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This paper considers a perturbed Markov-modulated risk model with two-sided jumps, where
both the upward and downward jumps follow arbitrary distribution. We first derive a system of
differential equations for the Gerber-Shiu function. Furthermore, a numerical result is given based
on Chebyshev polynomial approximation. Finally, an example is provided to illustrate the method.

1. Introduction

The risk model with two-sided jumps was first proposed by Boucherie et al. [1] and has been
further investigated by many authors during the last few years. For example, Kou and Wang
[2] studied the Laplace transform of the first passage time and the overshoot for a perturbed
compound Poisson model with double exponential jumps. Xing et al. [3] extended the results
of Kou and Wang [2] to the case that the surplus process with phase-type downward and
arbitrary upward jumps. Zhang et al. [4] assumed that the downward jumps follow arbitrary
distribution and the upward jumps have a rational Laplace transform. They derived the
Laplace transform of the Gerber-Shiu function by using the roots of the generalized Lundberg
equation. Under the assumption that the upward jumps follow Laplace distribution and
arbitrary downward jumps, Chi [5] obtained a closed-form expression for the Gerber-Shiu
function by applying Wiener-Hopf factorization technique. The applications of the model
in finance were also discussed. Jacobsen [6] studied a perturbed renewal risk model with
phase-type interclaim times and two-sided jumps, where both the jumps have rational
Laplace transforms. Based on the roots of the Cramér-Lundberg equation, the joint Laplace
transform on the time to ruin, and the undershoot at ruin were given. However, in all the
aforemetioned papers, the topic that the jumps in both directions are arbitrary distributions is
still not discussed. The Markov-modulated risk model (Markovian regime switching model)
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was first proposed by Asmussen [7] to extend the classical risk model. Since then, it has
received remarkable attention in actuarial mathematics, see, for example, Zhu and Yang
[8, 9], Zhang et al. [4], Ng and Yang [10], Li and Lu [11], Lu and Tsai [12], and references
therein. Motivated by the papers mentioned above, in this paper, we will study the Markov-
modulated risk model with two-sided jumps.

Let {J(t), t ≥ 0} be a homogenous, irreducible, and recurrent Markov process with
finite state space E = {1, 2, . . . , n}. Denote the intensity matrix of {J(t), t ≥ 0} by A = (αij)

n
i,j=1

with
∑n

j=1 αij = 0 and αii := −αi = −∑n
j /= i αij for i ∈ E. Let {Xi, i = 1, 2, . . .} be a sequence

of independent random variables representing the jumps, and B(t) be a standard Brownian
motion with B(0) = 0. Here we assume that the premium rates, claim interarrival times, the
distributions of the jumps, and the diffusion parameter are all influenced by the environment
process {J(t), t ≥ 0}. When J(t) = i, the premium rate is ci, jumps arrive according to a
Poisson process with intensity λi, the diffusion parameter is σi > 0, and the size of the jumps
which arrives at time t follows the distribution Fi with density fi and finite mean μi. Then the
Markov-modulated diffusion risk model {U(t), t ≥ 0} is defined by

U(t) = u +
∫ t

0
cJ(s)ds −

N(t)∑

j=1

Xj +
∫ t

0
σJ(s)dB(s), (1.1)

where u ≥ 0 is the initial surplus. If we denote the stationary distribution of {J(t), t ≥ 0} by
π = (π1, π2, . . . , πn), then the positive security loading condition is given by

n∑

i=1

πi
(
ci − λiμi

)
> 0. (1.2)

In this paper, we further assume that the jumps in (1.1) are two-sided. The upward
jumps can be explained as the random income (premium or investment), while the
downward jumps are interpreted as the random loss. In this case, the density function is
given by

fi(x) = pifi,d(x)I(x ≥ 0) + qifi,u(−x)I(x < 0), for J(t) = i, i = 1, 2, . . . , n, (1.3)

where 0 < pi ≤ 1, pi + qi = 1, I(·) is the indicator function, fi,d and fi,u are two arbitrary
functions on [0,∞).

Let T = inf{t ≥ 0 : U(t) ≤ 0} (∞ otherwise) be the time to ruin. For δ ≥ 0, let

φi(u) = E
[
e−δTω(U(T−), |U(T)|)I(T <∞) | J(0) = i,U(0) = u

]
, u ≥ 0, (1.4)

be the Gerber-Shiu function at ruin given that the initial state is i, where ω(x1, x2) is a
nonnegative penalty function, U(T−) is the surplus immediately prior to ruin, and |U(T)|
is the deficit at ruin. Without loss of generality, we assume that ω(0, 0) = 1. Thus φi(0) = 1 for
i = 1, 2, . . . , n. When ω = 1, (1.4) reduces to the Laplace transform of the time to ruin

ψδ,i(u) = E
[
e−δT I(T <∞) | J(0) = i,U(0) = u

]
, u ≥ 0, (1.5)
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when ω = 1 and δ = 0, (1.4) reduces to the probability of ruin

ψi(u) = P(T <∞ | J(0) = i,U(0) = u), u ≥ 0. (1.6)

The purpose of this paper is to present some numerical results on the Gerber-
Shiu function for the Markov-modulated diffusion risk model with arbitrary upward and
downward jumps. In Section 2 we derive a system of integrodifferential equations and
approximate solutions for φi(u). Numerical example is given in the last section.

2. Integrodifferential Equations and Approximate Solution

Theorem 2.1. For u ≥ 0, φi(u) (i = 1, 2, . . . , n) satisfies the following integrodifferential equation

σ2
i

2
φ′′
i (u) + ciφ

′
i(u) − (λi + δ)φi(u) +

n∑

k=1

αikφk(u)

= −λi
∫∞

−∞
φi
(
u − y)f(y)dy

= −λipi
∫u

0
φi
(
u − y)fi,d

(
y
)
dy − λiqi

∫∞

0
φi
(
u + y

)
fi,u
(
y
)
dy −ωi(u),

(2.1)

where

ωi(u) = λipi

∫∞

u

ω
(
u, y − u)fi,d

(
y
)
dy, (2.2)

with boundary conditions

φi(0) = 1,

φi(∞) = 0.
(2.3)

Proof. Similar to Ng and Yang [10].

Remark 2.2. When n = 1, (2.1) is identical to (3.2) in Zhang et al. [4].

Clearly, (2.1) is a system of second order linear integrodifferential equations of
Fredholm-Volterra type. As is well known, it is very difficult to find analytical solution of
this system. Motivated by Akyüz-Dascioglu [13], we will study an alternative system defined
on [0, 1] by Chebyshev collocation method. First, we transform the interval [0,∞) to [0, 1].
Following Diko and Usábel [14], we set u = h(x), that is, h : [0, 1] → [0,∞). Furthermore,
we assume that h is an arbitrary strictly monotone, twice continuously differentiable function
throughout the paper.



4 Abstract and Applied Analysis

Theorem 2.3. Let h(x) be a monotone increase function and χi(x) = φi(h(x)) for x ∈ [0, 1]. Then
χi(x) satisfies the following integrodifferential equation

σ2
i

2(h′(x))2
χ′′
i (x) +

(
ci

h′(x)
− σ2

i h
′′(x)

2(h′(x))3

)

χ′
i(x) − (λi + δ)χi(x) +

n∑

k=1

αikχk(x)

+
∫x

0
Ki(x, t)χi(t)dt +

∫1

0
Li(x, t)χi(t)dt +Wi(x) = 0,

(2.4)

where

Ki(x, t) = λi
(
pifi,d(h(x) − h(t)) − qifi,u(h(t) − h(x))

)
h′(t),

Li(x, t) = λiqifi,u(h(t) − h(x))h′(t),
Wi(x) = ωi(h(x)),

(2.5)

with boundary conditions

χi(0) = 1,

χi(1) = 0.
(2.6)

Proof. By the definitions of function h and χi, we have

pi

∫u

0
φi
(
u − y)fi,d

(
y
)
dy + qi

∫∞

0
φi
(
u + y

)
fi,u
(
y
)
dy

= qi

∫1

0
φi(h(t))fi,u(h(t) − h(x))h′(t)dt

+
∫x

0
φi(h(t))

(
pifi,d(h(x) − h(t)) − qifi,u(h(t) − h(x))

)
h′(t)dt

= qi

∫1

0
χi(t)fi,u(h(t) − h(x))h′(t)dt

+
∫x

0
χi(t)

[
pifi,d(h(x) − h(t)) − qifi,u(h(t) − h(x))

]
h′(t)dt.

(2.7)

Substituting (2.7) and χi(x) = φi(h(x)) into (2.1) and simplifying lead to (2.4).
The boundary conditions are direct result of the boundary conditions in Theorem 2.1. This
completes the proof.

Remark 2.4. The existence of the solution for the system of integrodifferential equations (2.4)
can be found in Fariborzi and Behzadi [15].
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According to Akyüz-Dascioglu [13], χi(x) and its derivatives have truncated
Chebyshev series expression

χ
(j)
i (x) =

N∑

r=0

a
(j)
ir T

∗
r (x), i = 1, 2, . . . , n, j = 0, 1, 2, . . . , x ∈ [0, 1], (2.8)

where χ(0)
i (x) = χi(x), a

(0)
ir = air , T

∗
r (x) are shifted Chebyshev polynomials of the first kind

and a(j)ir are the unknown coefficients to be determined.

Let T∗(x) = (T ∗
1 (x), T

∗
2 (x), . . . , T

∗
N(x))	, Ai = (ai0, ai1, . . . , aiN)	, A(j)

i = (a(j)i0 , a
(j)
i1 , . . . ,

a
(j)
iN)	. Then (2.8) can be written in the matrix form

χi(x) = T∗(x)Ai,

χ
(j)
i (x) = T∗(x)A(j)

i = 4jT∗
r(x)M

nA(j)
i , j = 1, 2, . . . ,

(2.9)

where

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
2

0
3
2

0
5
2

· · · N

2
0 0 2 0 4 0 · · · 0

0 0 0 3 0 5 · · · N
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · N
0 0 0 0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(N+1)×(N+1)

, (2.10)

for oddN, and

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
2

0
3
2

0
5
2

· · · 0

0 0 2 0 4 0 · · · N
0 0 0 3 0 5 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(N+1)×(N+1)

, (2.11)

for evenN.
Similarly, the kernel functions Ki(x, t) and Li(x, t) can be expanded to univariate

Chebyshev series

Ki(x, t) = κi(x)T ∗
r (t),

Li(x, t) = �i(x)T ∗
r (t),

(2.12)
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where

κi(x) =
(
1
2
κi,1(x), κi,2(x), . . . ,

1
2
κi,n(x)

)

,

�i(x) =
(
1
2
�i,1(x), �i,2(x), . . . ,

1
2
�i,n(x)

)

,

(2.13)

with κi,r and �i,r are Chebyshev coefficients determined by Clenshaw and Curtis [16].

Theorem 2.5. For 0 ≤ x ≤ 1, an approximate expression for χi(x) is given by

χi(x) = T∗(x)Ai, i = 1, 2, . . . , n, (2.14)

where the column vector Ai can be determined by the following systems

2σ2
i

(
h′
(
xj
))2T

∗(xj
)
MAi +

(
ci

h′
(
xj
) − σ2

i h
′′(xj
)

2
(
h′
(
xj
))3

)

T∗(xj
)
Ai

− (λi + δ)T∗(xj
)
Ai +

n∑

k=1

αikT∗(xj
)
Ak

+
1
2
κi
(
xj
)
Z
(
2xj − 1

)
Ai +

1
2
�i
(
xj
)
ZAi +Wi

(
xj
)
= 0,

T∗(0)Ai = 1,

T∗(1)Ai = 0,

(2.15)

where matrix Z = (zij) with elements

zij =

⎧
⎪⎨

⎪⎩

1

1 − (i − j)2
+

1

1 − (i + j)2
, for even i + j,

0, for odd i + j,
(2.16)
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matrix Z(x) = (zij(x)) with elements

zij(x) =
1
4

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x2 − 2, i + j = 1,
Ti+j+1

i + j + 1
− Ti+j−1
i + j − 1

− 1
i + j + 1

+
1

i + j − 1
+ x2 − 1,

∣
∣i − j∣∣ = 1,

Ti+j+1

i + j + 1
+

T1−i−j
1 − i − j +

T1+i−j
1 + i − j +

T1−i+j
1 − i + j

+2

(
1

1 − (i + j)2
+

1

1 − (i − j)2
)

, for even i + j,

Ti+j+1

i + j + 1
+

T1−i−j
1 − i − j +

T1+i−j
1 + i − j +

T1−i+j
1 − i + j

−2
(

1

1 − (i + j)2
+

1

1 − (i − j)2
)

, for odd i + j

(2.17)

and xj (j = 0, 1, 2, . . . ,N − 1) are collocations.

Proof. Using (2.8) and (2.12), one obtains

∫x

0
Ki(x, t)χi(t)dt =

∫x

0
κi(x)(T∗(t))	T∗(t)Aidt

=
1
2
κi(x)Z(2x − 1)Ai,

∫1

0
Li(x, t)χi(t)dt =

∫1

0
�i(x)(T∗(t))	T∗(t)Aidt

=
1
2
�i(x)ZAi,

(2.18)

Substituting (2.18) into (2.4), we have

2σ2
i

(h′(x))2
T∗(x)MAi +

(
ci

h′(x)
− σ2

i h
′′(x)

2(h′(x))3

)

T∗(x)Ai

− (λi + δ)T∗(x)Ai +
n∑

k=1

αikT∗(x)Ak

+
1
2
κi(x)Z(2x − 1)Ai +

1
2
�i(x)ZAi +Wi(x) = 0,

(2.19)

which is identical to (2.15) in form. Substituting the collocations xj (j = 0, 1, . . . ,N − 1) into
(2.19) leads to (2.15). T∗(0)Ai = 1 and T∗(1)Ai = 0 can be obtained by (2.6).

Example 2.6. To illustration our method, we use the example of Zhang et al. [4]. Let n = 1, c =
2, σ2 = 2, λ = 1, p1 = 0.6, q1 = 0.4, δ = 0.3, the downward jumps are exponentially distributed
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Figure 1: Laplace transform of the time to ruin.

Table 1: Laplace transform of the time to ruin.

u n = 100 n = 200 n = 300 n = 400 n = 500 exact
1 0.4656 0.46863 0.47008 0.47107 0.47177 0.4718
2 0.36228 0.36702 0.36918 0.37053 0.37149 0.3720
3 0.30111 0.30774 0.31072 0.31251 0.31371 0.3152
4 0.24968 0.25892 0.26227 0.26427 0.26594 0.2690
5 0.2054 0.21521 0.22034 0.22272 0.22445 0.2297
6 0.16376 0.17695 0.18356 0.18607 0.18856 0.1961
7 0.12624 0.1439 0.15074 0.15459 0.15713 0.1675
8 0.082052 0.11061 0.12152 0.12482 0.129 0.1430

with parameter 0.3, and the upward jump density is given by f1,u(x) = 0.08e−0.4x + 0.64e−0.8x.
We set u = h(x) = − ln(1 − x) and the collocation points are xj = ((1 + cos(sπ/N))/2) (i =
1, 2, . . . ,N).

Figure 1 shows that the approximate solution is very near to the exact solution for any
initial surplus u. We remark that the horizontal axis in Figure 1 is cos(sπ/N) (i = 1, 2, . . . ,N)
and u = − ln((1 − cos(sπ/N))/2).

From Table 1 we can see that the errors between the approximate solutions and the
exact solutions decrease when N increases. The initial surplus u can also influence the
approximate solution: the bigger u need a biggerN to decrease the error.
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