received 2 November 2011; Accepted 11 January 2012

Academic Editor: Simeon Reich

Copyright q 2012 W. Liu and Z.-X. Chen. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We investigate relations between solutions, their derivatives of differential equation f (k) +
Ak−1f (k−1) + · · · + A1f

′
+ A0f = 0, and functions of small growth, where Aj (j = 0, 1, . . . , k − 1)

are entire functions of finite order. By these relations, we see that every transcendental solution
and its derivative of above equation have infinitely many fixed points.

1. Introduction and Results

In this paper, we use the standard notations of the Nevanlinna’s value distribution theory
([1–3]). We use λ(f) and λ(f) to denote exponents of convergence of the zero sequence and
the sequence of distinct zeros of a meromorphic function f(z), and σ(f) to denote the order
of growth of f(z).

In 2000, Chen [4] considered fixed points of solutions of second-order linear dif-
ferential equations and obtained precise estimation of the number of fixed points of solutions.
Recently, a number of papers (including [5–11]) considered relations between solutions, their
derivatives of some differential equations, and functions of small growth.

In 2006, Chen and Shon [7] proved the following theorem.

Theorem A. Let Aj (z) (/≡ 0) (j = 0, 1) be entire functions of σ (Aj) < 1, a, b be complex
constants such that ab /= 0 and arga/= arg b or a = cb (o < c < 1). Let ϕ (z) (/≡ 0) be an entire
function of finite order. Then, every solution f (/≡ 0) of the equation

f ′′ +A1e
azf ′ +A0e

bzf = 0, (1.1)
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satisfies

λ
(
f − ϕ) = λ

(
f ′ − ϕ) = λ

(
f ′′ − ϕ) = ∞. (1.2)

In 2010, Xu and Yi [11] proved the following theorem.

Theorem B. Let Aj (z) (/≡ 0) (j = 0, 1) be entire functions of σ (Aj) < 1, a, b be complex
constants such that ab /= 0 and a/b /∈ {1, 2}. Let ϕ (z) (/≡ 0) be an entire function of σ (ϕ) < 1.
Then, every solution f (/≡ 0) of (1.1) satisfies (1.2).

In [5, 6, 8–10], authors considered similar problems in Theorems A and B. For relations
between solutions, their derivatives of some differential equations, and functions of small
growth, particularly, relations between derivatives and functions of small growth are difficult
problems. Such problems on higher-order differential equations are more difficult.

In this paper, we consider the higher-order differential equation

f (k) +Ak−1f (k−1) + · · · +A1f
′ +A0f = 0, (1.3)

and prove the following results.

Theorem 1.1. Let Aj (j = 0, 1, . . . , k − 1) be entire functions of finite order, not all identically equal
to zero, such that if Aj /≡ 0, then λ (Aj) < σ (Aj); if i /= j, then σ (Ai/Aj) = max{σ(Ai), σ(Aj)}.
Suppose that ϕ(z) is a finite-order transcendental entire function. Then, every transcendental solution
f of (1.3) satisfies λ (f − ϕ) = σ (f) = ∞. Furthermore, if λ (ϕ) < λ (A0), then every solution
f (/≡ 0) of (1.3) satisfies λ (f ′ − ϕ) = σ (f) = ∞.

Theorem 1.2. LetAj (j = 0, 1, . . . , k−1) satisfy conditions of Theorem 1.1 andA0 /≡ 0. Suppose that
H is a nonzero polynomial. Then, every solution f(/≡ 0) of (1.3) satisfies λ(f ′ −H) = λ(f −H) =
σ(f) = ∞.

Corollary 1.3. LetAj (j = 0, 1, . . . , k − 1) satisfy all conditions of Theorem 1.2. Then, every solution
f(/≡ 0) and its derivative of (1.3) have infinitely many fixed points.

To prove Theorems 1.1 and 1.2, we use a new method. Our method is different from
methods before (including methods applied in [4–13])which cannot be applied to prove our
Theorems 1.1 and 1.2.

2. Auxiliary Lemmas

Lemma 2.1 (see [12]). LetAj (j = 0, 1, . . . , k−1) be entire functions of finite order, not all identically
zero. Suppose that if Aj /≡ 0, then λ (Aj) < σ(Aj); if i /= j, then σ (Ai/Aj) = max{σ(Ai), σ(Aj)}.
Then, every transcendental solution f of (1.3) satisfies σ (f) = ∞. Furthermore, according to the
order of A0, A1, . . . , Ak−1, if Aj is the first coefficient satisfying Aj /≡ 0, then (1.3) may at most have
polynomial solutions of degree ≤ j −1, and all other solutions are of infinite order. IfA0 /≡ 0, then every
nonzero solution f of (1.3) has infinite order.
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Lemma 2.2 (see [13]). LetAj (j = 0, 1, . . . , k−1), F (/≡ 0) be meromorphic functions of finite order.
Then, every meromorphic solution of

f (k) +Ak−1f (k−1) + · · · +A1f
′ +A0f = F, (2.1)

satisfies λ (f) = λ (f) = σ (f).

Lemma 2.3 (see [14]). Let f be a transcendental meromorphic function of σ (f) = σ < ∞. Let
H = {(k1, j1), (k2, j2), . . . , (kq, jq)} be a finite set of distinct pairs of integers that satisfy ki > ji � 0
for i = 1, 2, . . . , q. Also, let ε > 0 be a given constant. Then,

(i) there exists a set E ⊂ [0, 2π) of linear measure zero such that, if ψ ∈ [0, 2π) \ E, then
there is a constant R0 = R0(ψ) > 1 such that for all z satisfying arg z = ψ and |z| � R0 and for all
(k, j) ∈ H, we have

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣
� |z|(k−j)(σ−1+ε), (2.2)

(ii) there exists a set E ⊂ (1,∞) of finite logarithmic measure, such that, for all z satisfying
|z| /∈ E ∪ [0, 1] and for all (k, j) ∈ H, we have

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣
� |z|(k−j)(σ−1+ε), (2.3)

(iii) there exists a set E ⊂ (0,∞) of finite linear measure such that, for all z satisfying |z| /∈ E
and for all (k, j) ∈ H, we have

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣
� |z|(k−j)(σ+ε). (2.4)

Lemma 2.4 (see [7]). Let g(z) be a meromorphic function of σ (g) = β < ∞. Then, for any given
ε > 0, there is a set E ⊂ [0, 2π) that has linear measure zero, such that, if ψ ∈ [0, 2π) \ E, there is a
constant R = R (ψ) > 1 such that, for all z satisfying arg z = ψ and |z| = r ≥ R, we have

exp
{
−rβ+ε

}
≤ ∣∣g(z)

∣∣ ≤ exp
{
rβ+ε

}
. (2.5)

Lemma 2.5 (see [12, 15]). Suppose that P(z) = (α + iβ)zn + · · · be a polynomial with degree
n ≥ 1, where α, β are real numbers satisfying |α| + |β| /= 0. Let ω (z)/≡ 0 be an entire function with
σ (ω) < n. Set g = ωeP , z = reiθ, δ (P, θ) = α cosnθ−β sinnθ. Then, for any given ε (0 < ε < 1),
there exists a setH1 ⊂ [0, 2π) of linear measure zero such that, for θ ∈ [0, 2π) \ (H1 ∪H2), there is
a constant R > 0 such that, for |z| = r > R, we have

(i) if δ (P, θ) > 0, then

exp{(1 − ε)δ(P, θ)rn} ≤
∣∣∣g
(
reiθ

)∣∣∣ ≤ exp{(1 + ε)δ(P, θ)rn}, (2.6)
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(ii) if δ (P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} ≤
∣
∣
∣g
(
reiθ

)∣∣
∣ ≤ exp{(1 − ε)δ(P, θ)rn}, (2.7)

whereH2 = {θ ∈ [0, 2π); δ(P, θ) = 0} is a finite set.

3. Proof

Proof of Theorem 1.1. Suppose that f (z) is a transcendental solution of (1.3). By Lemma 2.1,
we know that σ (f) = ∞. Set g0 = f − ϕ. Then, σ (g0) = σ (f) = ∞ and λ(g0) = λ(f − ϕ).
Substituting f = g0 + ϕ into (1.3), we obtain

g
(k)
0 +Ak−1g

(k−1)
0 + · · · +A1g

′
0 +A0g0 = −

[
ϕ(k) +Ak−1ϕ(k−1) + · · · +A1ϕ

′ +A0ϕ
]
. (3.1)

Since all transcendental solutions of (1.3) have infinite order and ϕ is a transcendental entire
function of finite order, we see that ϕ(k) + Ak−1ϕ(k−1) + · · · + A1ϕ

′ + A0ϕ /≡ 0. So that, by
Lemma 2.2, we obtain λ(g0) = σ(g0) = ∞, that is, λ(f − ϕ) = σ(f) = ∞.

Now suppose that λ (ϕ) < λ (A0). Thus, A0 /≡ 0. In what follows, we prove that λ(f ′ −
ϕ) = σ (f) = ∞.

Set g1 = f ′ − ϕ. Then, σ(g1) = σ(f ′) = σ(f) = ∞ and λ(g 1) = λ(f
′ −ϕ). Differentiating

both sides of (1.3), we obtain

f (k+1) +Ak−1f (k) +
(
A′
k−1 +Ak−2

)
f (k−1) + · · · + (

A′
1 +A0

)
f ′ +A′

0f = 0. (3.2)

By (1.3), we obtain

f = − 1
A0

[
f (k) +Ak−1f (k−1) + · · · +A1f

′
]
. (3.3)

Substituting (3.3) into (3.2), we deduce that

f (k+1) +

(

Ak−1 −
A′

0

A0

)

f (k) +

(

A′
k−1 +Ak−2 −

A′
0

A0
Ak−1

)

f (k−1)

+ · · · +
(

A′
1 +A0 −

A′
0

A0
A1

)

f ′ = 0.

(3.4)
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Substituting f ′ = g1 + ϕ, f ′′ = g ′
1 + ϕ

′, . . . , f (k+1) = g(k)
1 + ϕ(k) into (3.4), we obtain

g
(k)
1 +

(

Ak−1 −
A′

0

A0

)

g
(k−1)
1 +

(

A′
k−1 +Ak−2 −

A′
0

A0
Ak−1

)

g
(k−2)
1

+ · · · +
(

A′
1 +A0 −

A′
0

A0
A1

)

g1 = h,

(3.5)

where

−h = ϕ(k) +

(

Ak−1 −
A′

0

A0

)

ϕ(k−1) +

(

A′
k−1 +Ak−2 −

A′
0

A0
Ak−1

)

ϕ(k−2)

+ · · · +
(

A′
1 +A0 −

A′
0

A0
A1

)

ϕ.

(3.6)

Since when Aj /≡ 0, λ(Aj) < σ(Aj), by Hadamard-Borel theorem, we know that
Aj(z) = hj(z)ePj (z) where hj(z) is nonzero entire function, Pj(z) is a nonzero polynomial,
such that σ(hj) = λ(Aj) < σ(Aj) = degPj . By Aj(z) = hj(z)ePj (z), we obtain

A′
j(z)

Aj(z)
=
h′j(z)

hj(z)
+ P ′

j(z),

A′
j(z) =

(
h′j(z) + P

′
j(z)hj(z)

)
ePj (z).

(3.7)

Next we prove h/≡ 0. Suppose to the contrary h ≡ 0. Then,

ϕ(k) +

(

Ak−1 −
A′

0

A0

)

ϕ(k−1) +

(

A′
k−1 +Ak−2 −

A′
0

A0
Ak−1

)

ϕ(k−2)

+ · · · +
(

A′
1 +A0 −

A′
0

A0
A1

)

ϕ = 0.

(3.8)

Dividing ϕ into both sides of (3.8) and substituting (3.7) into (3.8), we obtain

Bk−1(z)ePk−1(z) + Bk−2(z)ePk−2(z) + · · · + B1(z)eP1(z) + B0(z)eP0(z) + B(z) = 0, (3.9)

where

B0 = h0,

B1 = h1
ϕ′

ϕ
+

(

h′1 + h1P
′
1 −

A′
0

A0
h1

)

,



6 Abstract and Applied Analysis

B2 = h2
ϕ′′

ϕ
+

(

h′2 + h2P
′
2 −

A′
0

A0
h2

)
ϕ′

ϕ
,

...

Bj = hj
ϕ(j)

ϕ
+

(

h′j + hjP
′
j −

A′
0

A0
hj

)
ϕ(j−1)

ϕ
,

...

Bk−1 = hk−1
ϕ(k−1)

ϕ
+

(

h′k−1 + hk−1P
′
k−1 −

A′
0

A0
hk−1

)
ϕ(k−2)

ϕ
,

B =
ϕ(k)

ϕ
− A′

0

A0

ϕ(k−1)

ϕ
.

(3.10)

Since λ (h0) = λ (A0) > λ (ϕ), we see that B0 = h0 /≡ 0. It is obviously that not all
Bk−1, Bk−2, . . . , B0 are equal to zero. Without loss of generality, we may suppose that all Bj (j =
0, 1, . . . , k − 1) are not identically zero. In fact, if there exists some Bj ≡ 0, we can remove it
and rewrite the subscript of each function in (3.9).

Since σ(ϕ) < +∞ and σ(A0) < +∞, by Lemma 2.3, there exists a set E1 ⊂ [0, 2π) of
linear measure zero, such that, if θ ∈ [0, 2π) \ E1, there is a contant R = R(θ) > 1, such that,
for all z satisfying arg z = θ and |z| ≥ R, we have

∣∣∣∣∣
ϕ(j)(z)
ϕ(z)

∣∣∣∣∣
≤ |z|j·σ(ϕ) (

j = 1, 2, . . . , k − 1
)
,

∣∣∣∣∣
A′

0(z)
A0(z)

∣∣∣∣∣
≤ |z|σ(A0).

(3.11)

By (3.10) and (3.11), we obtain

|B(z)| ≤
∣∣∣∣∣
ϕ(k)(z)
ϕ(z)

∣∣∣∣∣
+

∣∣∣∣∣
A′

0(z)
A0(z)

∣∣∣∣∣

∣∣∣∣∣
ϕ(k−1)(z)
ϕ(z)

∣∣∣∣∣

≤ |z|kσ(ϕ) + |z|σ(A0)|z|kσ(ϕ) ≤ 2r2kσ,

(3.12)

where σ = max{σ(ϕ), σ(A0)}.
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Since ϕ, A0 are entire functions of finite order, then we obtain

m

(

r,
A′

0

A0

)

= O
(
log r

)
,

m

(

r,
ϕ(j)

ϕ

)

= O
(
log r

) (
j = 1, . . . , k − 1

)
.

(3.13)

By (3.10), (3.13), for sufficiently large r, we obtain

m
(
r, Bj

) ≤ 3m
(
r, hj

)
+m

(

r,
ϕ(j)

ϕ

)

+m
(
r, h′j

)
+m

(
r, P ′

j

)
+m

(

r,
A′

0

A0

)

+m

(

r,
ϕ(j−1)

ϕ

)

+O(1) ≤ 4T
(
r, hj

)
+O

(
log r

) (
j = 2, . . . , k − 1

)
,

N
(
r, Bj

) ≤N
(
r,

1
ϕ

)
+N

(
r,

1
A0

)
(
j = 1, . . . , k − 1

)
.

(3.14)

By (3.14), we obtain

T
(
r, Bj

)
= m

(
r, Bj

)
+N

(
r, Bj

) ≤ 4T
(
r, hj

)
+N

(
r,

1
ϕ

)
+N

(
r,

1
A0

)

+O
(
log r

) (
j = 2, . . . , k − 1

)
.

(3.15)

Since σ(hj) = λ(Aj), λ(ϕ) < λ(A0), by (3.15), we obtain

σ
(
Bj
) ≤ max

{
λ
(
ϕ
)
, λ(A0), σ

(
hj
)}

= max
{
λ(A0), λ

(
Aj

)} (
j = 2, . . . , k − 1

)
. (3.16)

Using the same method as above, we obtain

σ(B1) ≤ max{λ(A0), λ(A1)}. (3.17)

Clearly,

σ(B0) = σ(h0) = λ(A0). (3.18)

By (3.16)–(3.18), we obtain

σ(Bs) ≤ max
{
λ
(
Aj

) | 0 ≤ j ≤ k − 1
}

(s = 0, 1, . . . , k − 1). (3.19)
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Set

d = max
{
degPj | j = 0, 1, . . . , k − 1

}
,

d̃ = max
{
degPj, λ(Ai) | i = 0, . . . , k − 1,degPj < d, j ∈ {0, 1, . . . , k − 1}}.

(3.20)

According to definitions of d and d̃ and (3.19), we obtain d̃ < d and

σ(Bs) ≤ max
{
λ
(
Aj

) | 0 ≤ j ≤ k − 1
} ≤ d̃ (s = 0, 1, . . . , k − 1). (3.21)

Next, we discuss functions BjePj (j = 0, 1, 2 . . . , k − 1). We divide them into two cases:

I =
{
Bje

Pj | degPj < d, j ∈ {0, 1, . . . , k − 1}
}
,

II =
{
Bje

Pj | degPj = d, j ∈ {0, 1, . . . , k − 1}
}
.

(3.22)

Firstly, we consider BjePj ∈ I. By the definition of d̃ and (3.21), for any BjePj ∈ I, we
have

σ
(
Bje

Pj
)
≤ d̃. (3.23)

By Lemma 2.4, for any given ε1 (0 < ε1 < d − d̃), there is a set E2 of linear measure zero, such
that, if θ ∈ [0, 2π)\E2, there is a constant R = R (θ) > 1 such that, for all z satisfying arg z = θ
and |z| = r ≥ R, we have

∣∣∣Bj(z)ePj (z)
∣∣∣ ≤ exp

{
rd̃+ε1

}
. (3.24)

As r → ∞, we have rd̃+ε1/rd → 0, that is, rd̃+ε1 ≤ ε1r
d. Then, inequality (3.24) can be

rewritten as form

∣∣∣Bj(z)ePj (z)
∣∣∣ ≤ exp

{
ε1r

d
}
. (3.25)

Secondly, we consider BjePj ∈ II. By the definition of II, for every Bje
Pj , we have

degPj = d. By (3.21), we obtain σ (Bj) ≤ d̃ < d. So, for any Bje
Pj ∈ II, we have σ (Bj) <

d = σ (Pj). By Lemma 2.5, there is a set E3 ⊂ [0, 2π) which has the linear measure zero, such
that, for any given ε2 (0 < ε2 < 1), and we have that for all z satisfying arg z = θ ∈ [0, 2π) \E3

and |z| = r ≥ R, if δ (Pj, θ) > 0, then

exp
{
(1 − ε)δ(Pj, θ

)
rd
}
≤
∣∣∣BjePj

∣∣∣ ≤ exp
{
(1 + ε)δ

(
Pj, θ

)
rd
}
, (3.26)
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if δ (Pj, θ) < 0, then

exp
{
(1 + ε)δ

(
Pj, θ0

)
rd
}
≤
∣
∣
∣BjePj

∣
∣
∣ ≤ exp

{
(1 − ε)δ(Pj, θ0

)
rd
}
. (3.27)

Now, we further consider BjePj (j = 0, 1, . . . , k − 1). Take a fixed polynomial Ps ∈ II.
Thus, degPs = d. Set

E = {θ ∈ [0, 2π) | δ(Ps, θ) > 0},
E4 =

{
θ ∈ [0, 2π) | δ(Pi − Pj, θ

)
= 0, 0 ≤ i < j ≤ k − 1

}
,

⋃{
θ ∈ [0, 2π) | δ(Pj, θ

)
= 0, j = 0, 1, . . . , k − 1

}
.

(3.28)

Clearly, the linear measure of E \ (E1 ∪ E2 ∪ E3 ∪ E4) is greater than zero. Now, we take ray
arg z = θ0 ∈ E \ (E1 ∪E2 ∪E3 ∪E4), then δ (Ps, θ0) > 0. When j /= s, we have δ (Pj, θ0)/= 0; when
i < j and degPi = degPj , we have δ(Pi, θ0)/= δ(Pj, θ0). Set

δ = max
{
δ
(
Pj, θ0

) | BjePj ∈ II
}
. (3.29)

It is clearly δ > 0. Since δ (Pi, θ0)/= δ(Pj, θ0) (i < j and degPi = degPj), there exists a unique
integer t (0 ≤ t ≤ k − 1), such that δ (Pt, θ0) = δ. Suppose that Ps satisfies δ (Ps, θ0) = δ. On
the ray arg z = θ0, we have that

∣∣∣Bs(z)ePs(z)
∣∣∣ ≥ exp

{
(1 − ε)δrd

}
. (3.30)

Set

δ̃ = max
{
δ
(
Pj, θ0

) | Bjepj ∈ II \
{
Bse

Ps
}}
. (3.31)

Thus, δ̃ < δ. For any BjePj ∈ II\{BsePs}, by (3.26) and (3.27), we see that, on the ray arg z = θ0,
if δ (Pj, θ0) > 0, we have

∣∣∣BjePj
∣∣∣ ≤ exp

{
(1 + ε)δ

(
Pj, θ0

)
rd
}
, (3.32)

if δ(Pj, θ0) < 0, we have

∣∣∣Bj(z)ePj (z)
∣∣∣ ≤ exp

{
(1 − ε)δ(Pj, θ0

)
rd
}
< 1. (3.33)

Hence, if BjePj ∈ II \ {BsePs}, then we have

∣∣∣Bj(z)ePj (z)
∣∣∣ ≤ exp

{
(1 + ε)δ

(
Pj, θ0

)
rd
}
+ 1 ≤ exp

{
(1 + ε)δ̃rd

}
+ 1. (3.34)
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Hence, (3.9) can be rewritten as form

Bs(z)ePs(z) = Σj /= sBj(z)e
Pj (z) + B(z). (3.35)

By (3.12), (3.25), (3.30), (3.34), and (3.35), for above ε, set

ε =
1
2
min

{
δ

1 + δ
,
δ − δ̃
δ + δ̃

, ε1, ε2

}

, (3.36)

then, for all z satisfying arg z = θ0 and sufficiently large r, we have

exp
{
(1 − ε)δrd

}
≤
∣
∣
∣Bs(z)ePs(z)

∣
∣
∣ ≤ Σj /= s

∣
∣
∣Bj(z)ePj (z)

∣
∣
∣ + |B(z)|

≤ O(1) exp
{
εrd

}
+O(1) exp

{
(1 + ε)δ̃rd

}
+O(1) + 2r2kσ.

(3.37)

Thus, we obtain 1 ≤ 0. This is a contradiction which shows h/≡ 0.
Since h/≡ 0 and σ (g1) = ∞, by Lemma 2.2 and (3.5), we obtain λ (g1) = σ(g1) = ∞,

that is, λ (f ′ − ϕ) = σ(f) = ∞.
Thus, Theorem 1.1 is proved.

Proof of Theorem 1.2. Using the same method as in the proof of Theorem 1.1, we can prove
Theorem 1.2.
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