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We introduce an implicit-relation-type cyclic contractive condition for a map in a metric space and
derive existence and uniqueness results of fixed points for such mappings. Examples are given to
support the usability of our results. At the end of the paper, an application to the study of existence
and uniqueness of solutions for a class of nonlinear integral equations is presented.

1. Introduction and Preliminaries

It is well known that the contraction mapping principle, formulated and proved in the Ph.D.
dissertation of Banach in 1920, which was published in 1922 [1], is one of the most important
theorems in classical functional analysis. The Banach contraction principle is a very popular
tool which is used to solve existence problems in many branches of mathematical analysis
and its applications. It is no surprise that there is a great number of generalizations of this
fundamental theorem. They go in several directionsmodifying the basic contractive condition
or changing the ambient space. This celebrated theorem can be stated as follows.

Theorem 1.1 (see [1]). Let (X, d) be a complete metric space and let T be a mapping of X into itself
satisfying:

d
(
Tx, Ty

)
≤ kd

(
x, y
)
, ∀x, y ∈ X, (1.1)

where k is a constant in (0, 1). Then, T has a unique fixed point x∗ ∈ X.
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There is in the literature a great number of generalizations of the Banach contraction
principle (see, e.g., [2] and references cited therein).

Inequality (1.1) implies continuity of T . A natural question is whether we can find
contractive conditions which will imply existence of a fixed point in a complete metric space
but will not imply continuity.

On the other hand, cyclic representations and cyclic contractions were introduced by
Kirk et al. [3].

Definition 1.2 (see [3, 4]). Let (X, d) be a metric space. Let p be a positive integer and let
A1, A2, . . . , Ap be nonempty subsets ofX. Then Y =

⋃p

i=1 Ai is said to be a cyclic representation
of Y with respect to T : Y → Y if

(i) Ai, i = 1, 2, . . . , p are nonempty closed sets, and
(ii) T(A1) ⊆ A2, . . . , T(Ap−1) ⊆ Ap, T(Ap) ⊆ A1.

Kirk et al. [3] proved the following result.

Theorem 1.3 (see [3]). Let (X, d) be a metric metric space and let Y =
⋃p

i=1 Ai be a cyclic
representation of Y with respect to T : Y → Y . If

d
(
Tx, Ty

)
≤ kd

(
x, y
)

(1.2)

holds for all (x, y) ∈ Ai×Ai+1, i = 1, 2, . . . , p (whereAp+1 = A1), and 0 ≤ k < 1, then T has a unique
fixed point x∗ and x∗ ∈

⋂p

i=1 Ai.

Notice that, while contractions are always continuous, cyclic contractions might not
be.

Following [3], a number of fixed point theorems on cyclic representations of Y with
respect to a self-mapping T have appeared (see, e.g., [4–12]).

In this paper, we introduce a new class of cyclic contractive mappings satisfying
an implicit relation in the framework of metric spaces and then derive the existence and
uniqueness of fixed points for suchmappings. Suitable examples are provided to demonstrate
the validity of our results. Our main result generalizes and improves many existing theorems
in the literature. We also give an application of the presented results in the area of integral
equations and prove an existence theorem for solutions of a system of integral equations in
the last section.

2. Notation and Definitions

First, we introduce some further notations and definitions that will be used later.

2.1. Implicit Relation and Related Concepts

In recent years, Popa [13] used implicit functions rather than contraction conditions to prove
fixed point theorems in metric spaces whose strength lies in its unifying power. Namely, an
implicit function can cover several contraction conditions which include known as well as
some new conditions. This fact is evident from examples furnished in Popa [13]. Implicit
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relations on metric spaces have been used in many articles (for details see [14–19] and
references cited therein).

In this section, we define a suitable implicit function involving six real nonnegative
arguments to prove our results, that was given in [20].

Let R+ denote the nonnegative real numbers and let T be the set of all continuous
functions T : R

6
+ → R satisfying the following conditions: T1: T(t1, . . . , t6) is non-increasing in

variables t2, . . . , t6; T2: there exists a right continuous function f : R+ → R+, f(0) = 0, f(t) < t
for t > 0, such that for u ≥ 0,

T(u, v, u, v, 0, u + v) ≤ 0 (2.1)

or

T(u, v, 0, 0, v, v) ≤ 0 (2.2)

implies u ≤ f(v); T3: T(u, 0, u, 0, 0, u) > 0, T(u, u, 0, 0, u, u) > 0, for all u > 0.

Example 2.1. T(t1, . . . , t6) = t1 − αmax{t2, t3, t4} − (1 − α)[at5 + bt6], where 0 ≤ α < 1, 0 ≤ a <
1/2, 0 ≤ b < 1/2.

Example 2.2. T(t1, . . . , t6) = t1 − kmax{t2, t3, t4, (1/2)(t5 + t6)}, where k ∈ (0, 1).

Example 2.3. T(t1, . . . , t6) = t1 − φ(max{t2, t3, t4, (1/2)(t5 + t6)}), where φ : R+ → R+ is right
continuous and φ(0) = 0, φ(t) < t for t > 0.

Example 2.4. T(t1, . . . , t6) = t21 − t1(at2 + bt3 + ct4) − dt5t6, where a > 0, b, c, d ≥ 0, a + b + c < 1
and a + d < 1.

We need the following lemma for the proof of our theorems.

Lemma 2.5 (see [21]). Let f : R+ → R+ be a right continuous function such that f(t) < t for every
t > 0. Then limn→∞f

n(t) = 0, where fn denotes the n times repeated composition of f with itself.

Next, we introduce a new notion of cyclic contractive mapping and establish a new
results for such mappings.

Definition 2.6. Let (X, d) be a metric space. Let p be a positive integer, let A1, A2, . . . , Ap be
nonempty subsets ofX, and Y =

⋃p

i=1 Ai. An operator F : Y → Y is called an implicit relation
type cyclic contractive mapping if

(∗) Y =
⋃p

i=1 Ai is a cyclic representation of Y with respect to F;
(∗∗) for any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p (with Ap+1 = A1),

T
(
d
(
Fx,Fy

)
, d
(
x, y
)
, d(x,Fx), d

(
y,Fy

)
, d
(
x,Fy

)
, d
(
y,Fx

))
≤ 0, (2.3)

for some T ∈ T.

Using Example 2.2, we present an example of an implicit relation type cyclic contract-
ive mapping.
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Example 2.7. Let X = [0, 1] with the usual metric. Suppose A1 = [0, 1/2], A2 = [1/2, 1], and
A3 = A1; note that X =

⋃2
i=1 Ai. Define F : X → X such that

Fx =

⎧
⎨

⎩

1
2
, x ∈ [0, 1),

0, x = 1.
(2.4)

Clearly,A1 andA2 are closed subsets ofX. Moreover,F(Ai) ⊂ Ai+1 for i = 1, 2, so that
⋃2

i=1 Ai

is a cyclic representation of Xwith respect to F. Furthermore, if T : R
+6 → R

+ is given by

T(t1, t2, t3, t4, t5, t6) = t1 −
3
4
max

{
t2, t3, t4,

t5 + t6
2

}
, (2.5)

then T ∈ T. We will show that implicit relation type cyclic contractive conditions are verified.
We will distinguish the following cases:

(1) x ∈ A1, y ∈ A2.

(i) When x ∈ [0, 1/2] and y ∈ [1/2, 1), we deduce d(Fx,Fy) = 0 and inequality
(2.3) is trivially satisfied.

(ii) When x ∈ [0, 1/2] and y = 1, we deduce d(Fx,Fy) = 1/2 and

t2 = |x − 1|, t3 =
∣∣∣∣x − 1

2

∣∣∣∣, t4 = 1, t5 = x, t6 =
1
2
, (2.6)

then T(t1, t2, t3, t4, t5, t6) = 1/2 − 3/4. Inequality (2.3) holds as it reduces to
1/2 < 3/4.

(2) x ∈ A2, y ∈ A1.

(i) When x ∈ [1/2, 1) and y ∈ [0, 1/2], we deduce d(Fx,Fy) = 0 and inequality
(2.3) is trivially satisfied.

(ii) When x ∈ 1 and y = [0, 1/2], we deduce d(Fx,Fy) = 1/2 and

t2 =
∣∣1 − y

∣∣, t3 = 1, t4 =
∣∣∣∣y − 1

2

∣∣∣∣, t5 =
1
2
, t6 = y. (2.7)

Then T(t1, t2, t3, t4, t5, t6) = 1/2 − 3/4. Inequality (2.3) holds as it reduces to
1/2 < 3/4.

Hence, F is an implicit relation type cyclic contractive mapping.

3. Main Result

Our main result is the following.



Abstract and Applied Analysis 5

Theorem 3.1. Let (X, d) be a complete metric space, p ∈ N, A1, A2, . . . , Ap nonempty closed subsets
of X, and Y =

⋃p

i=1 Ai. Suppose F : Y → Y is an implicit relation type cyclic contractive mapping,
for some T ∈ T. Then F has a unique fixed point. Moreover, the fixed point of F belongs to

⋂p

i=1 Ai.

Proof. Let x0 ∈ A1 (such a point exists since A1 /= ∅). Define the sequence {xn} in X by

xn+1 = Fxn, n = 0, 1, 2, . . . . (3.1)

We will prove that

lim
n→∞

d(xn, xn+1) = 0. (3.2)

If for some k, we have xk+1 = xk, then (3.2) follows immediately. So, we can suppose that
d(xn, xn+1) > 0 for all n. From the condition (∗), we observe that for all n, there exists i =
i(n) ∈ {1, 2, . . . , p} such that (xn, xn+1) ∈ Ai ×Ai+1. Then, from the condition (∗∗), we have

T(d(Fxn,Fxn−1), d(xn, xn−1), d(xn,Fxn), d(xn−1,Fxn−1), d(xn,Fxn−1), d(xn−1,Fxn)) ≤ 0
(3.3)

and so

T(d(xn+1, xn), d(xn, xn−1), d(xn, xn+1), d(xn−1, xn), 0, d(xn−1, xn+1)) ≤ 0. (3.4)

Now using T1, we have

T(d(xn+1, xn), d(xn, xn−1), d(xn, xn+1), d(xn−1, xn), 0, d(xn−1, xn) + d(xn, xn+1)) ≤ 0 (3.5)

and from T2, there exists a right continuous function f : R+ → R+, f(0) = 0, f(t) < t, for t > 0,
such that for all n ∈ {1, 2, . . .},

d(xn+1, xn) ≤ f(d(xn, xn−1)). (3.6)

If we continue this procedure, we can have

d(xn+1, xn) ≤ fn(d(x1, x0)) (3.7)

and so from Lemma 2.5,

lim
n→∞

d(xn+1, xn) = 0. (3.8)

Next we show that {xn} is a Cauchy sequence. Suppose it is not true. Then we can find
a δ > 0 and two sequences of integers {m(k)}, {n(k)}, n(k) > m(k) ≥ k with

rk = d
(
xm(k), xn(k)

)
≥ δ for k ∈ {1, 2, . . .}. (3.9)
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We may also assume

d
(
xm(k), xn(k)−1

)
< δ (3.10)

by choosing n(k) to be the smallest number exceedingm(k) for which (3.9) holds. Now (3.7),
(3.9), and (3.10) imply

δ ≤ rk ≤ d
(
xm(k), xn(k)−1

)
+ d
(
xn(k)−1, xn(k)

)

< δ + fn(k)−1(d(x0, x1))
(3.11)

and so

lim
k→∞

rk = δ. (3.12)

On the other hand, for all k, there exists j(k) ∈ {1, . . . , p} such that n(k)−m(k) + j(k) ≡
1[p]. Then xm(k)−j(k) (for k large enough, m(k) > j(k)) and xn(k) lie in different adjacently
labelled sets Ai and Ai+1 for certain i ∈ {1, . . . , p}. Using the triangle inequality, we get

∣∣d
(
xm(k)−j(k), xn(k)

)
− d
(
xn(k), xm(k)

)∣∣

≤ d
(
xm(k)−j(k), xm(k)

)

≤
j(k)−1∑

l=0

d
(
xm(k)−j(k)+l, xm(k)−j(k)+l+1

)

≤
p−1∑

l=0

d
(
xm(k)−j(k)+l, xm(k)−j(k)+l+1

)
−→ 0 as k −→ ∞ (from (3.2)),

(3.13)

which, by (3.12), implies that

lim
k→∞

d
(
xm(k)−j(k), xn(k)

)
= δ. (3.14)

Using (3.2), we have

lim
k→∞

d
(
xm(k)−j(k)+1, xm(k)−j(k)

)
= 0, (3.15)

lim
k→∞

d
(
xn(k)+1, xn(k)

)
= 0. (3.16)

Again, using the triangle inequality, we get

∣∣d
(
xm(k)−j(k), xn(k)+1

)
− d
(
xm(k)−j(k), xn(k)

)∣∣ ≤ d
(
xn(k), xn(k)+1

)
. (3.17)
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Passing to the limit as k → ∞ in the above inequality and using (3.16) and (3.14), we get

lim
k→∞

d
(
xm(k)−j(k), xn(k)+1

)
= δ. (3.18)

Similarly, we have

∣
∣d
(
xn(k), xm(k)−j(k)+1

)
− d
(
xm(k)−j(k), xn(k)

)∣∣ ≤ d
(
xm(k)−j(k), xm(k)−j(k)+1

)
. (3.19)

Passing to the limit as k → ∞ and using (3.2) and (3.14), we obtain

lim
k→∞

d
(
xn(k), xm(k)−j(k)+1

)
= δ. (3.20)

Similarly, we have

lim
k→∞

d
(
xm(k)−j(k)+1, xn(k)+1

)
= δ. (3.21)

Using the condition (2.3) for x = xm(k)−j(k) and y = xn(k), we have

T
(
d
(
Fxm(k)−j(k),Fxn(k)

)
, d
(
xm(k)−j(k), xn(k)

)
, d
(
xm(k)−j(k),Fxm(k)−j(k)

)
,

d
(
xn(k),Fxn(k)

)
, d
(
xm(k)−j(k),Fxn(k)

)
, d
(
xn(k),Fxm(k)−j(k)

))
≤ 0

(3.22)

and so

T
(
d
(
xm(k)−j(k)+1, xn(k)+1

)
, d
(
xm(k)−j(k), xn(k)

)
, d
(
xm(k)−j(k), xm(k)−j(k)+1

)
,

d
(
xn(k), xn(k)+1

)
, d
(
xm(k)−j(k), xn(k)+1

)
, d
(
xn(k), xm(k)−j(k)+1

))
≤ 0.

(3.23)

Now letting k → ∞ and using (3.12), (3.14), and (3.18)–(3.21), we have, by continuity of T ,
that

T(δ, δ, 0, 0, δ, δ) ≤ 0, (3.24)

a contradiction with T3 since we have supposed that δ > 0. Thus, {xn} is a Cauchy sequence
in X. Since (X, d) is complete, there exists x∗ ∈ X such that

lim
n→∞

xn = x∗. (3.25)

We will prove that

x∗ ∈
p⋂

i=1

Ai. (3.26)
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From condition (∗), and since x0 ∈ A1, we have {xnp}n≥0 ⊆ A1. SinceA1 is closed, from (3.25),
we get that x∗ ∈ A1. Again, from the condition (∗), we have {xnp+1}n≥0 ⊆ A2. Since A2 is
closed, from (3.25), we get that x∗ ∈ A2. Continuing this process, we obtain (3.26).

Now, we will prove that x∗ is a fixed point of T . Indeed, from (3.26), for all n, there
exists i(n) ∈ {1, 2, . . . , p} such that xn ∈ Ai(n). Applying (∗∗)with x = x∗ and y = xn, we obtain

T(d(Fx∗,Fxn), d(x∗, xn), d(x∗,Fx∗), d(xn,Fxn), d(x∗,Fxn), d(xn,Fx∗)) ≤ 0 (3.27)

and so letting n → ∞ from the last inequality, we also have

T(d(Fx∗, x∗), 0, d(x∗,Fx∗), 0, 0, d(x∗,Fx∗)) ≤ 0, (3.28)

which is a contradiction to T3. Thus, d(x∗,Fx∗) = 0 and so x∗ = Fx∗; that is, x∗ is a fixed point
of T .

Finally, we prove that x∗ is the unique fixed point ofF. Assume that y∗ is another fixed
point of F, that is, Fy∗ = y∗. By the condition (∗), this implies that y∗ ∈

⋂p

i=1 Ai. Then we can
apply (∗∗) for x = x∗ and y = y∗. Hence, we obtain

T
(
d
(
Fx∗,Fy∗), d

(
x∗, y∗), d(x∗,Fx∗), d

(
y∗,Fy∗), d

(
x∗,Fy∗), d

(
y∗,Fx∗)) ≤ 0. (3.29)

Since x∗ and y∗ are fixed points of F, we can show easily that x∗ /=y∗. If d(x∗, y∗) > 0, we get

T
(
d
(
x∗, y∗), d

(
x∗, y∗), 0, 0, d

(
x∗, y∗), d

(
y∗, x∗)) ≤ 0, (3.30)

which is a contradiction to T3. Then we have d(x∗, y∗) = 0, that is, x∗ = y∗. Thus, we have
proved the uniqueness of the fixed point.

In what follows, we deduce some fixed point theorems from our main result given by
Theorem 3.1.

If we take p = 1 and A1 = X in Theorem 3.1, then we get immediately the following
fixed point theorem.

Corollary 3.2. Let (X, d) be a complete metric space and let F : X → X satisfy the following
condition: there exists T ∈ T such that

T
(
d
(
Fx,Fy

)
, d
(
x, y
)
, d(x,Fx), d

(
y,Fy

)
, d
(
x,Fy

)
, d
(
y,Fx

))
≤ 0, (3.31)

for all x, y ∈ X. Then F has a unique fixed point.
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Corollary 3.3. Let (X, d) be a complete metric space, p ∈ N,A1, A2, . . . , Ap nonempty closed subsets
of X, Y =

⋃p

i=1 Ai, and F : Y → Y . Suppose that there exists T ∈ T such that
(∗)’ Y =

⋃p

i=1 Ai is a cyclic representation of Y with respect to F;
(∗∗)’ for any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p(with Ap+1 = A1),

d
(
Fx,Fy

)
≤ kmax

{

d
(
x, y
)
, d(x,Fx), d

(
y,Fy

)
,
d
(
x,Fy

)
+ d
(
y,Fx

)

2

}

, (3.32)

where k ∈ (0, 1). Then F has a unique fixed point. Moreover, the fixed point of F belongs to
⋂p

i=1 Ai.

Remark 3.4. Corollary 3.3 is an extension to Theorem 2.1 in [3, 4].

Corollary 3.5. Let (X, d) be a complete metric space, p ∈ N,A1, A2, . . . , Ap nonempty closed subsets
of X, Y =

⋃p

i=1 Ai, and F : Y → Y . Suppose that there exists T ∈ T such that
(∗)’ Y =

⋃p

i=1 Ai is a cyclic representation of Y with respect to F;
(∗∗)’ for any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p(with Ap+1 = A1),

d
(
Fx,Fy

)
≤ φ

(

max

{

d
(
x, y
)
, d(x,Fx), d

(
y,Fy

)
,
d
(
x,Fy

)
+ d
(
y,Fx

)

2

})

, (3.33)

where φ : R+ → R+ is right continuous and φ(0) = 0, φ(t) < t for t > 0. Then F has a unique fixed
point. Moreover, the fixed point of F belongs to

⋂p

i=1 Ai.

Remark 3.6. Taking in Corollary 3.5, φ(t) = (1 − k)t with k ∈ (0, 1), we obtain a generalized
version of Theorem 3 in [3, 8].

Corollary 3.7. Let (X, d) be a complete metric space, p ∈ N,A1, A2, . . . , Ap nonempty closed subsets
of X, Y =

⋃p

i=1 Ai, and F : Y → Y . Suppose that there exists T ∈ T such that

(∗)’ Y =
⋃p

i=1 Ai is a cyclic representation of Y with respect to F;

(∗∗)’ for any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p(with Ap+1 = A1),

d
(
Fx,Fy

)
≤ αmax

{
d
(
x, y
)
, d(x,Fx), d

(
y,Fy

)}
+ (1 − α)

[
ad
(
x,Fy

)
+ bd

(
y,Fx

)]
,
(3.34)

where 0 ≤ α < 1, 0 ≤ a < 1/2, 0 ≤ b < 1/2.

Then F has a unique fixed point. Moreover, the fixed point of F belongs to
⋂p

i=1 Ai.

The following example demonstrates the validity of Theorem 3.1.

Example 3.8. Let X = R with the usual metric. Suppose A1 = [−2, 0] = A3, A2 = [0, 2] = A4,
and Y =

⋃4
i=1 Ai. Define F : Y → Y by Fx = −x/6, for all x ∈ Y. Clearly, Ai(i = 1, 2, 3, 4)

are closed subsets of X. Moreover, F(Ai) ⊂ Ai+1 for i = 1, 2, 3, 4 so that
⋃4

i=1 Ai is a cyclic
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representation of Y with respect to F. Moreover, mapping F is implicit relation type cyclic
contractive, with T : R

+6 → R
+ defined by

T(t1, t2, t3, t4, t5, t6) = t1 −
1
2
max

{
t2, t3, t4,

t5 + t6
2

}
. (3.35)

Indeed, to see this fact we examine the following cases.
Inequality (2.3) reduces to

d
(
Fx,Fy

)
=

∣
∣x − y

∣
∣

6
≤ 1

2
max

{
∣
∣x − y

∣
∣,
5|x|
6

,
5
∣
∣y
∣
∣

6
,

∣
∣x + y/6

∣
∣ +
∣
∣y + x/6

∣
∣

2

}

. (3.36)

(I) For x ∈ A1, y ∈ A2:

(i) suppose x = −1 and y = 0. Then inequality (2.3) holds as it reduces to 1/6 <
7/18;

(ii) suppose x = 0 and y = 1. Then inequality (2.3) holds as it reduces to 1/6 <
7/18;

(iii) suppose x = −1 and y = 1. Then inequality (2.3) holds as it reduces to 1/3 <
2/3;

(iv) suppose x = −2 and y = 1. Then inequality (2.3) holds as it reduces to 1/2 < 1;
(v) suppose x = −2 and y = 2. Then inequality (2.3) holds as it reduces to 2/3 ≤

2/3.

(II) For x ∈ A2, y ∈ A1:

(i) suppose x = 1/2 and y = −1/2. Then inequality (2.3) holds as it reduces to
1/6 < 1/3;

(ii) suppose x = 2 and y = −1. Then inequality (2.3) holds as it reduces to 1/2 < 1;
(iii) suppose x = 1 and y = −1. Then inequality (2.3) holds as it reduces to 1/3 <

2/3.

(III) For x = y, d(Fx,Fy) = 0, inequality (2.3) trivially holds.

Similarly other cases can be verified. Hence, F is an implicit relation type cyclic
contractive mapping. Therefore, all conditions of Theorem 3.1 are satisfied and so F has a
fixed point (which is z = 0 ∈

⋂4
i=1 Ai).

We illustrate Theorem 3.1 by another example which is obtained by modifying the one
from [22].

Example 3.9. Let X = R
+3

and we define d : X ×X → [0, 1) by

d
(
x, y
)
=
∣∣x1 − y1

∣∣ +
∣∣x2 − y2

∣∣ +
∣∣x3 − y3

∣∣, for x = (x1, x2, x3), y =
(
y1, y2, y3

)
∈ X,

(3.37)

and let A = {(x, 0, 0) : x ∈ R
+}, B = {(0, y, 0) : y ∈ R

+}, and C = {(0, 0, z) : z ∈ R
+} be three

subsets of X.
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Define F : A ∪ B ∪ C → A ∪ B ∪ C by

F((x, 0, 0)) =
(
0,

1
6
x, 0
)
; ∀x ∈ R

+;

F
((
0, y, 0

))
=
(
0, 0,

1
6
y

)
; ∀y ∈ R

+;

F((0, 0, z)) =
(
1
6
z, 0, 0

)
; ∀x ∈ R

+.

(3.38)

Let the function T : R
+6 → R

+ be defined by

T(t1, t2, t3, t4, t5, t6) = t1 − φ

(
max

{
t2, t3, t4,

t5 + t6
2

})
, (3.39)

where t1 = d(Fx,Fy), t2 = d(x, y), t3 = d(x,Fx), t4 = d(y,Fy), t5 = d(x,Fy), and t6 =
d(y,Fx), for all x, y ∈ X. Then F is an implicit type cyclic contractive mapping for φ(t) =
(1/4)t for t ≥ 0. Therefore, all conditions of Theorem 3.1 are satisfied and so F has a fixed
point (which is (0, 0, 0) ∈ A ∩ B ∩ C).

4. An Application to Integral Equations

In this section, we apply Theorem 3.1 to study the existence and uniqueness of solutions to a
class of nonlinear integral equations.

We consider the following nonlinear integral equation,

u(t) =
∫T

0
G(t, s)f(s, u(s))ds, ∀t ∈ [0,T], (4.1)

where T > 0, f : [0,T] × R → R and G : [0,T] × [0,T] → [0,∞) are continuous functions.
Let X = C([0,T]) be the set of real continuous functions on [0,T]. We endow X with

the standard metric

d∞(u, v) = max
t∈[0,T]

|u(t) − v(t)|, ∀u, v ∈ X. (4.2)

It is well known that (X, d∞) is a complete metric space. Define the mapping F : X → X by

Fu(t) =
∫T

0
G(t, s)f(s, u(s))ds, ∀t ∈ [0,T]. (4.3)

Let (α, β) ∈ X2, (α0, β0) ∈ R
2 such that

α0 ≤ α ≤ β ≤ β0. (4.4)
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We suppose that for all t ∈ [0,T], we have

α(t) ≤
∫T

0
G(t, s)f

(
s, β(s)

)
ds, (4.5)

β(t) ≥
∫T

0
G(t, s)f(s, α(s))ds. (4.6)

We suppose that for all s ∈ [0,T], f(s, ·) is a decreasing function, that is,

x, y ∈ R, x ≥ y =⇒ f(s, x) ≤ f
(
s, y
)
. (4.7)

We suppose that

sup
t∈[0,T]

∫T

0
G(t, s) ds ≤ 1. (4.8)

Finally, we suppose that for all s ∈ [0, 1], for all x, y ∈ R with x ≤ β0 and y ≥ α0 or x ≥ α0 and
y ≤ β0,

∣∣f(s, x) − f
(
s, y
)∣∣ ≤ kmax

{
d
(
x, y
)
, d(x,Fx), d

(
y,Fy

)
, d
(
x,Fy

)
, d
(
y,Fx

)}
, (4.9)

where k ∈ (0, 1).
Now, define the set

C =
{
u ∈ C([0,T]) : α ≤ u ≤ β

}
. (4.10)

We have the following result.

Theorem 4.1. Under the assumptions (4.4)–(4.9), Problem (4.1) has one and only one solution u∗ ∈
C.

Proof. Define the closed subsets of X,A1, and A2 by

A1 =
{
u ∈ X : u ≤ β

}
,

A2 = {u ∈ X : u ≥ α}.
(4.11)

We will prove that

F(A1) ⊆ A2, F(A2) ⊆ A1. (4.12)

Let u ∈ A1, that is,

u(s) ≤ β(s), ∀s ∈ [0,T]. (4.13)
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Using condition (4.7), since G(t, s) ≥ 0 for all t, s ∈ [0,T], we obtain that

G(t, s)f(s, u(s)) ≥ G(t, s)f
(
s, β(s)

)
, ∀t, s ∈ [0,T]. (4.14)

The above inequality with condition (4.5) imply that

∫T

0
G(t, s)f(s, u(s))ds ≥

∫T

0
G(t, s)f

(
s, β(s)

)
ds ≥ α(t), (4.15)

for all t ∈ [0,T]. Then we have Fu ∈ A2.
Similarly, let u ∈ A2, that is,

u(s) ≥ α(s), ∀s ∈ [0,T]. (4.16)

Using condition (4.7), since G(t, s) ≥ 0 for all t, s ∈ [0,T], we obtain that

G(t, s)f(s, u(s)) ≤ G(t, s)f(s, α(s)), ∀t, s ∈ [0,T]. (4.17)

The above inequality with condition (4.6) imply that

∫T

0
G(t, s)f(s, u(s))ds ≤

∫T

0
G(t, s)f(s, α(s))ds ≤ β(t), (4.18)

for all t ∈ [0,T]. Then we have Fu ∈ A1. Finally, we deduce that (4.12) holds.
Now, let (u, v) ∈ A1 ×A2, that is, for all t ∈ [0,T],

u(t) ≤ β(t), v(t) ≥ α(t). (4.19)

This implies from condition (4.4) that for all t ∈ [0,T],

u(t) ≤ β0, v(t) ≥ α0. (4.20)
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Now, using conditions (4.8) and (4.9), we can write that for all t ∈ [0,T], we have

|Fu − Fv|(t) ≤
∫T

0
G(t, s)

∣
∣f(s, u(s)) − f(s, v(s))

∣
∣ds

≤
∫T

0
G(t, s)kmax{|u(s) − v(s)|, |u(s) − Fu(s)|,

|v(s) − Fv(s)|, |u(s) − Fv(s)|, |v(s) − Fu(s)|}ds

≤ kmax{d∞(u, v), d∞(u,Fu), d∞(v,Fv), d∞(u,Fv), d∞(v,Fu)}
∫T

0
G(t, s)ds

≤ kmax{d∞(u, v), d∞(u,Fu), d∞(v,Fv), d∞(u,Fv), d∞(v,Fu)}.
(4.21)

This implies that

d∞(Fu,Fv) ≤ kmax{d∞(u, v), d∞(u,Fu), d∞(v,Fv), d∞(u,Fv), d∞(v,Fu)}. (4.22)

Using the same technique, we can show that the above inequality holds also if we take (u, v) ∈
A2 ×A1.

Now, all the conditions of Corollary 3.3 are satisfied (with p = 2) and we deduce that
F has a unique fixed point u∗ ∈ A1 ∩A2 = C; that is, u∗ ∈ C is the unique solution to (4.1).
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