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We consider the nonlinear Petrovsky plate model under the presence of long-time memory. Under
suitable conditions, we show that the energy functional associated with the equation decays
exponentially or polynomially to zero as time goes to infinity.

1. Introduction

Let Q be a bounded domain of R? with a sufficiently smooth boundary I' = Iy U Ty. We will
assume that Iy N I'; = @ and Iy, I'; have positive measures. The vector v = (v1,1,) is the unit
exterior normal and 7 = (—v,, v1) represents the tangential direction to I'. Here, the variable w
represents displacement of a plate occupying the domain . The governing equation is given
by

W' (t) — yAw' (t) + A%w(t) + A? foo h (s)w'(s)ds
0 (1.1)

= div[C(o(t))Vw(t)] in Qx (0,0),

where the notations w!(s) = w(t-s), ' = d;. The positive constant y is the proportional to the
thickness of the plate, h(t) is relaxation function, div stands for scalar divergence of a vector
field, the stress resultant o(t) is given by

o(t) = f(Vaw(t)), (1.2)
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and the nonlinear function f : R> — M is defined as f(s) = (1/2)s@s forall s € R%. Cisa
linear operator defined on M with value on M, the space of 2 x 2 symmetric matrices, and
defined as

C(o) = 7

ﬁ [(utro)I +(1-p)o] (1.3)

for any o € M, where I is the identity matrix and tr o denotes the trace of 0. Moreover, d > 0
is the density of the shell, E > 0 denotes the Young modulus, and p (0 < p < 1/2) is the
Poisson’s ratio.

With (1.1), we associate the boundary conditions on the portion of the boundary I'y,

w=03,w=0 on Tx(0,00), (1.4)

and the boundary conditions on the remaining portion of the boundary I'y,

Biw(t) + B1I H(s)w'(s)ds=0 on Iy x (0,00),
0

(1.5)
Byw(t) — yo,w" (t) + By Jjo H (s)w'(s)ds — C(c(t))v-Vw(t) =0 on Ty x (0,0),
where
Biw = Aw + (1 - p)Biw, Byw = dy,Aw + (1 — )0, Byw (1.6)
and the boundary operators B; and B, are defined by
Biw = 2vivywyy, — vfwyy - v%wxx, Byw = (v% - v%)wxy + V1V (wyy - wxx). (1.7)
With (1.1), we also associate the initial conditions
w(0) =w’, @ (0)=w' inQ, w(s)=x(s), —0<s<0, (1.8)
where
(x(s),'(s)) € L <—oo, 0; H° x H2>, (1.9)

the symbol LY denotes the subspace of L* such that there exists a constant T such that the
functions vanish as s < -T.

This problem has its origin in the mathematical description of viscoelastic materials. It
is well known that viscoelastic materials exhibit natural damping, which is due to the special
property of these materials, to retain a memory of their past history.From the mathematical
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point of view, these damping effects are modeled by integro-differential operators. Therefore,
the dynamics of viscoelastic materials are of great importance and interest as they have wide
applications in natural sciences. From the physical point of view, the problem (1.1) describes
the position w(x, y,t) of the material particle (x, y) at time ¢, which is clamped in the portion
I of its boundary.

Models of Petrovsky type are of interest in applications in various areas in
mathematical physics, as well as in geophysics and ocean acoustics [1, 2]. The Petrovsky
type models without memory were discussed in [3, 4]. Messaoudi [3] considered the initial-
boundary value problem

g + A+ g™ P = ufPu, xeQ, t>0,
u(x,t) = ou(x,t) =0, x€0Q, t>0, (1.10)

u(x,0) =up(x), wu(x,0)=ui(x), x€Q,

established an existence result for (1.10), and showed that the solution continues to exist
globally if m > p, however if m < p and the initial energy is negative, the solution blows up
in finite time. Chen and Zhou [4] proved that the solution of (1.10) blows up with positive
initial energy. Moreover, she claimed that the solution blows up in finite time for vanishing
initial energy under the condition m = 2 by different method.

The Petrovsky type equations with memory arouse the attention of mathematicians to
study them. Alabau-Boussouira et al. [5] discussed the initial-boundary value problem of
linear Petrovsky equation related to a plate model with memory,

t
Uy + A% — f g(t- s)A%u(t,s)ds =0 in Qx (0,0),
0

u=0,u=0 on 0Qx (0,c0), (L.11)

ult:O = Uop, ut|t:() =U; in Q,

and showed that the solution decays exponentially or polynomially as t — +oo if the initial
data is sufficient small. Yang [6] considered the problem in N-dimensional space,

N
Uy + Au+ uy = Z%o,-(uxi) in Q x (0,0),
i=1 O

a_u
on

(1.12)
=0 on [0,00),
00

Ulao =0,

u(x,0) =up(x), u(x,0)=u(x), xeQ,

and proved that under rather mild conditions on nonlinear terms and initial data the above-
mentioned problem admits a global weak solution and the solution decays exponentially to
zero as t — oo in the states of large initial data and small initial energy. In particular, in the
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case of space dimension N = 1, the weak solution is regularized to be a unique generalized
solution. And if the conditions guaranteeing the global existence of weak solutions are not
valid, then under the opposite conditions, the solutions of above-mentioned problem blow up
in finite time. Mufioz Rivera et al. [7] considered the initial-boundary problem for viscoelastic
plate equation,

t
Uy — YAuy + A2u(t) —I g(t- T)A%u(t)dTr =0 in Q x (0,0),
0

u(x,ylo) =u0(xry)f ut(x/ylo) =u1(x,]/) in Q,
u= avu =0 on r() X (01 OO), (]_ 13)

Biu(t) + By Jm g(s)u'(s)ds=0 on T;x (0,00),
0

Bou(t) — yo,u” (t) + Bzf g(s)u!(s)ds=0 on Ty x(0,00),
0

and proved that the first and second order energies associated with its solution decay
exponentially provided the kernel of the convolution also decays exponentially. When the
kernel decays polynomially then the energy also decays polynomially. More precisely if the
kernel g satisfies

g(t) < —cog"" VPN (t), ¢,¢" VP e LI(R) with p>2, (1.14)

then the energy decays as 1/ (1 + ). On the recently related papers concerning the Petrovsky
type models, the readers can see references [8-12].

In [13-15], Li et al. proved the existence uniqueness, uniform rates of decay, and
limit behavior of the solution to nonlinear viscoelastic Marguerre-von Karman shallow shells
system, respectively. To our best knowledge, we do not find the research report on the
problem (1.1) which is considered in this paper.

Motivated by the above work, we obtain the energy functional associated with the
equation decays exponentially or polynomially to zero as time goes to infinity. The main
contribution of this paper are as follows. (a) The problem considered in this paper is nonlinear
equation with integral dissipation, to our knowledge this model has not been considered; (b)
the hypothesis on h and initial data are weaker; (c) we naturally define the energy by simple
computation and only define simple auxiliary functionals to prove our result by precise priori
estimates.

The outline of this paper is the following. In Section 2, we present some material
needed to be proved. Section 3 contains the statement and the proof of our results.
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2. Notations and Preliminaries

In this section, we will prepare some material needed in the proof of our main results. We use
standard Lebesgue space L7 (£2) and Sobolev space H™(£2) and adopt the following notations

(u,v) = (U, ) 12(q2), (u,v) == (U,0) 121, ol = 1wl ) - llull == [lull2(q)-
(2.1)

We denote
d ! !
AP = %;a;(t), SAW = AW =(a0),  AG- B = %;ai,-(t)bij(t),

(A(),B(1) := D, (aij (), by ()
’ (2.2)

for any pair of tensors A(t) = (a;j(t)) and B(t) = (b;;(t)). We introduce the following space
W(Q) = {w € HX(Q), w=9,w =0 on ro}. (2.3)
Define the bilinear form a(-,-) as follows

a(w,v) = f [WxxVxx + Wyy Uy + P(WxxVyy + WyyVsxx) + 2(1 = p) Wiy vy | dx dy. (2.4)
Q

For simplicity, we denote a(w, w) by a(w). For the relaxation function h(t), we assume that

(A1) h:[0,+00) — (0,+c0) is a C? function satisfying

h(t)>0, H(t)<0,  H'(t)>0. (2.5)

(Az) Both h, := h(o0) and h., := h'(o0) exist, and
he >0, K, =0, h(0) = 1. (2.6)

Hypotheses (A1) assure that the viscoelastic energy (defined below) is nonincreasing and the
assumption (A;) means that the material behaves like an viscoelastic solid at t = +oo (cf.
[16]).

Our results are based on the following existence theorem.

Theorem 2.1. One assumes that h(t) satisfies conditions (A1)-(Az). For any initial data

(wO, wl) € H3(Q) x HA(Q) (2.7)
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subject to the compatibility conditions satisfied on the boundary I,

V' =Vw!'=0, w'=w’=0 on Iy,

o (2.8)
By <w0 +I h'(s)x(—s)ds) =0 on Ij.
0
Then for any T > O, there exists a unique global solution to (1.1)—(1.10) satisfying
(w,w,w") € L* (o, T; H3(Q) x H2(Q) x H1(9)>. (2.9)

Proof. We can use the method used in [13, 17] to show the existence and uniqueness as well
as the regularity of the global solution. O

At First, the energy of the system must be properly defined. The total energy can be
expected to consist of two parts. One part involves the current kinetic and strain energies,
and the other will involve the past history of strains. To obtain the appropriate expression of
energy functional, using assumption (A;), we rewrite system (1.1) and (1.5) in the form

W (t) — YAW" (t) + hoy A% (t) + A? Jm W (s) [w'(s) —w(t)]ds
0 (2.10)
= div[C(o () Ve (®)] in Qx (0,00),
heBiw(t) + By J-oo W (s)[w'(s) —w(t)]ds =0 on I x (0,00),
0

heByw(t) — y3,0" (t) + B f‘” () [w' () - w(b)] ds (2.11)
0
+C(o(t))v-Vw(t) =0 on I'1 x (0, 0).

In order to define the energy functional, we give the following lemma.

Lemma 2.2. Let w and v be the functions in H*(Q) N W. Then, one has
f <A2w>vdx dy = a(w,v) + f [(Byw)v — (Byw)o,v]dr. (2.12)
Q I
Proof. The definition of a(w, v) gives

f AwAvdxdy = a(w,v) + J [(1 = p) (WxVyy + WyyVxx) = 2(1 = p)Way vy | dx dy.
Q Q
2.13)
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Using Green’s formula, we see

J <A2w> vdxdy = | (0,Aw)ovdl - f Awo,vdl + J‘ AwAvdx dy
Q n Iy Q

= (0yAw)vdl — f Awo,vdl’ + a(w, v)
I T

[ [0 ) (@t 4 0y000) 201 - o dxay,

fQ [(WaxVyy + WyyVrx) = 2WxyUxy|dx dy = L (WixVy V2 + Wy, vxv1)dl
1
- J‘Q (WixyVy + Wiyyvx)dx dy
- f (WiyVy V1 + Wy UV )dT
I
+ J‘Q (WxxyVy + Wiyyvx)dx dy
= f (WxxVy V2 + Wy, UV )dl
I
- f (WxyvyV1 + Wy 02 dI.
I
Using
0,0 = UxV1 + Uy, 070 = —UxVy + Uy V1,
we get
Uy = 0,0V — 070Vs, vy = 0,UV) + 0;UV1.

Inserting (2.14) and (2.15) into (2.17) and noting
I

we have

woodl = —I vo;wdl,

F1 l—‘1

we obtain the conclusion.

(2.14)

(2.15)

(2.16)

(2.17)

0, (wv)drl = L 0, (wv)drl = L (wv), dx + (wv), dy = IQ[(wv)yx - (wv)xy] dxdy =0,

(2.18)

(2.19)
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In order to define the energy function E(t) of the problem (1.1)-(1.8), we give the
following computations. Multiplying equation (2.10) by @', integrating the result over Q and
adding Green’s formula, we get from Lemma 2.2 and (1.4) that

J‘ w' (Hw' (Hdxdy + yI Vw'(t) - Vw' (t)dxdy + hea(w(t), w'(t))
Q Q
+ f [@' () (hooBow(t) — yOyw" (1)) — hey 0w (F) Brw(t)] AT
I
+ fo h’(s)(AZwt(s) — Aw(), w'(t))ds (2.20)
=| C(o)Vw(t)-vdl —f C(o(t))Vw(t) - Vw'(t)dxdy
Q

Iy

= f C(o(t))Vw(t) - vdl —f C(o(t)) - Vw'(t) ® Vw(t)dxdy.
I Q

Clearly

(A2wf(s) ~ A%w(t), w'(t)) - - <A2wt(s) ~ A2w(t), W' (s) - w'(t))
(2.21)
+ <A2w'*(s) — A%w(b), w'*(s)).

By applying Lemma 2.2, the first term on the right-hand side of (2.21) equals

—<A2wt(s) - A%w(t), w'(s) - w’(t)> = — %Exa(wt(s) —w(t))
- L [<w't(s) - w’(t)>Bz(wf(s) —w(t))

-0, (w'"(s) = w'(5) ) By (' (s) - w(®)) | dT.

(2.22)
In the same way, the second term on the right-hand side of (2.21) equals
(A2w"(s) — A2w(t), w/*(s)) = - %asa (w'(s) —w(t))
+ f [w't(s)B2 (w'(s) - w(t)) (2.23)
I

-0, (w"(5))Br (w'(s) - w(t))]dr.
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Therefore, from (2.21)-(2.23), we have

(Azwf(s) — A%w(t), w’(t)) = — %ata (w'(s) - w(t)) - %asa (w'(s) —w(?))

+f [@' (1)Ba(w'(s) —w(t)) — 0,w' (t) By (w'(s) —w(t))]dr.
Iy
(2.24)

Note

1d

_% I: W (s)0ia (w'(s) —w(t)) ds = 24t J; K (s)a (w'(s) - w(t))ds. (2.25)

and (by hl, =0)

- r W (s)o.a(w!(s) - w(t))ds = K (s)a (w'(s) ~w(®) |7 + 5 fw H(s)a (w'(s) ~w(t)) ds
0 0

_ % fw H'(s)a(w!(s) - w(t)) ds.
’ (2.26)

Consequently, we conclude form (2.24)—(2.26) that

1d

“ ! 2, .t _ A2 ! - __-“ “ ! t _
L h(s)(A wt(s) - A w(t),w(t))ds 5o L H(s)a (w'(s) —w(t))ds

+ % f: h'(s)a (w'(s) —w(t))ds

. / / £ _
+ jo H (s) Ll [w'(t)B, (w'(s) —w(t))

-0,w' (t)B1 (w'(s) —w(t))]dlds.
(2.27)

Summing (2.20) and (2.27), using the boundary conditions (2.11) together with the
symmetric of o(t) yields

i (1 OF 1T O + haateo(t) - [ W(s)a(e! (5= w(b)ds

N =

} (2.28)
+ J‘ C(o(t)) - Vw'(t) ® Vw(t)dxdy + 1 f h'(s)a(w'(s) —w(t))ds = 0.
Q 2 )o
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Note the relation
f C(o(t)) - Vw'(t) ® Vw(t)dxdy = }L% f C(o(t)) -o(t)dxdy. (2.29)
Q Q

In fact
I C(o(t)) - Vw'(t) ® Vw(t)dxdy
Q

=acf <wxwx+ywywy (1= pwsw, ) Pate Tt dxdy (2.30)
o\ (I-pw,w, wyw,+pw. ws, Wy Wy Wy wy

= af [(wx)3w; + (wy)?’wly + (wy)waw; + (wx)Zwyw/y] dxdy
Q

with a = E/d(1 - y?). Denote o := (5! 512). Hence

21 022

C(o) = a<011 +poy (1- ,11)012>
(1-p)on ox+pon)’
[Clo(t)] - o(t) = a[o},011 + 002 + p(0},02 + 03011) (2.31)
+(1 = p) (01,012 + 05,021) ]

=C(o(®) - [o(],
which implies that

4
dt )

= I [C(o(t)] - o(tdxdy +J‘ C(o(t)) - o' (t)dxdy
Q Q

C(o(t)) -o(t)dxdy
(2.32)
~2[ [Clo®)] - obdxdy
Q

= 4af [(wx)3’w; + (wy)Sw'y + (wy)zwxw; + (wx)zwyw'y]dxdy.
Q

From (2.30) and (2.32), we conclude that (2.29) holds. Combining (2.28) and (2.29), we
conclude that

3 3 |1 O I O + v (o)
- J‘Oo W (s)a (w'(s) —w(t))ds + 1 f C(o(t)) - o(t)dxdy (2.33)
0 2)a

- —% L h'(s)a (w'(s) - w(t))ds.
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The relation (2.33) inspires us to define energy functional as the following

E® = (el + vIvwo]’)

o (2.34)
+ %(hma (w(t)) - f W (s)a (w'(s) —w(t))ds + % f C(o(t)) - G(t)dxdy>.
0 Q
From (2.33) and (2.34), we obtain the following lemma.
Lemma 2.3. Under the above notations and assumptions (A1) and (A,), one has that

d 1 “ " t

—E({t)=-z| h'(s)a(w'(s) —w(t))ds <0. (2.35)

dt 2 ),

3. Main Results

In this section, ¢, ¢, ¢, and ¢; denote some positive constants. Here, we need to point out that
6 denotes the small enough different positive constant and Cs denotes the different positive
constant depending on 6 in a different place, respectively. The main goal of this paper is to
show, respectively, that the solution decays exponentially or polynomially to zero as the time
goes to infinity under suitable conditions. Our main results are formulated below.

Theorem 3.1. Let w be the global solution of the problem (1.1)—(1.8) with the conditions

W) <ch'(H),  —csh'(t) <H'(F) < —cah'(F). (3.1)

Then the energy functional E(t) decays exponentially to zero as the time goes to infinity.
To prove our main result, we will give some important preliminaries.

Lemma 3.2. Assume w € W(Q), functional a(w) and tensor o(t) are defined as above. Then

1) a1V’ < a(w) < o V20
@) IVl < csa(w), q>2
3) |w|? < csa(w)

(4) cslo()? < C(o(t)) - o(t) < cslo ()
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Proof. (1) In fact

a(w) = _[Q{ (Wen)? + (wyy) + 2pwextoyy +2(1 - ) (wxy)z}dx dy

<
-,

a(w) = Lz (wxx)* + (wyy)2 + 22Uty +2(1 - ) (wxy)z}dxdy

{00 + ()" + 1| (010)? + (0)°] +2(1 = o) (0y)* e dy
{0 [ + (i)’] +2(1 - ) (i) fdx dy,

{

> [ {00+ (100)" = b (0000 + (10,0)7] +2(0 - ) 102,)?dxly
= [ {a=m w0+ (0,)] +201- ) (01" Yax y,

“V2w||2 = <V2w, V2w> = IQ[(wxx)z + (wyy)2 + Z(wxy)z] dx dy.

Combining (3.2)—(3.4) and noting 0 < p < 1/2, we finish the desire conclusion (1).

(3.2)

(3.3)

(3.4)

(2) By HY(Q) — L9(Q) (g > 2), the definition of W(Q), and Poincaré inquality, we

know
IV (D) 7u@) < cllw®lin g < clw® g < csalw).
(3) Using Poincaré inequality, we get

[w®| < CllVw(®)ll,

which with conclusion (2) shows the desire result.

(4) Denote o := (ol 52). Hence

C(o) = a<011_+ poyn (1- #)012>,
(1-p)om om+pon

witha =E/d(1 - y?) >0, and

C(o)-0= a[olzl + 0%, + 2u0110 + (1 - p) <0122 + 0221>],

(3.5)

(3.6)

(3.7)

(3.8)
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which imply
al(1-p) (o +0%) + (1-p) (oh + 3]

<C(0) o< a[(l + ) ((7121 + 0%2) +(1-p) <on + 0221>].

(3.9)

From (3.9) and noting 0 < u < 1/2, we obtain the desire conclusion (4).
The proof is completed. O

Lemma 3.3. Suppose w,v € W and a(w,v) is defined as above, then

a(w,v) < da(w,w) + 49—6a(v, v). (3.10)

Proof. In fact, for 77 > 0 small enough,

la(w,v)| < J;} |WxxVsx + Wyy vy + P(WxxVyy + Wyysxx) + 2(1 = ) Wiy Vxy | dx dy
<o {04 [+ ()] #2000 102,)? dxay

+ 4%1 J‘Q{ (1 + ‘l/l) [(Uxx)z + (Uyy)z] + 2(1 - ‘u) (ny)z}dx dy (3.11)

< T [ {0 o] 200 )it
i—ﬁ%q fQ{ (1= 1) @) + (v4)] +2(1 = o) (vzy) } el dy.

Denote & = (1+ ) /(1 - )1, then ((1+ ) /(1 - ))(1/4n) = (1 + p) /(1 - 1))*(1/46). Owing
tol < (1+u)/(1-p) <3, from (3.3) and (3.11), we obtain the conclusion. O

Lemma 3.4. Define the functional
1
o) = 5 fQ [wt)w'(t) + yVw'(t) - Vw(t)]dx dy, (3.12)

then

%(p(t) < %(”w’(t) 1P+ yIve' o) - %(1 —6+ fo h’(s)ds)a(w)
(3.13)

—f C(o(t) -o(t)dxdy + %I |H (s)|a(w'(s) —w(t))ds.
Q 0
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Proof. Multiplying (1.1) with w and integrating the result over €2, we obtain

f (w"(t) —YAW' (t) + A*w + A? Jm W (s)w'(s)ds — div [C(o(t))Vw(t)])wdx dy =0,
Q 0
(3.14)

which with Lemma 2.2 and (1.5) implies

%% I [wt)w'(t) + yVw'(t) - Vw(t)]dxdy
%( |w'(i?)||2 +y||[Ve'(t) ||2) + % fQ [wt)w"(t) + yVw(t) - V' (t)]dx dy
%(”w (t)|| +y||[Ve' (t) || % IQ w(t)(w'(t) - yAw" (t))dx dy + % . wo,w" (t)dl’
= (I OIF +yIve' o))

fQ w(Azw + A2 J? W (s)w'(s)ds

|
NI =

- div[C(o(t))Vw(t)])dxdy + % Ll wd, 0" (£)dT
=2 (IO Y[V ®7) - 5 fQ Clo(t) - V() © Veo(t)dx dy - za(w)
- %a (Jj 1 (s)w!' (s)ds, w) - % . w(t)B, <w + f:o h’(s)wf(s)>dr
+ % . 0, (t)B; <w + f:o h’(s)wf(s)>dr + % . [C(o(t)v - Vw]wdl
+ % frl wd,w" (1)dT = %(”w’(t) I+l Ve )])
-3 | et v o Vwndxay - 3ao) - %a(f:o W(syw!(5)ds, w)
=2 (I OIF + Ve o)) - fQ C(o(t) - o(t)dx dy

- %(1 + J:J h'(s)ds)a(w) - %a(w, J:o H (s)(w'(s) - w(t))ds).
(3.15)

By Lemma 3.3, we know

< %6a(w(t)) + % f:o|h'(s)|a(wt(s) —w(t))ds.
(3.16)

%a(w(t), J:o W (s)(w'(s) - w(t))ds)

Using (3.15)-(3.16), we get the conclusion. O
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Lemma 3.5. Suppose w is the solution of (1.1)—(1.8) and (A1), (Az), and (3.1) hold, then
) (5 W (s)w!(s)ds) = K (0)w(t) + [ 1 (s)w! (s)ds = [° W'(s)[w! (s) — w(t)]ds;
(2) g =0;
3) (J° h"(s)w'(s)ds) = h"(0)w(t) + [ K" (s)w!(s)ds = [° h"(s)[w!(s) — w(t)]ds.

Proof. (1) By the formula of integral by part and (A,), we deduce

(f:o h'(S)wt(S)ds>, - f W ()00 (s)ds = - f : 1 (5)0.w' ()ds

= -H(s)w'(s)|y + J:D h'(s)w'(s)ds = H' (0)w(t) + J‘: h'(s)w'(s)ds

J‘OO H'(s)[w'(s) — w(t)]ds.
0

(3.17)
(2) Using (A;) and (3.1), we infer the conclusion.
(3) By h", = 0 and the formula of integral by part, we get the conclusion (3).
The proof is completed. O

Lemma 3.6. Define the functional
@(t) = Yfr1 0,w' (t) <h'(0)w(t) + J‘OOO h"(s)wt(s)ds> dr

+ f (w'(t) —yAw' (1)) (h’(O)w(t) + J‘C>O h”(s)wt(s)ds>dx dy (3.18)
Q 0

+ %a(Jj h'(s)wt(s)ds>.

then for some 6 (6 > 0) small enough, there exist Cs > 0 and T (T > 0) ast > T the following
inequality holds

d 1 (0)
—(,U(t) < T

- (o' O + Ve ®)]*) + 5fg C(a(t) - o(t)dx dy

) (3.19)
+C5I [H (s)|a(w'(s) —w(t))ds.
0

Proof. Multiplying (1.1) with h'(0)w(t) + jgo 1" (s)w'(s)ds and integrating the result over Q,
we have

J <w”(t) —yAw"(t) + A*w + A? Jm K (s)w'(s)ds - div[C(o(t))Vw(t)])
Q 0
(3.20)

. <h'(0)w(t) + J‘:o h"(s)wt(s)ds>dxdy =0,
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which with Lemma 3.5 gives

% J‘Q (W' (t) - yAW' (1)) (h'(O)w(t) + L h"(s)wt(s)ds> dxdy
= f (w'(t) — yAw" (1)) <h'(0)w(t) + J‘Oo h"(s)wt(s)ds> dxdy
Q 0
! ! ! ! * " t I
+ fg(w (t) —yAw' (1)) [h O)w'(t) + (fo H'(s)w (s)ds> ]dx dy
(3.21)
= —I (Azw + Jm H (s)A%w!(s)ds — diV[C(o(t))Vw(t)]>
Q 0

x (h'(O)w(t) + Jm h"(s)wt(s)ds> dxdy
0
+ f (w'(t) — yAw'(t)) (h'(O)w'(t) +h' (O)w(t) + Jm h"’(s)wt(s)ds>dx dy.
Q 0
By Green formula, we have
f (w'(t) - yAw' (1)) <h'(0)w’(t) +H'(0)w(t) + Jm h’"(s)wt(s)ds) dx dy
Q 0
- 10 / 2 V' 2\ 0, /
O OIF Vel O1F) -y [ o't
x (h'(O)w’(t) + R (0)w(t) + Jw h’"(s)wf(s)ds>dr (3.22)
0
+y Lz Vuw'(t) - <h”(0)Vw(t) + J‘: h'"(s)th(s)ds> dxdy
+ J; w'(t) (h"(O)w + Jj h’"(s)wt(s)ds) dxdy.
Clearly
Y f ot (h’(O)w’(t) + K O)w(t) + f:o h/"(s)w*(s)ds) dr
_ i / l “ " t
-y Ll 3, (f) (h 0)w(t) + J’O H' (s)w (s)ds> dr (3.23)

-y L o,w" (t) <h'(0)w(t) + ’[: h"(s)wt(s)ds) dr.
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Inserting (3.22) and (3.23) into (3.21) yields
d o]
T Lz (w'(t) — yAw'(t)) <h’(0)w(t) + Jo h”(s)wt(s)d5> dx dy
+ y% . o,w'(t) (h’(O)w(t) + J‘;D h”(s)wt(s)ds>d1"
= —f (Azw + Jm W (s) A*w'(s)ds — div[C(o(t))Vw(t)])
Q 0
x <h’(0)w(t) + fo h"(s)wf(s)ds>dx dy + 1 (0) (||w’(t) 1>+ v Ve (1) ||2> (3.24)
" * n t _
+y . 0,w" (t) <.[0 h'(s) [w'(s) —w(t)] >dF
+y fg Vw'(t) - (h"(O)Vw(t) + I:o h’"(s)th(s)ds> dxdy
+ fQ w'(t) <h”(0)w + J? h’”(s)wt(s)ds> dx dy.
Applying Lemma 2.2, Lemma 3.5 and noting a(w, v) = a(v, w), we have

- f (Azw + A2 Jm W (s)w'(s)ds — div[C(a(t))Vw(t)])
Q 0

X (h’(O)w(t) + f:o h"(s)wt(s)ds> dxdy = —a<w, J‘: H'(s) [w'(s) - w(t)]ds)

- %%a(J‘; W (s)w'(s)ds, J:o h'(s)wt(s)ds>

- J; C(o(t))Vw(t) - (J:o H'(s)[Vw'(s) - Vw(t)]ds) dxdy
- Ll [(Bzw) (J? H'(s)[w'(s) - w(t)]ds)
—(B1w)0, (J? h'(s)[w'(s) - w(t)] ds)] dr

- Ll (732 f: W (s)w'(s)ds — (C(o(t))v - Vw(t))) (I:O H'(s)[w'(s) - w(t)]ds> dr

N Ll <731 J? h'(s)wt(s)ds) Oy (J:D H'(s) [w'(s) - w(t)]ds> dr.

(3.25)
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Inserting (3.25) into (3.24) and owing to (1.5) yield

%(p(t) = % fg (w'(t) — yAw'(t)) <h'(0)w(t) + J‘:O h"(s)wt(s)ds>dxdy
! d ! ! “ "
+ 5&“([ W (s)w' (s)ds> + Y3 6 w'(t) (h O)w(t) + L h wt(s)ds>dl"
= 1O ([l O + v V' 0)")
- Lz C(o(t))Vw(t) - (I:O H'(s)[Vw'(s) - Vw(t)]ds) dxdy
- a(w, fo W' (s)[w'(s) - w(t)]ds)
+ yf Vw'(t) - (J‘oo H"(s)[Vw'(s) - Vw(t)]ds>dxdy
Q 0

+ Lz w'(t) (J‘:o h"(s)[Vw!(s) — Vw(t)] ds)dxdy.
(3.26)

Now, we estimate some terms on the right-hand side of (3.26). The Lemma 3.3 and (3.1) imply

a <w, f:o H'(s)[w'(s) —w(t)] ds>

< ba(w,w) + ng | (s)|a(w'(s) —w(t))ds. (3.27)
0
Using Cauchy inequality, Holder inequality, and Lemma 3.2 and noting (3.1), we obtain

|y IQ Vw'(t) - (J:O R (s)[Vw!(s) = Vw(t)] ds)dx dy|

< 6y|| V' (t) ||2 +Cs I:O|h'(s) la(w!(s) —w(t))ds,
(3.28)
U w'(t) <’[ h"(s)[Vw'(s) - Vw(t)]ds) dx dy'

< 6||w’(15)||2 +Cs f:o|h’(s)|a(wt(s) —w(t))ds.
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Applying Holder inequality, Lemma 3.2, and Lemma 2.3, we conclude
U C(o(t))Vw(t) - (j W' (s)[Vw!(s) - Vw(t)]ds)dxdy‘
Q 0
= U C(o(t)) - <f H'(s)Vw(t) ® [Vw'(s) - Vw(t)]ds)dxdy‘
Q 0

<6 f  Clot®) - ot)dxdy +Cs f: |1 () [| Vo ()P [| Veo' () - Veo(t)||*ds

B (3.29)
< 6I C(o(t)) - o(t)dxdy + a(w(t))Cs f |1 (s)|a(w!(s) —w(t))ds
Q 0
< 6I C(o(t)) - o(t)dxdy + LE(O)as Iw|h/(s)|a(wt(s) —w(t))ds
Q he 0
= SI C(o(t)) - o(t)dxdy + Cs f |H' (s)|a(w'(s) - w(t))ds.
Q 0
Combining (3.26)—(3.29), we conclude that
D) < PO (| + | ver o)
B (3.30)
+ 6f C(o(t)) -o(t)dxdy + ng |H (s)|a(w'(s) —w(t))ds.
Q 0
The proof is completed. O
Proof of Theorem 3.1. Let
F(t) = PE(t) + Qg(t) + Rys(1). (331)
By Lemma 2.3, Lemma 3.4, and Lemma 3.6 and noting (3.1), we have
FH)< -Ps fm W (s)a(ew'(s) - w(®))ds + Q5 (Il I + ¥ Va0 (1))
=772, 2 Y
- Q% (1 -0+ J:O h’(s)ds) a(w(t)) -Q L} C(o(t)) -o(t)dxdy
9 (* K (0) 2 L2
— H t(s) - ds+ R ' \Y
+Qgz fo |H(s)]a(w!(s) = w(t)ds + R—= (||« ®)[|" + y]| Veo' O)*) .

+R6 f C(o(t)) - o(t)dxdy + RCs Jm |H (s)|a(w'(s) - w(t))ds
Q 0
< Ki([w O + vV 0)]) + Kaa(eo(t)

+ K3 Lz C(o(t)) x o(t)dxdy + Ky J‘w|h'(s)|a(wt(s) —w(t))ds,
0
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with

[oe]

1, 1 1
K1 B ERh (0)+§Q, Kz——§Q<1—6+f

h’(s)ds) = —%Q(hQo -0), Ks;=-Q+R6,
0

1. 90
Ky = —EPC3+g+RC6.

(3.33)

Fixing R = 1, 6 = (1/2) min{h,, - (0)} > 0, Q = (1/2)(6 - W' (0)) > 0, P > 9Q/4bc;3 +
2(Cs/c3) > 0, we obtain K; <0, i =1,2,3,4. Under the conditions, we obtain from (2.34) and
(3.32) that there exists a positive & > 0 such that

%F(t) < —aE(t). (3.34)

Fixing a large enough positive constant P, we prove F(t) and E(t) are equivalent, that is,
M, E(t) < F(t) < MyE(t) (3.35)
with M;, M, > 0. Indeed, using Cauchy inequality, Lemma 3.2, and (2.34), we have

|Ro(t)| = '% fg(w(t)w’(t) +yVw'(t) - Vw(t))dxdy|

< L[ IO + YIVao 0l + [ @) + Y[V 0] < Catao(t) + EE®) < cE).
(3.36)

Using the definition of ¢(t) and Green’s formula, we infer

vt = | wo ([ WE k' - w]ds)drdy

+ Lz yVw'(t) - <J':O W' (s)[Vw!(s) - Vw(t)] ds)dxdy + %a(J‘: h'(s)wt(s)ds)
(3.37)
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Applying Cauchy inequality, Lemma 3.2 and noting (3.1), we conclude that

L; w'(t) (L W' (s)[w'(s) - w(t)]ds) dxdy
+ j yVw'(t) - <J‘Oo h'(s)[Vw'(s) - Vw(t)]ds) dx dy
Q 0
<6llw' @] +y6 Ve )]

+Cs J? |H (s)|a(w'(s) —w(t))ds,

(3.38)
%aqj h’(s)wf(s)ds> < c‘ v? <(h(0) — ho)w(t)ds
+ f:o H (s) [w!(s) - w(t)]) ’ (3.39)
< catw(t) +¢ [ W(6)| (! () = (0.
Relations (3.37)-(3.39) imply that
lg(t)| < cE(t). (3.40)

Fixing a large enough positive constant P, inequalities (3.36) and (3.40) show (3.35) hold.
Relations (3.34) and (3.35) imply that there exists a positive constant > 0 such that

%F(t) < -pF(t), (3.41)

which with Gronwall’s inequality gives
F(t) < F(0)e . (3.42)

Combining (3.35) and (3.42), we finish the proof. O

Theorem 3.7. Assume that w is the global solution of (1.1)—(1.8) with condition C|h'(t)|"*/P) <
h"t),p > 2. Then for some T > O there exists a positive constant C, such that

E(t) < (3.43)

1+t

In order to prove Theorem 3.7, we quote the following technical lemma.
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Lemma 3.8. Suppose that w € L*(0, co; H*(Q)) and g is a continuous function and there exists
0 < 0 <1, such that

foo g1 %(s)ds < oo. (3.44)
0

Then, there exists C > 0 such that

f: g(s)a(w'(s) —w(t))ds

© 1/(6p+1)
<C { (L gl“’(S)d5> IIUIIim(O,T;HZ(Q))} (3.45)
*® Op/ (Op+1)
x {J gl+(1/P)(s)a(wt(s) - w(t))dxdy}
0
Proof. Applying Holder inequality, we obtain
f g(s)a(w'(s) —w(t))ds
0
® o 1/(6p+1)
< {f lg(s)] " a(w!(s) - w(t))ds}
0
t Op/ (Op+1)
x {f |8 a(w'(s) - w(t))ds} (3.46)
0
® 1/(6p+1)
1-6 2
<cf ([ 5065 Il v }
®© Op/(Op+1)
’ { f g WP (s)a(w! (s) - w(t))ds}
0
This completes the proof of Lemma 3.8. O

Proof of Theorem 3.7. From the hypothesis c|h' ()P < w'(t), we have [|h’|_1/p(t)]l > c/p.
Integrating the above inequality over [0, {], we get

|[H|(t) <c;(1+1)7P,  ¢7>0. (3.47)

Fixing 0 = 1/2 in Lemma 3.8, then (1 - 0)p = p/2 > 1, hence we obtain

© 11120 © 1
fo |h | (S)dS <cg -[O mds < oo. (348)
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Using this estimate into (3.46), noting (2.34) and Lemma 3.2, we get

© 9] /(p+2)
[ 116ais) ~wit)ds < B e 0) (| |h'|1+“/”)a<w‘<s>—w(t>>d5>p e
(3.49)

Denote G(t) = Qo(t) + ¢(t). Applying (3.32) and (3.49), we arrive at
d [ee)
—G(t) < —aE(t) + cxzf | |(s)a(w'(s) —w(t))ds
dt 0

o2 (3.50)
2/(p+2) ® 1+(1/p) t plg2)
< —a1E(t) + apco E*/ P2 (0) |1 a(w'(s) —w(t))ds )
0

Since |G(t)| < cE(t), applying Young inequality and from Lemma 3.2, (3.50), we deduce

%[EZ/P(t)G(t)] pG(t)E@/P)l(t) E(t)+E2/P(t) =G

< - ;cEZ/P(t) —E@®) + Ez/”(t) G(t)
d 1s/p) 1+2/p)
S —ew BT —a BT
(3.51)
® 1+(1/p) , p/(p+2)
+ a,C,E?/ (P+2)(0)E2/P(t)<f [W | P a(w!(s) - w(t))ds)
0
< - 0105 EY /P (t) — ay EX PP (1) + ayCLE? P2 (0)e EV*/P) (1)
+ 0, CLEY P42 (0)C, I |K |V a(w! (s) - w(t))ds.
0
Since c|H/["*/P)(t) < W'(t), then
f |1 P a(w! (s) - wl(t))ds < % f H'(s)a(w' (s) - w(t))ds. (3.52)
0 0
By Lemma 3.2, we have
® " t d
f h'(s)a(w'(s) —w(t))ds = —ZEE(t). (3.53)
0

Hence, we get

foo |K "V a(w! (s) - wl(t))ds < —cn%E(t). (3.54)
0
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Taking € small enough, from (3.51) and (3.54), we get

4
dt

Thus, we have

LB 0(G) + cwk )] < - ) - LE @),

dt
Let A > 0 be a positive constant and define
H(t) = \E() + E*P(t) [G(t) + c1oE(1)].
Since |G(t)| < cE(t), (d/dt)E(t) <0, for A large enough, we get
A
EE(t) < H(t) <2ME(t), Vt>0.
From Lemma 3.2 and (3.56), taking A large enough, we obtain
d ., d d [o/p
H() = L2 EW®) + 2 [EPO(G(1) + GE(®)|

d d a‘l 1+(2/P)
S)tth(t) Clzth(f) 5 E (t)

d A1 -142/p) A1 11+(2/
= — —_— - — < —— P) .
(L= en) TE(W) — SErem ) < SLprem g

From (3.58) and (3.59), we have

%H(t) < —C13H1+(2/p)(t).

Applying Gronwall inequality, we get

C14

Hence, we obtain

C15

This completes the proof of Theorem 3.7.

[E2/7016(0)] < —e10 T B/ (1) ~ S 1) - c1p S E(0)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)
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4, Comment

In this paper, the key point is to construct suitable energy functional E(t), find the appropriate
auxiliary functionals ¢(t) and ¢ (t) by multiplier method, and prove that F(t) and E(t)
are equivalent and F(t) satisfies F'(t) < —cF(t) by precise apriori estimates. Thanks to
Lemma 3.8 and auxiliary functional H(t), we show the polynomial decay result under
suitable conditions on relaxation h.

Acknowledgment

The authors would like to thank the referee for his/her careful reading and kind
suggestions. The paper was supported by the National Natural Science Foundation of China
(11201258), the Natural Science Foundation of Shandong Province of China (ZR2011AMO008,
ZR2011AQ006, and ZR2012AMO010), the STPF of University in Shandong Province of China
(JOOLAO4), and the Science Foundation of Qufu Normal University of China (X]J201114).

References

[1] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. 3 of Scattering Theory, Academic
Press, New York, NY, USA, 1979.
[2] E. Zauderer, Partial Differential Equations of Applied Mathematics, Pure and Applied Mathematics, John
Wiley & Sons, New York, NY, USA, 1989.
[3] S. A.Messaoudi, “Global existence and nonexistence in a system of Petrovsky,” Journal of Mathematical
Analysis and Applications, vol. 265, no. 2, pp. 296-308, 2002.
[4] W. Chen and Y. Zhou, “Global nonexistence for a semilinear Petrovsky equation,” Nonlinear Analysis
A, vol. 70, no. 9, pp. 3203-3208, 2009.
[5] E Alabau-Boussouira, P. Cannarsa, and D. Sforza, “Decay estimates for second order evolution
equations with memory,” Journal of Functional Analysis, vol. 254, no. 5, pp. 1342-1372, 2008.
[6] Z.Yang, “Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave
equations with dissipative term,” Journal of Differential Equations, vol. 187, no. 2, pp. 520-540, 2003.
[7] J. E. Mufioz Rivera, E. C. Lapa, and R. Barreto, “Decay rates for viscoelastic plates with memory,”
Journal of Elasticity, vol. 44, no. 1, pp. 61-87, 1996.
[8] F. Tahamtani and M. Shahrouzi, “Existence and blow up of solutions to a Petrovsky equation with
memory and nonlinear source term,” Boundary Value Problems, vol. 2012, p. 50, 2012.
[9] G.Li, Y. Sun, and W. Liu, “Global existence and blow-up of solutions for a strongly damped Petrovsky
system with nonlinear damping,” Applicable Analysis, vol. 91, no. 3, pp. 575-586, 2012.
[10] G.Li, Y. Sun, and W. Liu, “Global existence, uniform decay and blow-up of solutions for a system of
Petrovsky equations,” Nonlinear Analysis A, vol. 74, no. 4, pp. 1523-1538, 2011.
[11] X. Han and M. Wang, “Asymptotic behavior for Petrovsky equation with localized damping,” Acta
Applicandae Mathematicae, vol. 110, no. 3, pp. 1057-1076, 2010.
[12] S.-T. Wu and L.-Y. Tsai, “On global solutions and blow-up of solutions for a nonlinearly damped
Petrovsky system,” Taiwanese Journal of Mathematics, vol. 13, no. 2A, pp. 545-558, 2009.
[13] F. S. Li, “Global existence and uniqueness of weak solution to nonlinear viscoelastic full Marguerre-
von Kdrmédn shallow shell equations,” Acta Mathematica Sinica, vol. 25, no. 12, pp. 2133-2156, 2009.
[14] E Li and Y. Bai, “Uniform decay rates for nonlinear viscoelastic Marguerre-von Kdrmén equations,”
Journal of Mathematical Analysis and Applications, vol. 351, no. 2, pp. 522-535, 2009.
[15] E Li, “Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Karman shallow shell
system,” Journal of Differential Equations, vol. 249, no. 6, pp. 1241-1257, 2010.
[16] J. E. Lagnese, Boundary Stabilization of Thin Plates, vol. 10 of SIAM Studies in Applied Mathematics, SIAM,
Philadelphia, Pa, USA, 1989.
[17] I. Lasiecka, “Weak, classical and intermediate solutions to full von Kédrmdan system of dynamic
nonlinear elasticity,” Applicable Analysis, vol. 68, no. 1-2, pp. 121-145, 1998.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



