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We construct a novel reproducing kernel space and give the expression of reproducing kernel
skillfully. Based on the orthogonal basis of the reproducing kernel space, an efficient algorithm is
provided firstly to solve a three-point boundary value problem of parabolic equations with two-
space integral condition. The exact solution of this problem can be expressed by the series form.
The numerical method is supported by strong theories. The numerical experiment shows that the
algorithm is simple and easy to implement by the common computer and software.

1. Introduction

Nonclassical boundary value problems with nonlocal boundary conditions arise naturally
in various engineering models and physical phenomena, for example, chemical engineering,
thermoelasticity, underground water flow, and population dynamics [1–4]. The importance
of boundary value problems with integral boundary conditions has been pointed out by
Samarskiı̆ [5].

Boundary value problems for parabolic equations with an integral boundary condition
are investigated in the literature for the development, analysis, and implementation of
accurate methods [6–11]. Integral boundary conditions of models emerged in previous
literatures can be summed up as

∫b

a

u(x, t)dx = h(t), u(x, t) ∈ [a, b] × [0, T]. (1.1)
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However, Marhoune [12] studied the parabolic equation with a generalized integral
boundary condition (1.2)–(1.4). This model is more universal, and it extended usual integral
boundary conditions. The form is as follows:

∂u(x, t)
∂t

− a(t)∂
2u(x, t)
∂x2

= f(x, t), (x, t) ∈ (0, 1) × (0, T), (1.2)

subject to the initial-boundary value conditions

u(x, 0) = ϕ(x), x ∈ (0, 1),

u(0, t) = u(1, t), t ∈ (0, T),
(1.3)

and the integral condition

∫α

0
u(x, t)dx +

∫1

β

u(x, t)dx = 0, 0 < α < β < 1, α + β = 1, (1.4)

with the function a(t), and its derivatives are bounded on the interval [0, T]: 0 < a0 < a(t) <
a1, 0 < a2 < a′(t) < a3. In the following, we may assume ϕ(x) = 0 because it can be got
from homogeneous boundary conditions. The existence and uniqueness of the solution for
(1.2)–(1.4) have been proved in [12].

A practical model is typed by various definite conditions under different environment.
Investigation about the definite conditions is the key problem to the model. Due to
condition (1.4), it is difficult to construct reproducing kernel space, so nobody gives
the algorithm for the above problem by applying reproducing kernel theory. In this
paper, the author successfully constructs a novel reproducing kernel space which includes
boundary conditions (1.3)-(1.4) and gains the expression of the reproducing kernel skillfully.
Meanwhile, we provide a simple algorithm for solving (1.2)–(1.4). Based on the orthogonal
basis in the reproducing kernel space, the exact solution is given by the form of series.
Meanwhile, using a similar process, it is possible to solve other linear ordinary differential
equations, partial differential equations with the same boundary value conditions.

2. Constructive Method for the Reproducing Kernel Space H0(Ω)

H(Ω) andH0(Ω)(Ω = [0, 1] × [0, T]) are inner product spaces andH0(Ω) ⊂ H(Ω), and they
are defined in the following.

Definition 2.1. The inner product spaceH(Ω) is defined by

H(Ω) =
{
u(x, t) | ∂3

x2t
u(x, t) is absolutely continuous, u(x, 0) = 0,

u(0, t) = u(1, t), ∂5
x3t2

u(x, t) ∈ L2(Ω)
}
.

(2.1)
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The inner product ofH(Ω) is defined by

〈u(x, t), v(x, t)〉H =
1∑
j=0

[
1∑
i=0

∂
j+i
tjxi
u(0, 0)∂j+i

tjxi
v(0, 0) +

∫1

0
∂
j+3
tjx3

u(x, 0)∂j+3
tjx3

v(x, 0)dx

]

+
1∑
i=0

∫T

0
∂2+i
t2xi
u(0, t)∂2+i

t2xi
v(0, t)dt +

∫T

0

∫1

0
∂5
t2x3

u(x, t)∂5
t2x3

v(x, t)dx dt.

(2.2)

And it possesses associated norm ‖ · ‖.

Lemma 2.2. Inner spaceH(Ω) is a Hilbert reproducing kernel space. Its reproducing kernel function

K
(
x, y, t, s

)
= R

(
x, y

)
G(t, s), (2.3)

and for any u(x, t) ∈ H(Ω),

u(x, t) =
(
u
(
y, s

)
, K

(
x, y, t, s

))
H, (2.4)

where

R
(
x, y

)
=

{
ry(x), x ≤ y,
rx
(
y
)
, y < x,

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

st(2 + t)
2

− t3

6
, t ≤ s,

ts(2 + s)
2

− s3

6
, t > s,

(2.5)

where

ry(x) =
1

18720

(
18720 + x

(
y − 1

)((
(5 − x)x3(2 + y) − 120

)
y
(
18 +

(
y − 6

)
y
)

−156x4 − 10xy(3 + x)
(
y
(
6 +

(
y − 4

)
y
) − 120

)))
.

(2.6)

This proof can be found in [13–17].
Clearly, one has

(1) G(t, s) = G(s, t), R
(
x, y

)
= R

(
y, x

)
,

(2) ∀s ∈ [0, T], G(0, s) = 0,

(3) ∀y ∈ [0, 1], R
(
0, y

)
= R

(
1, y

)
.

(2.7)

Lemma 2.3. Fix an s ∈ [0, T], G(t, s)(
∫α
0 R(x, y)dy +

∫1
β R(x, y)dy) ∈ H(Ω).

Definition 2.4. The subspaceH0(Ω) is defined by

H0(Ω) =

{
u(x, t) ∈ H(Ω),

∫α

0
u(x, t)dx +

∫1

β

u(x, t)dx = 0

}
. (2.8)
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Obviously, H0(Ω) is a closed subspace of the reproducing kernel H(Ω). It is very
important to obtain the representation of reproducing kernel in H0(Ω), which is the base of
our algorithm. Therefore, our work begins with some lemmas to provide constructivemethod
for reproducing kernel inH0(Ω).

Lemma 2.5. Fix an s ∈ [0, T], G(t, s)(
∫α
0 R(x, y)dy +

∫1
β R(x, y)dy)/≡ 0.

Proof. Otherwise, for all u(x, t) ∈ H(Ω), by (2.4),

∫α

0
u(x, t)dx+

∫1

β

u(x, t)dx=
∫α

0

〈
u
(
y, s

)
, R

(
x, y

)
G(t, s)

〉
Hdx+

∫1

β

〈
u
(
y, s

)
, R

(
x, y

)
G(t, s)

〉
Hdx

=

〈
u
(
y, s

)
, G(t, s)

(∫α

0
R
(
x, y

)
dx +

∫1

β

R
(
x, y

)
dx

)〉
H

≡ 0,

(2.9)

then u(x, t) ∈ H0(Ω), which is contradictory.

Lemma 2.6. Fix an s ∈ [0, T],G(t, s)(
∫α
0 R(x, y)dy+

∫1
β R(x, y)dy) /∈ H0(Ω), namely,

∫α
0 [

∫α
0 Rdy+∫1

β Rdy]dx +
∫1
β[
∫α
0 Rdy +

∫1
β Rdy]dx /= 0.

Proof. Otherwise, for all u(x, t) ∈ H0(Ω) ⊂ H(Ω), then

0 =
∫α

0
u(x, t)dx +

∫1

β

u(x, t)dx

=
∫α

0

〈
u
(
y, s

)
, R

(
x, y

)
G(t, s)

〉
Hdx +

∫1

β

〈
u
(
y, s

)
, R

(
x, y

)
G(t, s)

〉
Hdx

=

〈
u
(
y, s

)
, G(t, s)

(∫α

0
R
(
x, y

)
dx +

∫1

β

R
(
x, y

)
dx

)〉
H

,

(2.10)

which implies that G(t, s)(
∫α
0 R(x, y) +

∫1
β R(x, y)) ≡ 0, and this contradicts with Lemma 2.5.

Consider a function

K0
(
x, y, t, s

)
= K

(
x, y, t, s

)
+G(t, s)

(∫α
0 Rdy +

∫1
β Rdy

)(∫1
β Rdx − ∫α

0 Rdx
)

∫α
0

[∫α
0 Rdy +

∫1
β Rdy

]
dx +

∫1
β

[∫α
0 Rdy +

∫1
β Rdy

]
dx

, (2.11)

and one can check carefully that K0(x, y, t, s) ∈ H0(Ω) is the reproducing kernel ofH0(Ω).

3. An Orthogonal Basis of H0(Ω)

Let an operator L : H0(Ω) → L2(Ω), putting

(Lu)(x, t) = ∂tu(x, t) − a(t)∂2x2u(x, t), (3.1)
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rewriting (1.2)–(1.4) as

(Lu)(x, t) = f(x, t),

u(x, 0) = 0, u(0, t) = u(1, t),∫α

0
u(x, t)dx +

∫1

β

u(x, t)dx = 0.

(3.2)

Lemma 3.1. L is a bounded linear operator.

Proof. Noting that

|∂tu(x, t)| =
∣∣∣〈u(y, s), ∂tK0

(
x, y, t, s

)〉
H0

∣∣∣ ≤M1‖u‖H0
,

∣∣∣∂2x2u(x, t)
∣∣∣ =

∣∣∣∣
〈
u
(
y, s

)
, ∂2

x2
K0

(
x, y, t, s

)〉
H0

∣∣∣∣ ≤M2‖u‖H0
,

(3.3)

whereM1,M2 are positive real numbers,

‖Lu‖2L2 =
∫T

0

∫1

0
((Lu)(x, t))2dx dt =

∫T

0

∫1

0

(
∂tu(x, t) − a(t)∂2x2u(x, t)

)2
dx dt

≤
∫T

0

∫1

0

(
|∂tu|2 + a2(t)

∣∣∣∂2x2u
∣∣∣2 + 2|a(t)||∂tu|

∣∣∣∂2x2u
∣∣∣
)
dx dt.

(3.4)

Combining with the bounded function a(t), it holds that L is a bounded linear operator.

We will choose and fix a countable dense subset S = {(x1, t1), (x2, t2), . . .} ⊂ Ω and
define ψi(x, t) by

ψi(x, t)
def=

(
L(y,s)K0

(
x, y, t, s

))
(xi, ti). (3.5)

Lemma 3.2. Consider the following: ψi(x, t) ∈ H0(Ω), i = 1, 2, . . ., (see [11]).

Lemma 3.3. The function system {ψi(x, t)}∞i=1 is a complete system of the spaceH0(Ω).

Proof. For every i, we have

0 =
〈
u(x, t), ψi(x, t)

〉
H0

=
〈
u(x, t),

(
L(y,s)K0

(
x, y, t, s

))
(xi, ti)

〉
H0

= L(y,s)

(〈
u(x, t), K0

(
x, y, t, s

)〉
H0

)
(xi, ti) = L(y,s)

(
u
(
y, s

))
(xi, ti)

= (Lu)(xi, ti),

(3.6)

which shows that (Lu)(x, t) = 0 due to the denseness of S. It follows that u(x, t) ≡ 0 from the
existence of L

−1.
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Applying Gram-Schmidt process, we obtain an orthogonal basis {ψ̃i(x, t)}∞i=1 ofH0(Ω),
such that

ψ̃i(x, t) =
i∑

k=1

βikψk(x, t), (3.7)

where βik are orthogonal coefficients.

4. Numerical Algorithm

In this section, it is explained how to deduce the exact solution from the orthogonal basis
{ψ̃i(x, t)}∞i=1 ofH0(Ω).

Theorem 4.1. The exact solution of (3.2) can be expressed by

u(x, t) =
∞∑
i=1

i∑
k=1

βiku(xk, tk)ψ̃i(x, t). (4.1)

Proof. The exact solution u(x, t) can be expanded to a Fourier series in terms of normal
orthogonal basis ψ̃i(x, t) inH0(Ω),

u(x, t) =
∞∑
i=1

〈
u(x, t), ψ̃i(x, t)

〉
H0
ψ̃i(x, t)

=
∞∑
i=1

i∑
k=1

βik
〈
u(x, t), ψk(x, t)

〉
H0
ψ̃i(x, t)

=
∞∑
i=1

i∑
k=1

βik
〈
u(x, t),

(
L(y,s)K0

(
x, y, t, s

))
(xk, tk)

〉
H0
ψ̃i(x, t)

=
∞∑
i=1

i∑
k=1

βikL(y,s)

(〈
u(x, t), K0

(
x, y, t, s

)〉
H0

)
(xk, tk)ψ̃i(x, t)

=
∞∑
i=1

i∑
k=1

βik(Lu)(xk, tk)ψ̃i(x, t)

=
∞∑
i=1

i∑
k=1

βikf(xk, tk)ψ̃i(x, t).

(4.2)

We obtain the n-truncation approximate solution of (3.2),

un(x, t) =
n∑
i=1

i∑
k=1

βikf(xk, tk)ψ̃i(x, t), (4.3)

which is n-truncation Fourier series of the exact solution u(x, t) in (3.2), so un(x, t)
‖·‖H0→

u(x, t), as n → ∞.
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Table 1: Numerical results.

(x, t) u(x, t) |(u − u25)/u| |(u − u100)/u| |(u − u400)/u|
(0.00,0.0001) 0.000700035 0.000000000 2.45579E − 10 1.12923E − 9
(0.95,0.05) 0.187934 0.000230442 0.0000112112 1.94207E − 6
(0.85,0.15) −0.241376 0.0000224685 6.90183 E − 6 1.36152E − 6
(0.75,0.25) −1.36687 0.00086302 0.0000715374 7.60769E − 8
(0.65,0.35) −2.7296 0.00322583 0.000250607 5.17148E − 7
(0.55,0.45) −3.87049 0.00287117 0.000571766 1.33238E − 6
(0.45,0.55) −4.34049 0.00517334 0.000894053 2.81685E − 6
(0.35,0.65) −3.71389 0.00142632 0.000913571 5.62867E − 6
(0.25,0.75) −1.60569 0.00213525 0.000480841 1.37775E − 5
(0.15,0.85) 2.3062 0.00450865 0.000593452 2.81487E − 6
(0.05,0.95) 8.25283 0.0020922 0.00048678 5.00647E − 6

Theorem 4.2. Consider the following: |un(x, t) − u(x, t)| → 0, as n → ∞.

Proof. Since K0(x, x, t, t) is continuous on Ω, it follows that K0(x, x, t, t) ≤ C, for all (x, t) ∈
Ω, where C is a constant. When ‖un − u‖H0

→ 0,

|un(x, t) − u(x, t)| =
∣∣∣〈un(x, t) − u(x, t), K0

(
x, y, t, s

)〉
H0

∣∣∣
≤ ‖un − u‖H0

∥∥K0
(
x, y, t, s

)∥∥
H0

=
√
K0(x, x, t, t) ‖un − u‖H0

−→ 0.

(4.4)

5. Numerical Example

In this section, a numerical example is studied to demonstrate the accuracy of the present
algorithm. The example is computed by Mathematica 5.0. Results obtained by the algorithm
are compared with the analytical solution and are found to be in good agreement.

Example 5.1. Consider a three-point boundary value problem of parabolic equations with
two-space integral condition

∂u(x, t)
∂t

− sin t
∂2u(x, t)
∂x2

= et
(
7 − 36x + 36x3

)
− 216

(
et − 1

)
x sin(t),

u(x, 0) = 0, x ∈ (0, 1),

u(0, t) = u(1, t),
∫1/3

0
u(x, t)dx +

∫1

2/3
u(x, t)dx = 0, t ∈ (0, 1).

(5.1)

The exact solution is u(x, t) = (et − 1)(7 − 36x + 36x3). The numerical results are collected in
Table 1.
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6. Conclusion

In this paper, we construct a reproducing kernel space by newmethod, inwhich each function
satisfies boundary value conditions of considered problems. In this space, a numerical
algorithm is presented for solving a class of parabolic equations with two-space integral
boundary condition. Exact solution with series form is given. Approximate solution obtained
by present algorithm converges to exact solution uniformly.
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