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We investigate some existence results for the solutions to impulsive fractional differential

equations having closed boundary conditions. Our results are based on contracting mapping
principle and Burton-Kirk fixed point theorem.

1. Introduction

This paper considers the existence and uniqueness of the solutions to the closed boundary
value problem (BVP), for the following impulsive fractional differential equation:

CD%x(t) = f(t,x(t)), t€]J:=[0,T], t#t, 1<a<?2,
Ax(te) = Ie(x(t)), AX'(t) =I;(x(t)), k=12,...,p, (1.1)
x(T) = ax(0) + bTx'(0), Tx'(T) = cx(0) + dTx'(0),

where €D” is Caputo fractional derivative, f € C(J x R, R), I, I; € C(R, R),

Ax(te) = x(t7) —x(t;), (1.2)
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with

x(tf) = hli_)n(}x(tk +h), x(t) = han(}_x(tk +h), (1.3)

and Ax'(tx) has a similar meaning for x'(t), where

0=t0<t1<t2<"'<i’p<tp+1=T, (14)

a, b, ¢, and d are real constants with A :=¢(1-b) + (1 -a)(1-4d) #0.

The boundary value problems for nonlinear fractional differential equations have been
addressed by several researchers during last decades. That is why, the fractional derivatives
serve an excellent tool for the description of hereditary properties of various materials and
processes. Actually, fractional differential equations arise in many engineering and scientific
disciplines such as, physics, chemistry, biology, electrochemistry, electromagnetic, control
theory, economics, signal and image processing, aerodynamics, and porous media (see [1-
71). For some recent development, see, for example, [8-14].

On the other hand, theory of impulsive differential equations for integer order
has become important and found its extensive applications in mathematical modeling of
phenomena and practical situations in both physical and social sciences in recent years. One
can see a noticeable development in impulsive theory. For instance, for the general theory
and applications of impulsive differential equations we refer the readers to [15-17].

Moreover, boundary value problems for impulsive fractional differential equations
have been studied by some authors (see [18-20] and references therein). However, to the
best of our knowledge, there is no study considering closed boundary value problems for
impulsive fractional differential equations.

Here, we notice that the closed boundary conditions in (1.1) include quasi-periodic
boundary conditions (b = ¢ = 0) and interpolate between periodic (a=d =1,b = c =0) and
antiperiodic (a = d = -1,b = ¢ = 0) boundary conditions.

Motivated by the mentioned recent work above, in this study, we investigate the
existence and uniqueness of solutions to the closed boundary value problem for impulsive
fractional differential equation (1.1). Throughout this paper, in Section 2, we present some
notations and preliminary results about fractional calculus and differential equations to be
used in the following sections. In Section 3, we discuss some existence and uniqueness results
for solutions of BVP (1.1), that is, the first one is based on Banach’s fixed point theorem,
the second one is based on the Burton-Kirk fixed point theorem. At the end, we give an
illustrative example for our results.

2. Preliminaries

Letusset Jo = [0,t1], 1 = (ti, t2], ..., Jk-1 = (b1, tk], Jie = (b tian], J' = [0, ]\ {t1, 2, .. )}
and introduce the set of functions:

PC(J,R) = {x:] — R:x € C((t, txn1],R), k =0,1,2,...,p and there exist x(t;) and
x(ty), k=1,2,...,pwith x(t,) = x(t)} and

PCY(J,R) = {x € PC(J,R), x' € C((tx,txs1],R), k = 0,1,2,...,p and there exist x'(t})
and x'(t), k = 1,2,...,p with x'(t;) = x'(tx)} which is a Banach space with the norm ||x|| =
supye, {*llpc, %]l pc } where [|x]lpe := sup{[x()] : £ € J}.

The following definitions and lemmas were given in [4].
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Definition 2.1. The fractional (arbitrary) order integral of the function h € L!(J, R;) of order

a € R, is defined by
I%h(t) = L ft (t—s)"h(s)ds
0 I'(a) Jo ’

where I'(:) is the Euler gamma function.

2.1)

Definition 2.2. For a function h given on the interval J, Caputo fractional derivative of order

a > 0 is defined by

CDy.h(t) = ﬁ ﬂ (t—s)" " Th"(s)ds, n=[a]+1,

where the function h(t) has absolutely continuous derivatives up to order (n —1).

Lemma 2.3. Let a > 0, then the differential equation
CD*h(t) =0
has solutions
h(t)=co+cit+ct?> + - +cpit™, ¢ €R,i=0,1,2,...,n-1, n=[a] +1.

The following lemma was given in [4, 10].

Lemma 2.4. Let a > 0, then
D h(t) = h(t) + co + crt + o2 + -+ + cyat™?,

forsomec; € R,i=0,1,2,...,n-1,n=[a] +1.

(2.2)

(2.3)

(2.5)

The following theorem is known as Burton-Kirk fixed point theorem and proved in

[21].
Theorem 2.5. Let X be a Banach space and A, D : X — X two operators satisfying:

(a) A isa contraction, and
(b) D is completely continuous.
Then either

(i) the operator equation x = A(x) + D(x) has a solution, or
(ii) the set e = {x € X : x = AA(x/X) + AD(x)} is unbounded for A € (0,1).

Theorem 2.6 (see [22], Banach’s fixed point theorem). Let S be a nonempty closed subset of a

Banach space X, then any contraction mapping T of S into itself has a unique fixed point.
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Next we prove the following lemma.

Lemma 2.7. Let 1 < a« < 2and let h : ] — R be continuous. A function x(t) is a solution of the
fractional integral equation:

r t (t _ s)u 1
f —h(S)dS + Q1(t)A1 + Qz(t)Az, te ]0
0

I'(a)

(t s)al S)txfl
L T® ~—_h(s)ds +[1+Q(1)] ZL ) h(s)ds

_ a-2
(T = Q1 (6) + Qo (t) + (¢ - 1) Z f e hods
ti1
a-1
x(t) = 4 +[1+Ql(t)]Z(tk—t)f h(s)ds+£21(t)f T F‘(S)) h(s)ds

(T S)a -2

+Qo(t) a1 2 h(s)ds + [1 + Qi (t)] [Zl(x(t ))+I*(x(tk))]

tk

+Q () Z (T = t)I; (x(£7)) + (t) Z I (x())
i=1 i=1

k-1
+ > (t=t)IF(x(t))), teJk, k=12,...p
i=1
(2.6)

if and only if x(t) is a solution of the fractional BV P

CD*x(t) = h(t), te],
Ax(te) = I (x (7)), AX' (k) = I (x (), (2.7)
x(T) = ax(0) + bTx'(0), Tx'(T) = cx(0) + dTx'(0),

where

(T S)a 1 S)a 1
A = ds+ - h(s)d
Bl R S A ZL ) e)s

S)Dl -2 t; (tl _ S)a—z

f Ia-1)

h(s)ds+ Z (te — t;)

h(s)ds

+ Z (T - tk)ft

* Ekll Li(x(8))+ kZI (T = )17 (x(8)) + T (x (&),
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. (T_ S)u —2 J- S)u —2 X
Ay =  T@a-1 s)ds+Z N F( s)ds+ZI (x(t)),
1-d ct
Qi (t) = —( A ) TTA’
_(-pT B (1-a)t
Qy(t) = A N
(2.8)
Proof. Let x be the solution of (2.7). If t € Jo, then Lemma 2.4 implies that
. (t S)a 1
x(t) =I%h(t) —cog— 1t = f T(a) ————h(s)ds — ¢y — c1t,
(2.9)
x'() —f Mh(s)ds
o M'a-1)
for some ¢y, c1 € R.
If t € J1, then Lemma 2.4 implies that
t a1
G e —di(f—
x(t) = . T h(s)ds—dy—di(t-t1), o
) t (t S)u -2 ’
pe (t) = f ﬁh(s)ds - d],
for some dy,d; € R. Thus we have
tl _ a—1
x(t]) = uh(s)ds —co—cit1, x(t7) = —do,
w L) (2.11)
51 (tl _ S)u—z '

x'(t]) = . mh(s)ds -, x'(t]) = -ch

Observing that

Ax(t) = x(t]) = x(t7) = Li(x(t])), AX'(t) =x' (1) = x'(1]) = I} (x (7)), (2.12)
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then we have

t o\l
—dy :J %h(s)ds—m—cm + I (x(t))),
(2.13)

H Y.
e [ O s 1 (<)

to

hence, for t € (t,t2],

~ t (t_s)u—l h (tl _S)a—l
x(t) = . T@) h(s)ds + . T h(s)ds
t _ a\a2
F(t-t) %h(s)ds FL((E)) + (- (x(6)) —co—aat,  (214)
) ~ t (t— S)tl*Z h (tl _S)a—z X B
X (t) = i mh(S)dS + . mh(S)dS + Il (X(tl)) — (1.

If t € J», then Lemma 2.4 implies that

t _ o\l
x(t) = (¢ I,(Sa)) h(s)ds —ey— e (t - 1),
? t . (2.15)
x'(t) = J‘t (lf(;s_) ) h(s)ds — ey,
for some ey, e; € R. Thus we have
N ty (t2 _S)afl t (tl _ S)afl
x(t;) = . T h(s)ds + . T@ h(s)ds
bt [ s+ L () + (= )T (R (E) — o - ent
+ (= t) . T@-1) (s)ds+ I (x(])) + (t2 — ) I} (x(t])) — co — c1ta,

) = e (2.16)

R N () —5)"7? it —s)" 7 .

x'(t5) = . T@-1 h(s)ds + . T@-1 h(s)ds + I (x(t])) - c1,

x’(t}) = —e1.

Similarly we observe that

Ax(ty) = x()) - x(t;)) = L(x(t)), AX' () = X' (1) - x' (1) = L; (x(t;)), (2.17)
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thus we have
—eo = x(t) + L(x(ty)),
(2.18)

—e1 = X'(6) + L (x())-

Hence, for t € (t,,t3],
)a 1

(tl_s)a 1h( )d +J-tz ( -3

T(@) T(a) h(s)ds

ty

t (t_s)a—l
@) h(s)ds + .

"t -s)"?
- ————h(s)d
+ (b2 — 1) Ta-1) (s)ds 219)

to

x(t) =

153

1 _o)a-l t pRY. 2y
TS sy %h(s)ds]

e tZ’[ ) T 1) t
+L(x(5)) + L(x(8)) + (t—t) I (x(])) + I (x(t5)) — co — eat

By a similar process, if t € Ji, then again from Lemma 2.4 we get

a-1
S) h(s)ds

a-1
P (t-s) E=8)" p(s)ds+ ZJ‘

F( a)
a-2 L a-2
+Z (t - tk)f (ki - S) Taop e ds+z (t — 1) L r’(—s))h( )ds
(2.20)

b

x(t) = 1
+ Z L(x())+ Z (t=t)I (x(£))) + I (x(t)) —co — cut,
a-2
x'(t) = { (lf( s) h(s)ds+ Z f h(s)ds+ Z I} (x(t)) — 1.

Now if we apply the conditions:

x(T) = ax(0) + bTx'(0), Tx'(T) = cx(0) + dTx'(0), (2.21)
we have
A1 = (1 - a)co + T(l - b)C1,
Ao =—zco+ (1-d)e,
_ _ (2.22)
e (ZDA ATA,

o _CA1 _ (1 - a)Az
LT TTA A
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In view of the relations (2.8), when the values of —cy and —c; are replaced in (2.9) and (2.20),
the integral equation (2.7) is obtained.

Conversely, assume that x satisfies the impulsive fractional integral equation (2.6),
then by direct computation, it can be seen that the solution given by (2.6) satisfies (2.7). The
proof is complete. O

3. Main Results

Definition 3.1. A function x € PC!(J,R) with its a-derivative existing on J' is said to be
a solution of (1.1), if x satisfies the equation CDx(t) = f(t,x(t)) on J' and satisfies the
conditions:

Ax(te) = I (x (7)), AX (k) = I (x (),
x(T) = ax(0) + bTx'(0), Tx'(T) = cx(0) + dTx'(0).

(3.1)

For the sake of convenience, we define

Q7 =sup|Qi ()], Q) =sup|Qu(t)], Q=
te] te]

Q" =sup|Q(H)]. (32
te]

The followings are main results of this paper.

Theorem 3.2. Assume that

(A1) the function f : ] x R — R is continuous and there exists a constant L > 0 such that
Ilf (t,u) = f(t,0)|| < Li|lu—o||, forallt € J,and u,v € R,

(A2) Ix, I; : R — R are continuous, and there exist constants Ly > 0 and Ly > 0 such
that | I (u) - I (0)|| < Lollu = o||, |1} (u) - I; (0)|| < Ls|lu - v|| for each u,v € R and
k=12,...,p.

Moreover, consider the following:

[ LIl (1+Q*)(1+p+2pa)+ 1 )Q*(1+p)

T(a+ (a

(3.3)
+(1+Q7) (pLy + Ls) + (QT + Q5 + T)pLg,] <1.

Then, BVP (1.1) has a unique solution on J.

Proof. Define an operator F : PC'(J,R) — PC'(J,R) by

. kooptioq gyl
s) f(s,x(s))ds + [1+Q ()] D] L %

(Fx)(t) = f (F( )
i1

f(s,x(s))ds

k t; (t
T —t;)Q Q - d
+ [(T—t) Q1 (1) + Qa(t) + (t — tr)] ; L T 1) f(s x(s))ds
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k-1 _o\x2
S 0] S (-t f iy (s x(e)ds
i=1

L) (TF(S) £(5,x(5))ds
(T - s) .
+Q(b) T f(s x(s))ds + [1+ Q1 ()] Z Li(x(£)) + It (x(£))
t

o) Z (T = )1 (x(£)) + a(8) Z I (x(E))+ Z (t— )7 (x(£)).
i=1 i=1 i=1

(3.4)
Now, for x,y € PC(J, R) and for each t € J, we obtain

t (t _ S)afl

|(Fx)(t) - (Fy) (1)] < J |f(s,x(5)) = f(5,5(s))|ds

+|1+91<t>|2f

+ (T = )€1 (£) + o (8) + (£ - ti)|

f(s x(s)) - f(s,y(s))|ds

a=2
Zf (lt"l(aS)1) |£(s,x(s)) = f(s,y(s))|ds

ti

+|1+Ql(t)|Z(tk t)f (ti = Sl) |f(s,x(s)) = f(s,y(s))|ds

o) | f;) — | (%)) - 5, 9())ds

ti

+Ia() f s 206D - Sy s

+ |1+Ql(f)l[§k11 |Li(x(£7)) = Li(y ()| + [ e (x (£)) —Ii(y(ti)ﬂ]
Q1) 21 (T =) (x(1) - I (v ()]

10001 35 11 (1C60) - £ 06))

; Z I ()~ I ()],
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100 - (0 < |y 0@ ape200) + S a5

(

+(1+Q7) (pLy + Ls) + (QT + Q5 + T)pL3] [[x(s) = y(s)]|-
(3.5)
Therefore, by (3.3), the operator F is a contraction mapping. In a consequence of Banach’s

fixed theorem, the BVP (1.1) has a unique solution. Now, our second result relies on the
Burton-Kirk fixed point theorem. O

Theorem 3.3. Assume that (A1)-(A2) hold, and

(A3) there exist constants My > 0, My > 0, M3 > 0 such that || f (¢, u)|| < My, |[Ix(w)|| < My,
I (w)|| < Ms for each u,v € Rand k = 1,2,...,p.

Then the BVP (1.1) has at least one solution on J.

Proof. We define the operators A, D : PC'(J,R) — PC!(J,R) by

(Ax)(t) = [1+Q:(1)] [ﬁ Li(x(£)) + I} (x(t;))]

k-1 k-1 k-1
+Qu(t) (T - t)I (x(8)) +Qa(t) D I (x (1)) + 3 (¢ - t)I; (x(£)),
i=1 i=1 i=1

~ ( _s)a 1 S)a 1
(Dx)(t) = ftk @) 2 f(s,x(s))ds + [1+ Q ()] Z L 1 ~L_ f(s,x(s))ds
(3.6)
+ [(T = t)Qu () + Qa(t) + (£ - )] Z d f(s,x(s))ds
ti1
1+ u0)] Z (t 1) %f(s»c(s))ds
ti
T (T— S)u—l (
+ Q1 (8) . Wf(s ,x(s))ds + Qu(t) L 1) f(s x(s))ds.
It is obvious that A is contraction mapping for
(1+Q7)(pLa+Ls) + (T + Q5 + T)pLs < 1. (3.7)

Now, in order to check that D is completely continuous, let us follow the sequence of the
following steps.
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Step 1 (D is continuous). Let {x,} be a sequence such that x, — xin PC(J,R). Thenfort € J,
we have

(05~ D01 < [ LoD 50,0 - 6530 s

)

Qi) _Z j s o) - s, x(5) s

+ (T = t)Qq (1) + Qo (t) + (£ — ty)]

-1

ti S)a 2
J; Ta 1) | f(s,xu(s)) = f(s,x(s))|ds

a—

k-1 ti (t S) 2
013 ) j E T (s xn(5)) = £, (0] ds

+ |Q1(t)|f (T |f(s xu(s)) = f(s,x(s))|ds

a-2
1001 | L o - s xto s
(3.8)
Since f is continuous function, we get
(D) (8) = (Dx)(H)]| — 0 as n — co. (3.9)

Step 2 (D maps bounded sets into bounded sets in PC(J, R)). Indeed, it is enough to show
that for any r > 0, there exists a positive constant / such that for each x € B, = {x € PC(J,R) :
llx|| < 7}, we have ||D(x)|| < I. By (A3), we have for each t € |,

ool [ & S)“ :

t

+|1+Ql(t)|2ft

|f(s,x(s))|ds

S)u 1

|f(s,x(s))|ds

-1

a-2
+ (T = t) Q1 (£) + Qo (t) + (£ — tr)] Z J S)l) |f(S X(S))|ds

tig F(a

a—

k-1 L t; (t S) 2
0] S et [ G xta s
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T a1
+ Q1 (1) t %U(s,x(s)ﬂdsﬂs}z(tﬂ t (17:( 0 |f(s x(s))|ds,
M T* M T*!
||D(x)||gr(a1+1)(1+9;)(1+p+zpa)+ Fl(a) Q(1+p) =1
(3.10)

Step 3 (D maps bounded sets into equicontinuous sets in PCY(J,R)).Let 1,7 € Ji,0< k < p
with 71 < 7, and let B, be a bounded set of PC!(J, R) as in Step 2, and let x € B,. Then

|(Dy)(z2) - D)w)| < [ |(Dy)'(9)]ds < Lima 70, (311)
where
a-2 a-1
(D) (1)] < (F( | £ (s, x(s))|ds + [ 0)] Z L F(S)) |£(s, x(s))|ds

+ (T = 1) Q| (F) + Q5 () + 1] Z 1) |f(s x(s))|ds

tiq

k-1 ti a-2
+ Q)] D (k& _ti)J‘t (r S) |f(s x(s))|ds
i=1 i-1

a-1
+ Q| ( t)|jt (Tr(s)) |f(s,x(s))|ds + |2, (t)|J‘t (T-s) - 1) |f(s x(s))|ds,
M, T

. M
< F(a+1)Q T(1+p+2pa)+

(1+Q )(1+p):=L.
(3.12)
This implies that A is equicontinuous on all the subintervals Ji, k = 0,1,2,...,p. Therefore,

by the Arzela-Ascoli Theorem, the operator D : PC'(J,R) — PC'(J,R) is completely
continuous. O

To conclude the existence of a fixed point of the operator A + D, it remains to show
that the set

= {xeX;xzj\A(;) + AD(x) for some A € (0,1)} (3.13)

is bounded.
Letx € ¢, foreacht € J,

x(t) = AD(x)(f) + AA(%) (t). (3.14)
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Hence, from (A3), we have

s)a 1

S T(a)

t (t _ S)a—l

OISy IflexE)lds + AL+ )] Z J ;

|f(s,x(s))|ds

t

t; a-2
+ (T = ) Q1 (1) + Qo (t) + (t — tr)| Z J‘ tizs) |f(s,x(s))|ds

‘o F(a 1)

S)

a-2
+ A1+ Qq(b)] Z (tk—t)J‘ |f(s x(s))|ds

S)u 1

ST

S)a 2

+)u|£21(t)|J‘t -9 |f(s,x(s))|ds+A|Qz(t)|jt -5~ |f(s,x(s))|ds

COREC)
(4 >>
)

(9))- e
Q§(1+P)

(1+Q*)(1+p+2pa)+M

k

+A|1+Ql(t)|[z

i=1

+ Qi ()| Z (T -t)

4

k-1
+ M) D) |1
i=1

M T*
[(a+

(Bl < [ T(a)

+(1+ Q7)) (pMa + M3) + (T + Q5 + T)pM3].

Consequently, we conclude the result of our theorem based on the Burton-Kirk fixed point
theorem.

4. An Example

Consider the following impulsive fractional boundary value problem:

C3/2 B sin 2¢|x(t)| 1
D x(t)_ (t+5)2(1+|x(t)|)/ tE[O,l], t#3/
1\ |x(17/3)] 1\ IX(/3) (4.1)
Ax<§> T 15+ |x(1-/3) Ax <3> 10+ [0(1-/3)

x(1) =5x(0) — 2x'(0), x'(1) = x(0) + 4x'(0).
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Here,a =5b=-2,c=1,d=4a=3/2,T =1,p = 1. Obviously, L; = 1/25, L, = 1/15,
L3 =1/10, Q] = 4/15, Q} = 7/15. Further,

Ia+1)

[ L 17 (1+Q*)(1+p(1+L2)+2pa+L3)+ r(

) Q*(l +p) + (T +Q; +T)pL3]

(4.2)
464 173

== 4y
11257 = 450

Since the assumptions of Theorem 3.2 are satisfied, the closed boundary value problem (4.1)
has a unique solution on [0, 1]. Moreover, it is easy to check the conclusion of Theorem 3.3.
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