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We study the multiplicity of solutions for the following fractional boundary value problem:
(d/dt)((1/2) 0D

−β
t (u′(t)) + (1/2) 0D

−β
T (u′(t))) + λ∇F(t, u(t)) = 0, a.e. t ∈ [0, T], u(0) = u(T) = 0,

where 0D
−β
t and 0D

−β
T are the left and right Riemann-Liouville fractional integrals of order

0 ≤ β < 1, respectively, λ > 0 is a real number, F : [0, T] × R
N → R is a given function, and

∇F(t, x) is the gradient of F at x. The approach used in this paper is the variational method. More
precisely, the Weierstrass theorem and mountain pass theorem are used to prove the existence of
at least two nontrivial solutions.

1. Introduction

In this paper, we consider the fractional boundary value problem of the following form:

d

dt

(
1
20D

−β
t

(
u′(t)

)
+
1
20D

−β
T

(
u′(t)

))
+ λ∇F(t, u(t)) = 0, a.a. t ∈ [0, T],

u(0) = u(T) = 0,

(P)

where 0D
−β
t and 0D

−β
T are the left and right Riemann-Liouville fractional integrals of order

0 ≤ β < 1, respectively, λ > 0 is a real number, F : [0, T] × R
N → R is a given function, and

∇F(t, x) is the gradient of F at x.
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In particular, if λ = 1, the problem (P1) reduces to the standard second-order boundary
value problem of the following form:

d

dt

(
1
20D

−β
t

(
u′(t)

)
+
1
20D

−β
T

(
u′(t)

))
+∇F(t, u(t)) = 0, a.a. t ∈ [0, T],

u(0) = u(T) = 0.
(P1)

Fractional calculus and fractional differential equations can find many applications
in various fields of physical science such as viscoelasticity, diffusion, control, relaxation
processes, and modeling phenomena in engineering, see [1–12]. Recently, many results were
obtained dealing with the existence and multiplicity of solutions of nonlinear fractional
differential equations by use of techniques of nonlinear analysis, such as fixed-point theory
(including Leray-Schauder nonlinear alternative) (see [13, 14]), topological degree theory
(including coincidence degree theory) (see [15, 16]), and comparison method (including
upper and lower solutions methods andmonotone iterative method) (see [17, 18]). However,
it seems that the popular methods mentioned above are not appropriate for discussing (P)
and (P1), as the equivalent integral equation is not easy to be obtained.

In the past, there were investigations of the eigenvalue problems for fractional
differential equations. For more detailed information on this topic, we refer to Zhang et al.
[19–21], Wang et al. [22, 23], and Jiang et al. [24].

Recently, there are many papers dealing with the existence of solutions for problem
(P1). In [25], Jiao and Zhou obtained the existence of solutions for (P1) by mountain
pass theorem under the Ambrosetti-Rabinowitz condition. Chen and Tang [26] studied the
existence and multiplicity of solutions for the system (P1) when the nonlinearity F(t, ·) is
superquadratic, asymptotically quadratic, and subquadratic, respectively.

But so far, few papers discuss the two solutions of the system (P) via critical point
theory. The aim of the present paper is to study the existence of at least two solutions for the
system (P) as the parameter λ > λ0 for some constant λ0.

The paper is organized as follows. We first introduce some basic preliminary results
and a well-known lemma in Section 2, including the fractional derivative space Eα, where
α ∈ (1/2, 1]. In Section 3, we give the main result and its proof. In Section 4, we give the
summary of this paper.

2. Preliminary

In this section, we recall some related preliminaries and display the variational setting which
has been established for our problem.

Definition 2.1 (see [8]). Let f(t) be a function defined on [a, b] and τ > 0. The left and right
Riemann-Liouville fractional integrals of order τ for function f(t) denoted by aD

−τ
t f(t) and

tD
−τ
b f(t), respectively, are defined by

aD
−τ
t f(t) =

1
Γ(τ)

∫ t

a

(t − s)τ−1f(s)ds, t ∈ [a, b],

tD
−τ
b f(t) =

1
Γ(τ)

∫b

t

(t − s)τ−1f(s)ds, t ∈ [a, b],

(2.1)

provided the right-hand sides are pointwise defined on [a, b], where Γ is the gamma function.
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Definition 2.2 (see [8]). Let f(t) be a function defined on [a, b]. The left and right Riemann-
Liouville fractional derivatives of order τ for function f(t) denoted by aD

τ
bf(t) and tD

τ
bf(t),

respectively, are defined by

aD
τ
t f(t) =

dn

dtn
aD

τ−n
t f(t) =

1
Γ(n − τ)

dn

dtn

(∫ t

a

(t − s)n−τ−1f(s)ds

)
,

tD
τ
bf(t) = (−1)n dn

dtn
tD

τ−n
b f(t) =

1
Γ(n − τ)

dn

dtn

(∫b

t

(t − s)n−τ−1f(s)ds

)
,

(2.2)

where t ∈ [a, b], n − 1 ≤ τ < n, and n ∈ N.

The left and right Caputo fractional derivatives are defined via the above Riemann-
Liouville fractional derivatives. In particular, they are defined for the function belong-
ing to the space of absolutely continuous functions, which we denote by AC([a, b],RN).
ACk([a, b],RN) (k = 1, 2, . . .) is the space of functions f such that f ∈ Ck([a, b],RN). In
particular, AC([a, b],RN) = AC1([a, b],RN).

Definition 2.3 (see [8]). Let τ ≥ 0 and n ∈ N. If τ ∈ [n − 1, n) and f(t) ∈ ACn([a, b],RN),
then the left and right Caputo fractional derivatives of order τ for function f(t) denoted
by c

aD
τ
t f(t) and

c
tD

τ
b
f(t), respectively, which exist a.e. on [a, b]. c

aD
τ
t f(t) and

c
tD

τ
b
f(t) are

represented by

c
aD

τ
t f(t) = aD

τ−n
t f (n)(t) =

1
Γ(n − τ)

(∫ t

a

(t − s)n−τ−1f (n)(s)ds

)
,

c
tD

τ
bf(t) = (−1) n

t D
τ−n
b f (n)(t) =

1
Γ(n − τ)

(∫b

t

(t − s)n−τ−1f (n)(s)ds

)
,

(2.3)

respectively, where t ∈ [a, b].

Definition 2.4 (see [25]). Define 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p

0
is defined by the closure of C∞

0 ([0, T],RN) with respect to the norm

‖u‖α,p =

(∫T

0
|u(t)|pdt +

∫T

0

∣∣ c
0D

α
t u(t)

∣∣pdt
)1/p

, ∀u ∈ E
α,p

0 , (2.4)

where C∞
0 ([0, T],RN) denotes the set of all functions u ∈ C∞([0, T],RN) with u(0) =

u(T) = 0. It is obvious that the fractional derivative space E
α,p

0 is the space of functions
u ∈ Lp([0, T],RN) having an α-order Caputo fractional derivative c

0D
α
t u ∈ Lp([0, T],RN)

and u(0) = u(T) = 0.

Proposition 2.5 (see [25]). Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p

0 is a
reflexive and separable space.
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Proposition 2.6 (see [25]). Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ E
α,p

0 , one has

‖u‖Lp ≤ Tα

Γ(α + 1)

∥∥ c
0D

α
t u
∥∥
Lp . (2.5)

Moreover, if α > 1/p and 1/p + 1/q = 1, then

‖u‖∞ ≤ T (α−1)/p

Γ(α)
(
(α − 1)q + 1

)1/q
∥∥ c

0D
α
t u
∥∥
Lp . (2.6)

According to (2.6), one can consider Eα,p

0 with respect to the norm

‖u‖α,p =
∥∥ c

0D
α
t u
∥∥
Lp =

(∫T

0

∣∣ c
0D

α
t u
∣∣pdt
)1/p

. (2.7)

Proposition 2.7 (see [25]). Define 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1/p, and the
sequence uk converges weakly to u ∈ E

α,p

0 , that is, uk ⇀ u. Then uk → u in C([0, T],RN), that is,
‖uk − u‖∞ → 0, as k → ∞.

Making use of Definition 2.3, for any u ∈ AC([0, T],RN), problem (P) is equivalent to
the following problem:

d

dt

(
1
2 0D

α−1
t

( c
0D

α
t u(t)

) − 1
2 tD

α−1
T

( c
tD

α
Tu(t)

))
+ λ∇F(t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,

(P2)

where α = 1 − β/2 ∈ (1/2, 1].
In the following, we will treat problem (P2) in the Hilbert space Eα = Eα,2

0 with the
corresponding norm ‖u‖α = ‖u‖α,2. It follows from [25, Theorem 4.1] that the functional ϕ
given by

ϕ(u) =
∫T

0

[
−1
2
( c
0D

α
t u(t),

c
tD

α
Tu(t)

)]
dt − λ

∫T

0
F(t, u(t))dt (2.8)

is continuously differentiable on Eα. Moreover, for u, v ∈ Eα, we have

〈
ϕ′(u), v

〉
= −

∫T

0

1
2
[( c

0D
α
t u(t),

c
tD

α
Tv(t)

)
+
( c
tD

α
Tu(t),

c
0D

α
t v(t)

)]
dt

− λ

∫T

0
(∇F(t, u(t)), v(t)]dt.

(2.9)

Definition 2.8 (see [25]). A function u ∈ AC([0, T],RN) is called a solution of (P2) if
(i) Dα(u(t)) is derivative for a.e. t ∈ [0, T],
(ii) u satisfies (P2), where Dα(u(t)) := (1/2) 0D

α−1
t (c0D

α
t u(t)) − (1/2) tD

α−1
T (ctD

α
Tu(t)).
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Proposition 2.9 (see [25]). If 1/2 < α ≤ 1, then for any u ∈ Eα, one has

|cos(πα)|‖u‖2α ≤ −
∫T

0

( c
0D

α
t u(t),

c
tD

α
Tu(t)

)
dt ≤ 1

|cos(πα)| ‖u‖
2
α. (2.10)

Proposition 2.10 (see [25]). Let 1/2 < α ≤ 1 be satisfied. If u ∈ Eα, then the functional J : Eα → R

denoted by

J(u) = −1
2

∫T

0

( c
0D

α
t u(t),

c
tD

α
Tu(t)

)
dt (2.11)

is convex and continuous on Eα.

In order to prove the existence of two solutions for problem (P), firstly, we recall some
well-known results. Their proofs can be found in many books. Please refer to the references
and its references therein.

Lemma 2.11 (see [27]). If X is a Banach space, ϕ ∈ C1(X,R), e ∈ X, and r > 0, such that ‖e‖ > r
and

b := inf
‖u‖=r

ϕ(u) > ϕ(0) ≥ ϕ(e), (2.12)

and if ϕ satisfies the PS condition, with

c := inf
γ∈Γ

max
t∈[0,1]

ϕ
(
γ(t)
)
, Γ :=

{
γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e

}
, (2.13)

then c is a critical value of ϕ.

3. The Main Result and Proof of the Theorem

In this part, we will prove that for (P) there also exist two solutions for the general case.
Our hypotheses on nonsmooth potential F(t, x) are as follows.
H(F)1: F : [0, T] ×R

N → R is a function such that F(t, 0) = 0 a.e. on [0, T] and satisfies
the following facts:

(i) for all x ∈ R
N , t �→ F(t, x) is measurable,

(ii) for a.a. t ∈ [0, T], x �→ F(t, x) is continuously differentiable,

(iii) there exist c ∈ C([0, T],R) and 0 < α0 < 2, such that

|∇F(t, x)|, |F(t, x)| ≤ c(t)
(
1 + |x|α0

)
, for a.a. t ∈ [0, T], all x ∈ R

N, (3.1)

(iv) there exist γ > 2 and μ ∈ L∞([0, T]), such that

lim sup
|x|→ 0

(∇F(t, x), x)
|x|γ < μ(t), uniformly for a.a. t ∈ [0, T], (3.2)
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(v) there exist ξ0 ∈ R
N , t0 ∈ (0, T), and r0 > 0, such that

F(t, ξ0) > δ0 > 0, a.e. t ∈ Br0(t0), (3.3)

where Br0(t0) := {t ∈ [0, T] : |t − t0| ≤ r0} ⊂ [0, T].

Remark 3.1. It is easy to verify that F : [0, T]×R
N → R satisfies the whole assumption in [25,

Theorem 4.1]. So, u ∈ Eα is a solution of the corresponding Euler equation ϕ′(u) = 0, then u is
a solution of problem (P2) which, of course, corresponds to the solution of problem (P). For
great details, please see [25, Theorem 4.2].

Theorem 3.2. Suppose that H(F)1 holds. Then there exists λ0 > 0 such that for each λ > λ0, the pro-
blem (P2) has at least two nontrivial solutions, which correspond to the two solutions of problem (P).

Proof. The proof is divided into four steps as follows.
Step 1. We will show that ϕ is coercive in this step.

Firstly, by H(F)1(iii), (2.6), and (2.10), we have

ϕ(u) =
∫T

0

[
−1
2
( c
0D

α
t u(t),

c
tD

α
Tu(t)

)]
dt − λ

∫T

0
F(t, u(t))dt

≥ |cos(πα)|
2

‖u‖2α − c0λT − c0λ

∫T

0
|u(t)|α0dt

≥ |cos(πα)|
2

‖u‖2α − c0λT − c0λT

(
T (α−1)/2

√
2α − 1Γ(α)

)α0

‖u‖α0
α

−→ ∞, as ‖u‖α −→ ∞,

(3.4)

where c0 = maxt∈[0,T]|c(t)|.
Step 2. We will show that the ϕ is weakly lower semicontinuous.

Let un ⇀ u weakly in Eα, and by Proposition 2.7, we obtain the following results:

Eα ↪→ C
(
[0, T],RN

)
,

un(t) −→ u(t) for a.e. t ∈ [0, T],

F(t, un(t)) −→ F(t, u(t)) for a.e. t ∈ [0, T].

(3.5)

By Fatou’s lemma,

lim sup
n→∞

∫T

0
F(t, un(t))dt ≤

∫T

0
F(t, u(t))dt. (3.6)

On the other hand, by Proposition 2.10, we have limn→∞J(un) = J(u), that is,

lim
n→∞

∫T

0

[
−1
2
( c
0D

α
t un(t), c

tD
α
Tun(t)

)]
dt =

∫T

0

[
−1
2
( c
0D

α
t u(t),

c
tD

α
Tu(t)

)]
dt. (3.7)
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Thus,

lim inf
n→∞

ϕ(un) = lim inf
n→∞

∫T

0

[
−1
2
( c
0D

α
t un(t), c

tD
α
Tun(t)

)]
dt − lim sup

n→∞
λ

∫T

0
F(t, un(t))dt

≥
∫T

0

[
−1
2
( c
0D

α
t u(t),

c
tD

α
Tu(t)

)]
dt − λ

∫T

0
F(t, u(t))dt = ϕ(u).

(3.8)

Hence, by the Weierstrass theorem, we deduce that there exists a global minimizer
u0 ∈ Eα such that

ϕ(u0) = min
u∈Eα

ϕ(u). (3.9)

Step 3. We will show that there exists λ0 > 0 such that for each λ > λ0, ϕ(u0) < 0.
By the condition by H(F)1 (v), there exists ξ0 ∈ R

N such that F(t, ξ0) > δ0 > 0, a.e.
t ∈ Br0(t0). It is clear that

0 < M1 := max
|x|≤|ξ0|

{
c0 + c0|x|α0

}
< +∞. (3.10)

Now we denote

κ0 =
M1

δ0 +M1
,

λ0 = max
κ∈[κ1,κ2]

|ξ0|2T3−2α

2Γ2(1 − α)r30(1 − κ)2(1 − α)2(3 − 2α)(δ0κ −M1 + κM1)|cos(πα)|
,

(3.11)

where κ0 < κ1 < κ2 < 1, and δ0 is given in the condition H(F)1 (v). A simple calculation shows
that the function κ �→ δ0κ−M1 +κM1 is positive whenever κ > κ0 and δ0κ0 −M1 +κ0M1 = 0.
Thus, λ0 is well defined and λ0 > 0.

We will show that for each λ > λ0, the problem (P2) has two nontrivial solutions. In
order to do this, for t ∈ [t1, t2], let us define

ηκ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t ∈ [0, T]/Br0(t0),
ξ0 if t ∈ Bκr0(t0),

ξ0
r0(1 − κ)

(r0 − |t − t0|) if t ∈ Br0(t0)/Bκr0(t0).
(3.12)

Then |η′
κ(t)| ≤ |ξ0|/r0(1 − κ) and

∣∣ c
0D

α
t ηκ(t)

∣∣ ≤ 1
Γ(1 − α)

∫ t

0
(t − s)−α

∣∣η′
κ(s)
∣∣ds ≤ 1

Γ(1 − α)
|ξ0|

r0(1 − κ)
t1−α

1 − α
. (3.13)

Hence,

∥∥ηι∥∥2α =
∫T

0

∣∣ c
0D

α
t ηκ(t)

∣∣2dt ≤ |ξ0|2T3−2α

Γ2(1 − α)r20(1 − κ)2(1 − α)2(3 − 2α)
. (3.14)
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By H(F)1 (iii) and (v), we have

∫T

0
F
(
t, ηκ(t)

)
dt =

∫
Bκr0 (t0)

F
(
t, ηκ(t)

)
dt +

∫
Br0 (t0)\Bκr0 (t0)

F
(
t, ηκ(t)

)
dt

≥ 2κr0δ0 −M1(2r0 − 2κr0)

= 2r0(δ0κ −M1 + κM1).

(3.15)

For κ ∈ [κ1, κ2], by Proposition 2.9, we have

ϕ
(
ηκ
)
=
∫T

0

[
−1
2
( c
0D

α
t ηκ(t),

c
tD

α
Tηκ(t)

)]
dt − λ

∫T

0
F
(
t, ηκ(t)

)
dt

≤ 1
|cos(πα)|

∥∥ηκ∥∥2α − 2λr0(δ0κ −M1 + κM1)

≤ 1
|cos(πα)|

|ξ0|2T3−2α

Γ2(1 − α)r20(1 − κ)2(1 − α)2(3 − 2α)
− 2λr0(δ0κ −M1 + κM1),

(3.16)

so that ϕ(ηt) < 0 whenever λ > λ0.
Step 4. We will check the PS condition in the following.

Suppose that {un}n≥1 ⊆ Eα such that ϕ(un) → c and ‖ϕ′(un)‖α → 0.
Since ϕ is coercive and {un}n≥1 is bounded in Eα and passed to a subsequence, which

still denote {un}n≥1, we may assume that there exists u ∈ Eα, such that un ⇀ u weakly in Eα;
thus, we have

〈
ϕ′(un) − ϕ′(u), un − u

〉
=
〈
ϕ′(un), un − u

〉 − 〈ϕ′(u), un − u
〉

≤ ∥∥ϕ′(un)
∥∥‖un‖α −

〈
ϕ′(u), un − u

〉 −→ 0,
(3.17)

as n → ∞. Moreover, according to Proposition 2.7, we have ‖un − u‖∞ → 0, as n → ∞.
Observing that

〈
ϕ′(un) − ϕ′(u), un − u

〉

= −
∫T

0

( c
0D

α
t (un(t) − u(t)), c

tD
α
T (un(t) − u(t))

)
dt

−
∫T

0
(∇F(t, un(t)) − F(t, u(t)), un(t) − u(t))dt

≥ |cos(πα)|‖un − u‖2α −
∫T

0
|∇F(t, un(t)) − F(t, u(t))|dt‖un − u‖∞,

(3.18)

combining this with (3.17), it is easy to verify that ‖un − u‖α → 0, as n → ∞, and hence that
un → u in Eα. Thus, ϕ satisfies the PS condition.
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Step 5. We will show that there exists another nontrivial weak solution of problem (P2).
From the mean value theorem and H(F)1 (v), we have

F(t, x) − F(t, 0) =
∫1

0
(∇F(t, θx), x)dθ

=
∫1

0

(∇F(t, θx), θx)
θ

dθ

≤
∫1

0

μ(t)
θ

|θx|γdθ

= μ(t)|x|γ
∫1

0
θγ−1dθ

=
μ(t)|x|γ

γ
,

(3.19)

for all |x| < β, a.e. t ∈ [0, T].
It follows from the conditions H(F)1 (iii) and all |x| ≥ β and a.e. t ∈ [0, T] that

|F(t, x)| ≤ c0|t| + c0|x|α0

≤ c0

∣∣∣∣xβ
∣∣∣∣ + c0|x|α0

≤
(

c0
βα0

+ c0

)
|x|α0−γ |x|γ

≤
(
c0
βγ

+
c0

βγ−α0

)
|x|γ ,

(3.20)

and this together with (3.19) yields that for all x ∈ R
N and a.e. t ∈ [0, T],

|F(t, x)| ≤
(
μ(t)
γ

+
c0
βγ

+
c0

βγ−α0

)
|x|γ(x) ≤ c1|x|γ , (3.21)

for some positive constant c1.
For all λ > λ0, ‖u‖α < 1, and |u|∞ < 1, we have

ϕ(u) =
∫T

0

[
−1
2
( c
0D

α
t u(t),

c
tD

α
Tu(t)

)]
dt − λ

∫T

0
F(t, u(t))dt

≥ |cos(πα)|‖u‖2α − λc1

∫T

0
|u(t)|γdt

≥ |cos(πα)|‖u‖2α − λc1

[
T (α−1)/2

Γα(α)
√
2α − 1

]γ
| ‖u‖γα.

(3.22)
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So, for ρ > 0 small enough, there exists a ν > 0 such that

ϕ(u) > ν, for ‖u‖α = ρ , (3.23)

and ‖u0‖α > ρ. So by the mountain pass theorem (cf. Lemma 2.11), we can get u1 ∈ Eα which
satisfies

ϕ(u1) = c > 0, ϕ′(u1) = 0. (3.24)

Therefore, u1 is another nontrivial critical point of ϕ.

Remark 3.3. We can find a potential function satisfying the hypothesis of our Theorem 3.2. For
great details, please see Section 4(B) in Summary.

So far, the results involved potential functions exhibiting sublinear. The next theorem
concerns problems where the potential function is superlinear.

Our hypotheses on nonsmooth potential F(t, x) are as follows.
H(F)2: F : [0, T] ×R

N → R is a function such that F(t, 0) = 0 a.e. on [0, T] and satisfies
the following facts:

(i) for all x ∈ R
N , t �→ F(t, x) is measurable,

(ii) for a.a. t ∈ [0, T], x �→ F(t, x) is continuously differentiable,

(iii) there exist c ∈ C([0, T],R) and α0 > 2, such that

|∇F(t, x)|, |F(t, x)| ≤ c(t)
(
1 + (t)|x|α0

)
, for a.a. t ∈ [0, T], allx ∈ R

N, (3.25)

(iv) there exist γ > 2 and μ ∈ L∞([0, T]), such that

lim sup
|x|→ 0

(∇F(t, x), x)
|x|γ < μ(t), uniformly for a.a. t ∈ [0, T], (3.26)

(v) there exist ξ0 ∈ R
N , t0 ∈ (0, T), and r0 > 0, such that F(t, ξ0) > δ0 > 0, a.e. t ∈

Br0(t0),where Br0(t0) := {t ∈ [0, T] : |t − t0| ≤ r0} ⊂ [0, T],

(vi) for a.a. t ∈ [0, T] and all x ∈ R
N , we have

F(t, x) ≤ ν(t)with ν ∈ Lβ([0, T],R), 1 ≤ β < 2. (3.27)

Theorem 3.4. Suppose that H(F)2 holds. Then there exists a λ0 > 0 such that for each λ > λ0, the
problem (P2) has at least two nontrivial solutions, which correspond to the two solutions of problem
(P).

Proof. The steps are similar to those of Theorem 3.2. In fact, we only need to modify Step 1
and Step 4 as follows: 1′ shows that ϕ is coercive under the condition H(F)2 (vi); 4

′ shows that
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there exists a second nontrivial solution under the conditions H(F)2 (iii) and H(F)2 (iv). Then
from Steps 1′, 2, 3, and 4′ above, problem (P) has at least two nontrivial solutions.
Step 1′ . By H(F)2 (vi), for all u ∈ Eα, ‖u‖α > 1, we have

ϕ(u) =
∫T

0

[
−1
2
( c
0D

α
t u(t),

c
tD

α
Tu(t)

)]
dt − λ

∫T

0
F(t, u(t))dt

≥ |cos(πα)|‖u‖2α − λc0

∫T

0
ν(t)dt −→ ∞, as ‖u‖α −→ ∞,

(3.28)

where c0 = maxt∈[0,T]|c(t)|.
Step 4′. Because of hypothesis H(F)2 (iii), we have

F(t, x) ≤ c0 + c0|x|α0

≤ c0

∣∣∣∣xβ
∣∣∣∣
α0

+ c0|x|α0

= c0

∣∣∣∣1β
∣∣∣∣
α0

|x|α0 + c0|x|α0

= c2|x|α0 ,

(3.29)

for a.e. t ∈ [0, T] and all |x| ≥ β with c2 > 0.
Combining (3.19) and (3.29), it follows that

|F(t, x)| ≤ μ(t)
γ

|x|γ + c2|x|α0 , (3.30)

for a.e. t ∈ [0, T] and all x ∈ R
N .

Thus, for all λ > λ0, ‖u‖α < 1 and |u|∞ < 1, we have

ϕ(u) =
∫T

0

[
−1
2
( c
0D

α
t u(t),

c
tD

α
Tu(t)

)]
dt − λ

∫T

0
F(t, u(t))dt

≥ |cos(πα)|‖u‖2α − λ

∫T

0

μ(t)
γ

|u(t)|γdt − λc2

∫T

0
|u(t)|α0dt

≥ |cos(πα)|‖u‖2α − λc3

[
T (α−1)/2

Γ(α)
√
2α − 1

]γ ∣∣∣∣∣‖u‖
γ
α − λc4

[
T (α−1)/2

Γ(α)
√
2α − 1

]α0
∣∣∣∣∣‖u‖α0

α ,

(3.31)

where c3 and c4 are positive constants.
So, for ρ > 0 small enough, there exists a ν > 0 such that

ϕ(u) > ν, for ‖u‖α = ρ , (3.32)

and ‖u0‖α > ρ.
Arguing as in proof of Step 4 of Theorem 3.2, we conclude that ϕ satisfies the PS

condition. So by themountain pass theorem (cf. Lemma 2.11), we can get that u1 ∈ Eα satisfies

ϕ(u1) = c > 0, ϕ′(u1) = 0. (3.33)
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Therefore, u1 is another nontrivial critical point of ϕ.

Remark 3.5. We will give some examples, which satisfy the hypothesis of our Theorem 3.4.
For great details, please see Section 4(C) in Summary.

4. Summary

(A) If β = 0, then α = 1 − β/2 = 1. Therefore, by Theorems 3.2 and 3.4, we actually obtain the
existence of two weak solutions of the following eigenvalue problem:

u′′(t) + λ∇F(t, u(t)) = 0, a.a. t ∈ [0, T],

u(0) = u(T) = 0,
(P3)

where λ > 0 is a real number, F : [0, T] × R
N → R is a given function, and ∇F(t, x) is the

gradient of F at x. Although many excellent results have been worked out on the existence
of solutions for second-order system (P3) (e.g., [28, 29]), it seems that no similar results were
obtained in the literature for fractional system (P).

(B)We give an example in the following to illustrate our viewpoint in Remark 3.1. We
consider

F(t, x) =

⎧⎪⎨
⎪⎩
a(t) sin

(π
2
|x|γ
)
, 0 ≤ |x| < 1,

a(t), |x| ≥ 1,
(4.1)

where γ > 2, a ∈ C([0, T],R), a(t) > 0 for all t ∈ [0, T].
Obviously, hypotheses H(F)1 (i), (ii), and (v) are satisfied. Moreover,

|F(t, x)| ≤

⎧⎪⎪⎨
⎪⎪⎩
a(t)

π

2
|x|γ ≤ a(t)

π

2
|x|γ−α0 |x|α0 ≤ a(t)

π

2
|x|α0 ≤ a(t)

πγ

2
|x|α0 , 0 ≤ |x| < 1,

a(t) ≤ a(t)
πγ

2
, |x| ≥ 1,

|∇F(t, x)| =

⎧⎪⎨
⎪⎩

∣∣∣a(t)πγ
2

cos
(π
2
|x|γ
)
|x|γ−2x

∣∣∣ ≤ a(t)
πγ

2
|x|γ−1 ≤ a(t)

πγ

2
, 0 ≤ |x| < 1,

0, |x| ≥ 1.

(4.2)
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Therefore,

|∇F(t, x)|, |F(t, x)| ≤ πγa(t)
2

+
πγa(t)

2
|x|α0 . (4.3)

So, condition H(F)1(iii) holds.
On the other hand,

lim sup
|x|→ 0

〈∇F(t, x), x〉
|x|γ = lim sup

|x|→ 0

γ(π/2)a(t) cos
(
(π/2)|x|γ)|x|γ

|x|γ =
π

2
γa(t), (4.4)

uniformly for a.a. t ∈ [0, T], so condition H(F)1 (iv) holds.
(C) We can find the following potential functions satisfying the conditions stated in

Theorem 3.4:

F1(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−a(t)
γ

|x|γ , |x| < 1,

a(t)
π

cos
(π
2
|x|2
)
− a(t)

γ
, |x| ≥ 1,

F2(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(t) sin
(π
2
|x|γ
)
, |x| < 1,

a(t)
[
1
|x| +

1
2
|x|2 − 1

2

]
, |x| ≥ 1,

F3(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(t)
γ

|x|γ , |x| < 1,

−2a(t)√
|x|

+ a(t)
(
2 +

1
γ

)
, |x| ≥ 1,

(4.5)

where a ∈ C([0, T],R), a(t) > 0 for all t ∈ [0, T].
It is clear that Fi(x, 0) = 0 (i = 1, 2, 3) for a.e. t ∈ [0, T], and hypotheses H(F)2 (i) and

H(F)2 (ii) are satisfied. A direct verification shows that conditions H(F)2 (v) and H(F)2 (vi)
are satisfied. Note that

|∇F1(t, x)| =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣−a(t)|x|γ−2x∣∣∣ ≤ a(t)|x|γ−1 ≤ 2a(t), 0 ≤ |x| < 1,
∣∣∣−a(t) sin(π

2
|x|2
)
x
∣∣∣ ≤ a(t)|x| ≤ 2a(t)|x|γ , |x| ≥ 1,



14 Abstract and Applied Analysis

|∇F2(t, x)| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣γa(t) cos(π
2
|x|γ
)π
2
|x|γ−2x

∣∣∣ ≤ γa(t)
π

2
|x|γ−1 ≤ a(t)

πγ

2
, 0 ≤ |x| < 1,∣∣∣∣∣a(t)

(
x − x

|x|3
)∣∣∣∣∣ ≤ a(t)

(
|x| + 1

|x|2
)

≤ a(t) + a(t)|x|γ , |x| ≥ 1,

|∇F3(t, x)| =

⎧⎪⎨
⎪⎩

∣∣∣a(t)|x|γ−2x∣∣∣ ≤ ∣∣∣a(t)|x|2(5/2)
∣∣∣ ≤ a(t), 0 ≤ |x| < 1,∣∣∣a(t)|x|−5/2x∣∣∣ ≤ a(t)|x| ≤ a(t)|x|γ , |x| ≥ 1,

|F1(t, x)| ≤ a(t)|x|γ + a(t)(1 + 1) = 2a(t) + 2a(t)|x|γ ,

|F2(t, x)| ≤ a(t)
∣∣∣sin(π

2
|x|γ
)∣∣∣ + a(t)

[
1 +

1
2
|x|γ − 1

2

]
≤ 3a(t) + a(t)|x|γ

2
,

|F3(t, x)| ≤ a(t)
1
γ
|x|γ + 2a(t)√

|x|
+ a(t)

(
2 +

1
γ

)
≤ 5a(t) + a(t)|x|γ .

(4.6)

So,

|∇F1(t, x)|, |F1(t, x)| ≤ 2a(t)
(
1 + |x|γ),

|∇F2(t, x)|, |F2(t, x)| ≤ a(t)
πγ

2
(
1 + |x|γ),

|∇F3(t, x)|, |F3(t, x)| ≤ 5a(t)
(
1 + |x|γ),

lim sup
|x|→ 0

(∇F1(t, x), x)
|x|γ = lim

|x|→ 0

−a(t)|x|γ
|x|γ = −a(t),

lim sup
|x|→ 0

(∇F2(t, x), x)
|x|γ = lim

|x|→ 0

a(t) cos
(
(π/2)|x|γ)(π/2)γ |x|γ

|x|γ

= lim
|x|→ 0

a(t) cos
(π
2
|x|γ
)π
2
γ =

γπa(t)
2

,

lim sup
|x|→ 0

(∇F3(t, x), x)
|x|γ = lim

|x|→ 0

a(t)|x|γ
|x|γ = a(t),

(4.7)

which shows that assumptions H(F)2 (iii) and H(F)2 (iv) are fulfilled.
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