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In the work of Bor (2008), we have proved a result dealing with |N,pn, θn|k summability factors
by using a quasi-β-power increasing sequence. In this paper, we prove that result under less and
more weaker conditions. Some new results have also been obtained.

1. Introduction

A positive sequence (bn) is said to be almost increasing if there exists a positive increasing
sequence (cn) and two positive constantsA and B such thatAcn ≤ bn ≤ Bcn (see [1]). Wewrite
BVO = BV∩CO, where CO = {x = (xk) ∈ Ω : limk|xk| = 0}, BV={x = (xk) ∈ Ω :

∑
k |xk−xk+1| <

∞} and Ω being the space of all real or complex-valued sequences. A positive sequence X =
(Xn) is said to be a quasi-β-power increasing sequence if there exists a constantK = K(β,X) ≥
1 such that KnβXn ≥ mβXm holds for all n ≥ m ≥ 1. It should be noted that every almost
increasing sequence is a quasi-β-power increasing sequence for any nonnegative β, but the
converse is not true for β > 0. Moreover, for any positive β there exists a quasi-β-power
increasing sequence tending to infinity, but it is not almost increasing (see [2]). Let

∑
an be a

given infinite series with partial sums (sn). Let (pn) be a sequence of positive numbers such
that

Pn =
n∑

v=0

pv −→ ∞ as n −→ ∞,
(
P−i = p−i = 0, i ≥ 1

)
. (1.1)

Let (θn) be any sequence of positive real constants. The series
∑

an is said to be summable
|N,pn|k, k ≥ 1, if (see [3])

∞∑

n=1

(
Pn

pn

)k−1
|Vn − Vn−1|k < ∞, (1.2)
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and it is said to be summable |N,pn, θn|k, k ≥ 1, if (see [4])
∞∑

n=1

θk−1
n |Vn − Vn−1|k < ∞, (1.3)

where
Vn =

1
Pn

n∑

v=0

pvsv. (1.4)

If we take θn = Pn/pn, then |N,pn, θn|k summability reduces to |N,pn|k summability. Also
if we take θn = n and pn = 1 for all values of n, then we get |C, 1|k summability (see [5]).
Furthermore, if we take θn = n, then |N,pn, θn|k summability reduces to |R, pn|k summability
(see [6]).

2. Known Result

In [7], we have proved the following theorem dealing with |N,pn, θn|k summability factors
of infinite series.

Theorem 2.1. Let (λn) ∈ BVO, (Xn) be a quasi-β-power increasing sequence for some β (0 < β < 1),
and let (θnpn/Pn) be a nonincreasing sequence. Suppose also there exists sequences (λn) and (pn)
such that

|λm|Xm = O(1) as m −→ ∞,
m∑

n=1

nXn

∣
∣
∣Δ2λn

∣
∣
∣ = O(1),

m∑

n=1

Pn

n
= O(Pm) as m −→ ∞.

(2.1)

If

m∑

n=1

|tn|k
n

= O(Xm) as m −→ ∞, (2.2)

m∑

n=1

θk−1
n

(
pn
Pn

)k

|tn|k = O(Xm) as m −→ ∞, (2.3)

are satisfied, then the series
∑

anλn is summable |N,pn, θn|k, k ≥ 1, where (tn) is the nth (C, 1)mean
of the sequence (nan).

Remark 2.2. It should be noticed that, if we take (Xn) as an almost increasing sequence and
θn = Pn/pn, then we obtain a theorem of Mazhar (see [8]), in this case the condition “(λn) ∈
BVO” is not needed.

3. The Main Result

The aim of this paper is to prove Theorem 2.1 under less and more weaker conditions. Now,
we prove the following theorem.
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Theorem 3.1. Let (Xn) be a quasi-β-power increasing sequence for some β (0 < β < 1), and let
(θnpn/Pn) be a nonincreasing sequence. Suppose also there exists sequences (λn) and (pn) such that
conditions (2.1) of Theorem 2.1 are satisfied. If

m∑

n=1

|tn|k
nXk−1

n

= O(Xm) as m −→ ∞, (3.1)

m∑

n=1

θk−1
n

(
pn
Pn

)k |tn|k
Xk−1

n

= O(Xm) as m −→ ∞ (3.2)

are satisfied, then the series
∑

anλn is summable |N,pn, θn|k, k ≥ 1.

Remark 3.2. It should be noted that conditions (3.1) and (3.2) are the same as conditions (2.2)
and (2.3), respectively, when k = 1. When k > 1, conditions (3.1) and (3.2) are weaker
than conditions (2.2) and (2.3), respectively. But the converses are not true. In fact, if (2.2)
is satisfied, then we get that

m∑

n=1

|tn|k
nXk−1

n

= O

(
1

Xk−1
1

)
m∑

n=1

|tn|k
n

= O(Xm). (3.3)

If (3.1) is satisfied, then for k > 1, we obtain that

m∑

n=1

|tn|k
n

=
m∑

n=1

Xk−1
n

|tn|k
nXk−1

n

= O
(
Xk−1

m

) m∑

n=1

|tn|k
nXk−1

n

= O
(
Xk

m

)
/=O(Xm). (3.4)

The similar argument is also valid for the conditions (2.3) and (3.2). Also it should be noted
that condition “(λn) ∈ BVO” has been removed.

We need following lemma for the proof of our theorem.

Lemma 3.3 (see [9]). Under the conditions on the sequences (Xn) and (λn) as expressed in the
statement of the theorem, one has the following:

nXn|Δλn| = O(1),

∞∑

n=1

Xn|Δλn| < ∞.
(3.5)

4. Proof of the Theorem

Let (Tn) denote the (N,pn) mean of the series
∑

anλn. Then, for n ≥ 1, we have

Tn − Tn−1 =
pn

PnPn−1

n∑

v=1

Pv−1avλv =
pn

PnPn−1

n∑

v=1

Pv−1λv
v

vav. (4.1)
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By Abel’s transformation, we have

Tn − Tn−1 =
n + 1
nPn

pntnλn −
pn

PnPn−1

n−1∑

v=1

pvtvλv
v + 1
v

+
pn

PnPn−1

n−1∑

v=1

PvΔλvtv
v + 1
v

+
pn

PnPn−1

n−1∑

v=1

Pvtvλv+1
1
v
= Tn,1 + Tn,2 + Tn,3 + Tn,4.

(4.2)

To complete the proof of the theorem, by Minkowski’s inequality, it is enough to show that

∞∑

n=1

θk−1
n |Tn,r |k < ∞, for r = 1, 2, 3, 4. (4.3)

Firstly, we have that

m∑

n=1

θk−1
n |Tn,1|k =

m∑

n=1

θk−1
n |λn|k−1|λn|

(
pn
Pn

)k

|tn|k

= O(1)
m∑

n=1

|λn|θk−1
n

(
1
Xv

)k−1(pn
Pn

)k

|tn|k

= O(1)
m−1∑

n=1

Δ|λn|
n∑

v=1

θk−1
v

(
pv
Pv

)k |tv|k
Xk−1

v

+O(1)|λm|
m∑

n=1

θk−1
n

(
pn
Pn

)k |tn|k
Xk−1

n

= O(1)
m−1∑

n=1

|Δλn|Xn +O(1)|λm|Xm

= O(1) as m −→ ∞,

(4.4)

by virtue of the hypotheses of the theorem and lemma. Now, when k > 1 applying Hölder’s
inequality with indices k and k′, where (1/k) + (1/k′) = 1, as in Tn,1, we have that

m+1∑

n=2

θk−1
n |Tn,2|k = O(1)

m+1∑

n=2

θk−1
n

(
pn
Pn

)k 1
Pn−1

{
n−1∑

v=1

pv|λv|k|tv|k
}

×
{

1
Pn−1

n−1∑

v=1

pv

}k−1

= O(1)
m∑

v=1

pv|λv|k−1|λv||tv|k
m+1∑

n=v+1

(
θnpn
Pn

)k−1 pn
PnPn−1

= O(1)
m∑

v=1

(
θvpv
Pv

)k−1
pv|tv|k|λv|

(
1
Xv

)k−1 m+1∑

n=v+1

pn
PnPn−1

= O(1)
m∑

v=1

θk−1
v

(
pv
Pv

)k

|λv|
(

1
Xv

)k−1
|tv|k

= O(1)
m∑

v=1

|λv|θk−1
v

(
pv
Pv

)k |tv|k
Xk−1

v

= O(1) as m −→ ∞.

(4.5)
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Again we have that

m+1∑

n=2

θk−1
n |Tn,3|k = O(1)

m+1∑

n=2

θk−1
n

(
pn
Pn

)k 1
Pn−1

{
n−1∑

v=1

Pv

v
|Δλv|kvk|tv|k

}

×
{

1
Pn−1

n−1∑

v=1

Pv

v

}k−1

= O(1)
m∑

v=1

Pv

v
|tv|kvk|Δλv|k−1|Δλv|

m+1∑

n=v+1

(
θnpn
Pn

)k−1 pn
PnPn−1

= O(1)
m∑

v=1

(
θvpv
Pv

)k−1
vk−1

(
1

vXv

)k−1
|Δλv||tv|k

= O(1)
(
θ1p1
P1

)k−1 m∑

v=1

v|Δλv| |tv|k
vXk−1

v

= O(1)
m−1∑

v=1

Δ(v|Δλv|)
v∑

i=1

|ti|k
iXk−1

i

+O(1)m|Δλm|
m∑

v=1

|tv|k
vXk−1

v

= O(1)
m−1∑

v=1

|Δ(v|Δλv|)|Xv +O(1)m|Δλm|Xm

= O(1)
m−1∑

v=1

∣
∣
∣(v + 1)

∣
∣
∣Δ2λv

∣
∣
∣ − |Δλv||Xv +O(1)m|Δλm

∣
∣
∣Xm

= O(1)
m−1∑

v=1

v
∣
∣
∣Δ2λv

∣
∣
∣Xv +O(1)

m−1∑

v=1

|Δλv|Xv

+O(1)m|Δλm|Xm = O(1) as m −→ ∞,

(4.6)

by virtue of the hypotheses of the theorem and lemma. Finally, we have that

m+1∑

n=2

θk−1
n |Tn,4|k ≤

m+1∑

n=2

θk−1
n

(
pn
Pn

)k 1
Pn−1

n−1∑

v=1

Pv|λv+1|k|tv|k 1
v
×
{

1
Pn−1

n−1∑

v=1

Pv

v

}k−1

= O(1)
m∑

v=1

Pv|λv+1|k−1|λv+1||tv|k 1
v

m+1∑

n=v+1

(
θnpn
Pn

)k−1 pn
PnPn−1

= O(1)
m∑

v=1

Pv

(
1
Xv

)k−1
|λv+1||tv|k 1

v

m+1∑

n=v+1

(
θnpn
Pn

)k−1 pn
PnPn−1

= O(1)
m∑

v=1

|λv+1|
(
θvpv
Pv

)k−1 |tv|k
vXk−1

v

= O(1)
(
θ1p1
P1

)k−1 m∑

v=1

|λv+1| |tv|k
vXk−1

v

= O(1)
m−1∑

v=1

Δ|λv+1|
v∑

r=1

|tr |k
rXk−1

r

+O(1)|λm+1|
m∑

v=1

|tv|k
vXk−1

v

= O(1)
m−1∑

v=1

|Δλv+1|Xv+1 +O(1)|λm+1|Xm+1

= O(1) as m −→ ∞,

(4.7)
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by virtue of the hypotheses of the theorem and lemma. This completes the proof of the
theorem. If we take pn = 1 for all values of n and θn = n, then we get a result dealing with
|C, 1|k summability factors. Also, if we take pn = 1 for all values of n, then we have a new
result for |C, 1, θn|k summability. Finally, if we take θn = n, then we have another new result
for |R, pn|k summability factors.
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