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In this paper, by using the potential theory we prove the existence of filling discs dealing with
multiple values of an algebroid function of finite order defined in the unit disc.

1. Introduction and Main Result

The value distribution theory of meromorphic functions due to Hayman (see [1] for standard
references) was extended to the corresponding theory of algebroid functions by Selbreg [2],
Ullrich [3], and Valiron [4] around 1930. The filling discs of an algebroid function are an
important part of the value distribution theory. For an algebroid function defined on z-plane,
the existence of its filling discs was proved by Sun [5] in 1995. In 1997, for the algebroid
functions of infinite order and zero order, Gao [6] obtained the the corresponding results. The
existence of the sequence of filling discs of algebroid functions dealing with multiple values,
of finite or infinite order, was first proved by Gao [7, 8]. The existence of filling discs in the
strong Borel direction of algebroid function with finite order was proved by Huo and Kong
in [9]. Compared with the case of C, it is interesting to investigate the algebroid functions
defined in the unit disc, and there are some essential differences between these two cases.
Recently, the first author [10] has investigated this problem and confirmed the existence of
filling discs for this case. In this note, we will continue the work of Xuan [10] by considering
the case dealing with multiple values and get more precise results.

Let w = w(z) (z ∈ Δ) be the ν-valued algebroid function defined by irreducible
equation

Aν(z)wν +Aν−1(z)wν−1 + · · · +A0(z) = 0, (1.1)
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where Aν(z), . . . , A0(z) are entire functions without any common zeros. The single-valued
domain of definition of w(z) is a ν-valued covering of the z-plane, a Riemann surface,
denoted by ˜Rz. A point in ˜Rz, whose projection in the z-plane is z, is denoted by z̃. The
part of ˜Rz, which covers the disc {z : |z| < r}, is denoted by |z̃| < r.

Denote

S(r,w) =
1
π

∫ ∫

|z̃|≤r

[

|w′(z)|
1 + |w(z)|2

]2

dω. (1.2)

S(r,w) is called the mean covering number of |z̃| ≤ r into w-sphere under the mapping
w = w(z). And S(r,w) is conformal invariant. Let n(r, a) be the number of zeros ofw(z) − a,
counted according to their multiplicities in |z̃| ≤ r. nl)(E,w = α) denotes the number of zeros
with multiplicity ≤ l of w(z) = α in E, each zero being counted only once.

Let

N(r, a) =
1
ν

∫ r

0

n(t, a) − n(0, a)
t

dt +
n(0, a)

ν
log r,

m(r, a) =
1

2πν

∫

|z̃|=r

ν
∑

j=1

log+
∣

∣

∣

∣

∣

1
wj

(

reiθ
) − a

∣

∣

∣

∣

∣

dθ, z = reiθ,

(1.3)

where |z̃| = r is the boundary of |z̃| ≤ r. The characteristic function of w(z) is defined by

T(r,w) =
1
ν

∫ r

0

S(t,w)
t

dt. (1.4)

In view of [4], we have

T(r,w) = m(r,w) +N(r,∞) +O(1). (1.5)

The order of algebroid function w(z) is defined by

ρ = lim sup
r→ 1−

log T(r,w)
log(1/(1 − r))

. (1.6)

In this paper we assume that 0 < ρ < +∞, V is the w-sphere, and C is a constant
which can stand for different constant. Let n(r, ˜Rz) be the number of the branch points of ˜Rz

in |z̃| ≤ r, counted with the order of branch. Write

N
(

r, ˜Rz

)

=
1
ν

∫ r

0

n
(

t, ˜Rz

)

− n
(

0, ˜Rz

)

t
dt +

n
(

0, ˜Rz

)

ν
log r. (1.7)

Valiron is the first one to introduce the concept of a proximate order ρ(1/(1 − r)) for a
meromorphic function w(z)with finite positive order andU(1/(1 − r)) = (1/(1 − r))ρ(1/(1−r))
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is called type function of w(z) or T(r,w) such that ρ(1/(1 − r)) is nondecreasing, piecewise
continuous, and differentiable, and

lim
r→ 1−

ρ

(

1
1 − r

)

= ρ,

lim
r→ 1−

U(k/(1 − r))
U(1/(1 − r))

= kρ (

k is any given positive constant
)

,

lim
r→ 1−

T(r,w)
U(1/(1 − r))

= 1,

lim
r→ 1−

(1/(1 − r))ρ−ε

U(1/(1 − r))
= 0, 0 < ε < ρ.

(1.8)

For an algebroid functionw(z) of finite positive order, we can apply the same method
to get its type function U(1/(1 − r)).

Our main result is the following.

Theorem 1.1. Suppose thatw(z) is the ν-valued algebroid function of finite order ρ in |z| < 1 defined
by (1.1) and l(≥ 2ν + 1) is an integer, then there exists a sequence of discs

Γn : {|z − zn| < rnσn}, n = 1, 2, . . . , (1.9)

where

zn = rne
iθn , lim

n→∞
rn = 1, σn > 0, lim

n→∞
σn = 0. (1.10)

Such that for each α

nl)(Γn ∩ 	, w = α) ≥ 1

(1 − rn)ρ+1−εn
, (1.11)

except for those complex numbers contained in the union of 2ν spherical discs each with radius (1 −
rn)

ρ/11, where limn→+∞εn = 0,Δ = {z : |z| < 1}.
The discs with the above property are called filling discs dealing with multiple values.

Remark 1.2. In [10], the result says that n(Γn ∩	, w = α) ≥ 1/(1− rn)
ρ−εn . Theorem 1.1 is really

the improvement of [10].

Remark 1.3. The existence of filling discs in Borel radius of meromorphic functions was
proved by Kong [11]. In view of our theorem, we can get the similar results of [11] (when
ν = 1). But we must point out that the structure and definition of filling discs between this
paper and [11] are different. There are also some papers relevant to the singular points of
algebroid functions in the unit disc (see [12–14]).
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2. Two Lemmas

Lemma 2.1 (see [15] or [16]). Suppose thatw(z) is the ν-valued algebroid function in {z : |z| < R}
defined by (1.1), l(≥ 2ν + 1) is an integer and a1, a2, a3, . . . , aq (q ≥ 3) are distinct points given
arbitrarily in w-sphere, and the spherical distance of any two points is no smaller than δ ∈ (0, 1/2),
then for any r ∈ (0, R), one has

(

q − 2 − 2
l

)

S(r,w) ≤
q
∑

j=1

nl)(R, aj

)

+
l + 1
l

n
(

R, ˜Rz

)

+
CR

(R − r)δ10
. (2.1)

Combining the potential theory with Lemma 2.1, one proves Lemma 2.2, which is
crucial to the theorem.

Lemma 2.2. Suppose thatw(z) is the ν-valued algebroid function of finite order ρ satisfying 0 < ρ <
+∞ in |z| < 1 defined by (1.1) and l(≥ 2ν + 1) is an integer. For any ε ∈ (0, ρ), 0 < R < 1, there
exists a0 ∈ (1/2, 1), such that for any a ∈ (a0, 1), put

rn = 1 − an, m =
[

2π
1 − a

]

, θq =
2π
(

q + 1
)

m
,

Ωpq =
{

1 − ap ≤ |z| < 1 − ap+2
}

∩
{

∣

∣arg z − θq
∣

∣ ≤ 2π
m

}

(

p = 1, 2, 3, . . . ; q = 0, 1, 2, . . . , m − 1
)

,

(2.2)

where [x] stands for the inter part of x.
Then, among p, q, there exists at least one pair p0, q0, such that 1 − ap0 > R, and in Ωp0q0 ,

nl)(Ωp0q0 , w = α
) ≥ 1

aρ+1−ε , (2.3)

except for those complex numbers contained in the union of 2ν spherical discs each with radius δ =
ap0ρ/11.

Proof. Suppose the conclusion is false. Then there exists a sequence {ai}∞i=1 (0 < ai < 1), where
limi→∞ ai = 1. For any a ∈ {ai}, any p > P = log(1−R)/ loga and q ∈ {0, 1, 2, . . . , m−1}, there
exist 2ν + 1 complex numbers which satisfy that the spherical distance of any two of those
points is no smaller than δ = apρ/40. Denote

{

αj = αj

(

p, q
)}2ν+1

j=1 . (2.4)

For any p, q mentioned above, we have

nl)(Ωpq,w = αj

)

<
1

ap(ρ+1−ε) . (2.5)

For any r > R, let T = [log(1 − r)/ loga], then we have 1 − aT ≤ r < 1 − aT+1.
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For any given positive integers N and M, set

b = a1/M ∈ (0, 1), γpt = 1 − bMp+t, t = 0, 1, 2, . . . ,M − 1,

Lpt =
{

γpt ≤ |z| < γp,t+1
}

,

θqj =
2πq
m

+
2πj
Nm

,

	qj =
{

z : |z| < 1 − aT , θqj ≤ arg z < θq,j+1
}

.

(2.6)

Then

{

1 − a ≤ |z| < 1 − aT
}

=
M−1
⋃

t=0

T−1
⋃

p=1

Lpt,

{

|z| < 1 − aT
}

=
N−1
⋃

j=0

m−1
⋃

q=0

	qj .

(2.7)

Thus there exists t0, j0 which are related to T . We can assume t0 = 0, j0 = 0, such that

T−1
∑

p=1

n
(

Lp0, ˜Rz

)

≤ 1
M

n
(

1 − aT , ˜Rz

)

,

m−1
∑

q=0

n
(

	q0, ˜Rz

)

≤ 1
N

n
(

1 − aT , ˜Rz

)

.

(2.8)

Set

Ω0
pq =

{

1 − bMp + bMp+1

2
≤ |z|< 1 − bMp+M + bMp+M+1

2

}

∩
{

θq0 + θq1

2
≤ arg z <

θq+1,0 + θq+1,1

2

}

,

Ωpq =
{

1 − bMp ≤ |z| < 1 − bMp+M+1
}

∩ {θq0 ≤ arg z < θq+1,1
}

.

(2.9)

Then we have

Ω0
pq ⊂ Ωpq ⊂ Ωpq. (2.10)

Since {Ωpq}p,q covers
⋃T−1

p=1 Lp0 and
⋃m−1

q=0 	q0 twice at most. We obtain

T−1
∑

p=1

m−1
∑

q=0

n
(

Ωpq, ˜Rz

)

≤
(

1 +
1
M

+
1
N

)

n
(

1 − aT , ˜Rz

)

. (2.11)

Obviously, each Ωpq can be mapped conformally to the unit disc |ζ| < 1 such that the center
of Ωpq is mapped to ζ = 0, and the image of Ω0

pq is contained in the disc |ζ| < η(<1). Since



6 Abstract and Applied Analysis

all Ωpq, Ω0
pq are similar, C is independent of p, q. Since S is conformally invariant, in view of

Lemma 2.1, we obtain

(

2ν − 1 − 2
l

)

S
(

1 − aT ,w
)

≤
(

2ν − 1 − 2
l

) T−1
∑

p=P+1

m−1
∑

q=0

S
(

Ω0
pq,w
)

+
(

2ν − 1 − 2
l

)

S
(

1 − a2, w
)

≤
T−1
∑

p=P+1

m−1
∑

q=0

⎡

⎣

2ν+1
∑

j=1

nl)
(

Ωpq,w = αj

)

+
l + 1
l

n
(

Ωpq, ˜Rz

)

+
C

δ10
(

1 − η
)

⎤

⎦

+
(

2ν − 1 − 2
l

)

S
(

1 − a2, w
)

≤ 3νTma−T(ρ+1−ε) +
l + 1
l

(

1 +
1
M

+
1
N

)

n
(

1 − aT , ˜Rz

)

+ CT
(

a−Tρ/11
)10

+
(

2ν − 1 − 2
l

)

S
(

1 − a2, w
)

.

(2.12)

For sufficiently large integer T(= [log(1− r)/ loga]), r ∈ [1−aT , 1−aT+1). Thus we get

(

2ν − 1 − 2
l

)

S

(

1 − 1 − r

a
,w

)

≤
(

2ν − 1 − 2
l

)

S
(

1 − aT ,w
)

≤ 1

(1 − r)ρ+1−(ε/2)
+
l + 1
l

(

1 +
1
M

+
1
N

)

n
(

r, ˜Rz

)

+ C

(

1
1 − r

)10ρ/11

+ C,

(2.13)

where C is a constant.
For any integer T(= [log(1 − r)/ loga]), we have (1 − aT )/(a − aT ) ∈ (1/a, (1 + a)/a).

We can choose one a(> ((l + 1)/l)((2ν − 2)/(2ν − 1 − (2/l))) ∈ (0, 1) as l ≥ 2ν + 1) such that
(l/(l + 1))((2ν − 1 − (2/l))/(2ν − 2)) ∈ (1/a, (1 + a)/a). For a certain sufficiently fixed large
inter T , we have

k =
(

1 − 1
1 + a + a2 + · · · + aT−1

)−1
=

1 − aT

a − aT
<

l

l + 1
· 2ν − 1 − (2/l)

2ν − 2
. (2.14)

This yields the following:

1 − ((1 − t)/a)
t

=
1
a
−
(

1
a
− 1
)

1
t

≥ 1
a
−
(

1
a
− 1
)

1
1 − aT

=
1
a

(

1 − 1
1 + a + · · · + aT−1

)

=
1
ak

,

(2.15)

where t ∈ [1 − aT , 1 − aT+1).
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Hence

∫ r

1−aT
S(1 − ((1 − t)/a), w)

t
dt =
∫ r

1−aT
S(1 − ((1 − t)/a), w)

1 − ((1 − t)/a)
1 − ((1 − t)/a)

t
dt

≥ 1
ak

∫ r

1−aT
S(1 − ((1 − t)/a), w)

1 − ((1 − t)/a)
dt

=
1
k

∫1−((1−r)/a)

1−aT−1
S(x,w)

x
dx.

(2.16)

Next, we deduce the following:

∫ r

1−aT
1

(1 − t)ρ+1−(ε/2)t
dt ≤ 1

1 − aT

∫ r

1−aT
1

(1 − t)ρ+1−(ε/2)
dt

= − 1
1 − aT

∫ r

1−aT
1

(1 − t)ρ+1−(ε/2)
d(1 − t)

≤ 1
1 − aT

· 1
ρ − (ε/2)

· 1

(1 − r)ρ−(ε/2)
,

(2.17)

when r ≥ t ≥ 1 − aT .
In view of 1 − t ≤ t for t ∈ [1 − aT , 1 − aT+1), we have

∫ r

1−aT
1

(1 − t)10ρ/11t
dt ≤
∫ r

1−aT
1

(1 − t)(10ρ/11)+1
dt ≤ 1

10ρ/11
· 1

(1 − r)10ρ/11
. (2.18)

Dividing both sides of (2.13) by νt and integrating it from 1 − aT to r, we have

(

2ν − 1 − 2
l

)

1
ν

∫ r

1−aT
S(1 − ((1 − t)/a), w)

t
dt

≤ 1
ν

∫ r

1−aT
1

(1 − t)ρ+1−(ε/2)t
dt +

l + 1
l

(

1 +
1
M

+
1
N

)

×

⎡

⎢

⎣

1
ν

∫ r

1−aT

n
(

t, ˜Rz

)

− n
(

0, ˜Rz

)

t
dt +

n
(

0, ˜Rz

)

ν
log r −

n
(

0, ˜Rz

)

ν
log
(

1 − aT
)

⎤

⎥

⎦

+
C

ν

∫ r

1−aT
1

(1 − t)10ρ/11t
dt ≤ 1

ν
· 1
1 − aT

· 1
ρ − (ε/2)

· 1

(1 − r)ρ−(ε/2)

+
l + 1
l

·
(

1 +
1
M

+
1
N

)

⎡

⎢

⎣

1
ν

∫ r

0

n
(

t, ˜Rz

)

− n
(

0, ˜Rz

)

t
dt +

n
(

0, ˜Rz

)

ν
log r

⎤

⎥

⎦

− l + 1
l

·
(

1 +
1
M

+
1
N

)n
(

0, ˜Rz

)

ν
log
(

1 − aT
)

+
C

ν

1
10ρ/11

1

(1 − r)10ρ/11
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=
1
ν
· 1
ρ − (ε/2)

· 1

(1 − r)ρ−(ε/2)
+
l + 1
l

·
(

1 +
1
M

+
1
N

)

N
(

r, ˜Rz

)

− l + 1
l

·
(

1 +
1
M

+
1
N

)n
(

0, ˜Rz

)

ν
log
(

1 − aT
)

+
C

ν

1
10ρ/11

1

(1 − r)10ρ/11
.

(2.19)

Note that T is fixed, we see that T(1 − aT−1, w) is a finite constant.
Hence,

(

2ν − 1 − 2
l

)

1
k

1
ν

∫1−((1−r)/a)

1−aT−1
S(t,w)

t
dt

≤
(

2ν − 1 − 2
l

)

1
ν

∫ r

1−aT
S(1 − ((1 − t)/a))

t
dt

≤ 1
1 − aT

· 1
ν
· 1
ρ − (ε/2)

1

(1 − r)ρ−(ε/2)
+
l + 1
l

(

1 +
1
M

+
1
N

)

N
(

r, ˜Rz

)

− l + 1
l

(

1 +
1
M

+
1
N

)n
(

0, ˜Rz

)

ν
log
(

1 − aT
)

+
C

ν

1
10ρ/11

1

(1 − r)10ρ/11
.

(2.20)

Then

(

2ν − 1 − 2
l

)

1
kν

∫1−((1−r)/a)

0

S(t,w)
t

dt ≤ 1
1 − aT

· 1
ν

1
ρ − (ε/2)

1

(1 − r)ρ−(ε/2)

+
l + 1
l

(

1 +
1
M

+
1
N

)

N
(

r, ˜Rz

)

− l + 1
l

(

1 +
1
M

+
1
N

)n
(

0, ˜Rz

)

ν
log
(

1 − aT
)

+
C

ν

1
10ρ/11

1

(1 − r)10ρ/11
+
1
k
T
(

1 − aT−1, w
)

.

(2.21)

In view of [3], we know that

N
(

r, ˜Rz

)

≤ 2(ν − 1)T(r,w) +O(1). (2.22)

We obtain

(

2ν − 1 − 2
l

)

· 1
k
T

(

1 − 1 − r

a
,w

)

≤ 1
1 − aT

· 1
ν
(

ρ − (ε/2)
)

1

(1 − r)ρ−(ε/2)

+
l + 1
l

·
(

1 +
1
M

+
1
N

)

2(ν − 1)T(r,w)

+ C log
(

1 − aT
)

+
C

ν

1
10ρ/11

1

(1 − r)10ρ/11
+ C,

(2.23)

where C is a constant.
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Dividing both sides of the above inequality by U(1/(1 − r)) = (1/(1 − r))ρ(1/(1−r)), we have

(

2ν − 1 − 2
l

)

· 1
k

T(1 − ((1 − r)/a), w)
U(1/(1 − r))

≤ 1
1 − aT

· 1
ν
(

ρ − (ε/2)
)

(1 − r)ρ(1/(1−r))

(1 − r)ρ−(ε/2)

+
l + 1
l

·
(

1 +
1
M

+
1
N

)

2(ν − 1)
T(r,w)

U(1/(1 − r))

+ C
log
(

1 − aT
)

(1/(1 − r))ρ(1/(1−r))
+
C

ν

1
10ρ/11

(1 − r)ρ(1/(1−r))

(1 − r)10ρ/11
+

C

(1/(1 − r))ρ(1/(1−r))
.

(2.24)

We note that

T(1 − ((1 − r)/a), w)
U(1/(1 − r))

=
T(1 − ((1 − r)/a), w)

U(a/(1 − r))
U(a/(1 − r))
U(1/(1 − r))

. (2.25)

In view of the properties of the U(1/(1 − r)), we obtain

lim sup
r→ 1−

T(1 − ((1 − r)/a), w)
U(1/(1 − r))

≥ lim sup
r→ 1−

T(1 − ((1 − r)/a), w)
U(a/(1 − r))

lim inf
r→ 1−

U(a/(1 − r))
U(1/(1 − r))

= lim sup
r→ 1−

T(1 − ((1 − r)/a), w)
U(a/(1 − r))

lim
r→ 1−

U(a/(1 − r))
U(1/(1 − r))

= aρ.

(2.26)

Letting r → 1− in (2.24), we have

(

2ν − 1 − 2
l

)

1
k
aρ ≤ l + 1

l

(

1 +
1
M

+
1
N

)

2(ν − 1), (2.27)

that is,

2ν − 1 − 2
l
≤ l + 1

l

(

1 +
1
M

+
1
N

)

2(ν − 1)ka−ρ. (2.28)

Letting a → 1−, M → +∞, andN → +∞, we obtain

k ≥ l

l + 1
2ν − 1 − (2/l)

2ν − 2
. (2.29)

This is contradictory to k < (l/(l+1))((2ν−1− (2/l))/(2ν−2)), and the lemma is proved.

3. Proof of the Theorem

Proof. Choose εn = ρ/2n,Rn = 1 − (1/2n).
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In view of Lemma 2.2, there exists an ∈ (1 − (1/n), 1), mn = [2π/(1 − an)], pn, qn, θqn =
(2π(qn) + 1)/mn, and

Ωpnqn =
{

1 − a
pn
n ≤ |z| ≤ 1 − a

pn+2
n

}
⋂

{

∣

∣arg z − θqn
∣

∣ ≤ 2π
mn

}

, (n = 1, 2, . . .). (3.1)

Let

θn = θqn , zn =
(

1 − a
pn
n

)

eiθn . (3.2)

Then

1 > rn = |zn| = 1 − a
pn
n > Rn = 1 − 1

2n
−→ 1 − (n −→ +∞), lim

n→+∞
a
pn
n = 0. (3.3)

Set

Bn =
[(

1 − a
pn+2
n

)

−
(

1 − a
pn
n

)]

+
(

1 − a
pn+2
n

) 2π
mn

≤
[(

1 − a
2pn
n

)

−
(

1 − a
pn
n

)]

+
(

1 − a
2pn
n

) 2π
mn

=
(

1 − a
pn
n

)

a
pn
n +
(

1 − a
pn
n

)(

1 + a
pn
n

) 2π
mn

≤
(

1 − a
pn
n

)

[

a
pn
n +
(

1 + a
pn
n

) 2π
mn

]

.

(3.4)

Take

σn = a
pn
n +
(

1 + a
pn
n

) 2π
mn

, (3.5)

then

σn −→ 0 (n −→ +∞). (3.6)

Put

Γn = {|z − zn| < rnσn}. (3.7)

Then

Ωpnqn ⊂ Γn. (3.8)
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In view of Lemma 2.2, for each n,

nl)(Γn ∩ 	, w = α) ≥ 1

a
ρ+1−εn
n

, (3.9)

except for those complex numbers contained in the union of 2ν spherical discs each with ra-
dius apnρ/11

n = (1 − rn)
ρ/11. Theorem 1.1 is proved.

Remark 3.1. By using the same method, we can prove the existence of filling discs for K-
quasimeromorphic mappings whose general case is carefully discussed in another paper.
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