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We introduce some new iterative schemes based on viscosity approximation method for finding
a split common element of the solution set of a pair of simultaneous variational inequalities
for inverse strongly monotone mappings in real Hilbert spaces with a family of infinitely
nonexpansive mappings. Some strong convergence theorems are also given. Our results generalize
and improve some well-known results in the literature and references therein.

1. Introduction

Throughout this paper, we denote by N and R, the sets of positive integers and real numbers,
respectively. Let H be a real Hilbert space, whose inner product and norm are denoted by
(-,-) and || - ||, respectively. Let I be the identity mapping on H and C be a nonempty closed
convex subset of H. Let T : C — H be a nonlinear operators. Then the canonical variational
inequality problem for the operator T ((VIP); or (VIP), for short) is to find u € C such that

(Tu,v-u)>0, YveC. (1.1)

We use the symbol VI(C, T) to denote the solution set of (VIP), that is

VI(C,T) ={ueC:(Tu,v—-u) >0, Vo € C}. (1.2)
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(VIP) was extensively investigated and generalized to the vector variational inequality
problems for single-valued or multivalued maps and contains optimization problems, quasi-
variational inequality problems, equilibrium problems, fixed-point problems, complemen-
tary problems, bilevel problems, and semi-infinite problems as special cases and applications;
see [1-6] and references therein.

Let S,T : C — H be two nonlinear operators. In [7], some authors have considered
the following pair of simultaneous variational inequality problems for operators S and T
((PSVIP)g 1, for short):

(PSVIP) s Findu € Csuchthat (Su,v-u) >0 and (Tu,v-u) >0, VoeC. (1.3)

An element u € C is a solution of (PSVIP)4 if and only if u € VI(C,S) N VI(C, T). Clearly,
(PSVIP) g 1 reduces to (VIP) if S =T.

Example 1.1. Let R with usual inner product and let a,b € R with a < b. Define two real-
valued functions Ty, T» by Tix = x?, Tox = x*, for all x € [a,b]. Then T}x = 2x, T,x = 4x° and
there exists xo € [a, b] such that Tixg = minye[apT1x and Toxg = minyepapTox. If xo € (a,b),
then T1xg = Toxg = 0; if xo = a, then Tjxo > 0 and Tyxp > 0; if xo = b, then Tjxp < 0 and
T,xo < 0. So we have

(Tjx0,x = x0) = Tyxo(x — x0) >0, (Tyxo,x = x0) = Tyxo(x —x0) >0, Vx€[ab] (14)

or xg € VI(C, T;) N VI(C, T;) which means that x, is the solution of (PSVIP)T{,TQ.

Obviously, the problem (PSVIP); 1 is considered in the same subset of the same space.
But many cases, two variational inequality problems often lie in different subset of spaces.
So, as a further development of the problem (PSVIP)gr, Censor et al. [8] presented a split
variational inequality problem. Let H;, H; be two real Hilbert spaces and C ¢ Hy and K € H;
two closed convex sets. Let A : H; — H, be a bounded linear operator. T : C — H; and
S : K — H,; are two nonlinear operators. The split variational inequality problem for T and
S ((SVIP)rgs, for short) is defined as follows:

(PSVIP)s; Findp € Csuchthat (Tp,v-p) >0, VYoeC,
(1.5)
and u := Ap € Ksolves (Su,w—-u) >0, Yw € K.

It is well known to find a solution of (VIP) or a common element of the solution set
of (VIP) and a fixed point of nonlinear operators, which has been studied by many authors
(see [9-16]) using all kinds of auxiliary techniques and formulations. In 2005, liduka and
Takahashi [9] established the following iteration scheme: let x; € H be arbitrary, define

Xp1 = Ay + (1 — ay)S1Pe(xy, — A Txy), (1.6)
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where S; is a nonexpansive mapping. They proved that the sequence {x,} defined by (1.6)
strongly converge to x* € F(S51)VI(C,T), if the coefficient ay,, A, satisfy the following
conditions:

0

lima, =0,  Dan=oo,  Dlapa-ad<oo,  Dlhwa-Mil<oo.  (17)
n=1

n=1 n=1
In 2007, Chen et al. [10] studied the following iterative process:

Xn1 = A f (xn) + (1 = an) S1Pe (0 = AnTxn), (1.8)

where S; is a nonexpansive mapping. If im, ,o.a, = 0,32 @y = 00, Doy |Ans1 — Ay| <
oo and X7 |Aw1 — Ayl < oo, then they proved that {x,} converges strongly to q €
F(51) N VI(C, T), which solves the variational inequality:

(fg-q,p-q) <0, VYpeF(S)nVICT). (1.9)

For some split common solution problems, they have been studied by some authors;
see [17, 18] and therein references. In this paper, we continue to study the (SVIP) and
introduce some new iterative schemes based on viscosity approximation method for finding
a common element of the fixed points set of nonexpansive mappings and the split solution set
of a pair of variational inequalities for inverse strongly monotone mappings in real Hilbert
spaces. Our results are new development of finding a common element of fixed point of
nonlinear operators and variational inequality problems.

2. Preliminaries

In this paper, we use symbols — and — to denote strong and weak convergence, respectively.
A Banach space (X, || -||) is said to satisfy Opial’s condition, if for each sequence {x,} in X with
x, — x € X, we have

lim inf||x, - x|| <lim inf||x, - y||, VyeX, y#x. (2.1)

It is well known that each Hilbert space satisfies Opial’s condition; see, for example, [19]. Let
T : X — X be a mapping. In this paper, the set of fixed points of T' is denoted by F(T).

A set-valued mapping T; : H — 2H is said to be monotone, if for all x, y€eH, feTx,
and g € Thy imply that (f — g,x —y) > 0. A monotone mapping T : H — H is said
to be maximal, if the graph G(T7) of T; is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping T; is maximal, if and only if for
(x,f)e HxH,(f-g,x—y) > 0forevery (y,g) € G(T1) implies that f € Tyx.LetT: C — H
be a monotone mapping and let Ncv be the normal cone to C at v € C, thatis, Ncv = {w €
H: (v-u,w) >0, for all u € C}. Define

Tv+ Nco, e_C,
T10={ vriNco, v 2.2)

0, véC.
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Then T; is maximal monotone and 0 € Tyv if and only if v € VI(C,T), where 0 is the zero
vector of H; see, for example, [9, 20, 21] for more details.

For any x € H, there exists a unique nearest point in C, denoted by Pc(x), such that
llx = Pc(x)|| < |lx — y|| for all y € C. The mapping Pc is called the projection operator (or metric
projection) from H onto C.

Let H; and H; be two Hilbert spaces. Let A : Hi — Hj; and B : H, — Hj be
two bounded linear operators. B is called the adjoint operator (or adjoint) of A, if for all
z € Hy, w € H», B satisfies (Az,w) = (z, Bw). It is known that the adjoint operator of a
bounded linear operator on a Hilbert space always exists and is bounded linear and unique.
Moreover, it is not hard to show that if B is an adjoint operator of A, then || A|| = ||B].

A mapping T : C — Cis said to be

(1) v—expansive if there exists a constant v > 0 such that ||Tx — Ty|| > v||x — y|| for all
x,y € C. In particular, if v = 1, then T is called expansive.

(2) v-strongly monotone if there exists a constant v > 0 such that
(Tx -Ty,x-y) >v||x-y|’, Vx,yeC (2.3)

Clearly, any v-strongly monotone mapping is v-expansive.

(3) u-inverse strongly monotone if there exists a constant u > 0 such that
(Tx -Ty,x—y) > u||Tx-Ty|]*>, Vx,yeC. (2.4)

(4) Relaxed u-cocoercive if there exists a constant u > 0 such that

(Tx-Ty,x-y) > (-u)||Tx - Ty 2

Vx,y € C. (2.5)

(5) Relaxed (u, v)-cocoercive if there exists constants u, v > 0 such that

(Tx -Ty,x—y) > (-u)||Tx - Ty|]* +v||x - y||>, Vx,yeC (2.6)

Especially, if u = 0, then T is v-strongly monotone. So this class of mapping is more
general than the class of strongly monotone mapping.

(6) An a-Lipschitz mapping if there exists a constant a > 0 such that ||Tx - Ty| <
allx —yl|| for all x,y € C. In particular, if 0 < a < 1 (a = 1, resp.), then T is called a
contraction (a nonexpansive mapping, resp.)

Remark ST (see [9]). If T is v-strongly monotone and pu-Lipschitz continuous, that is, || Tx —
Ty|| < pllx — y|| for all x,y € C, then T is (v/p?)-inverse strongly monotone.

Example 2.1. Let Tx = —2x, for all x € R. Then it is easy to see that for any x,y € R,
(Tx-Ty,x-y) =-2|x - y|2 > (-1)|Tx - Ty|2 +|x - y|2. (2.7)

Hence T is a relaxed (1, 1)-cocoercive mapping, but T is not a strongly monotone mapping.
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Now, let {T;},cy be a family of infinitely nonexpansive mappings. In [22], a mapping
W, is defined by the following;:
un,n+l = I/
un,n = )‘nTnun,nH + (1 - )Ln)I/
un,n—l = )Ln—lTn—lun,n + (1 - )Ln—l)I/

Uk = Ml + (1= M), (2.8)
Upp-1 = M T + (1= A1),

U,z = LU,z + (1-A2)1,
Wn = Un,l = )qulln,g + (1 - .)Ll)I,

where {\i},ey C [0,1]. Such a mapping W, is called the W-mapping generated by
Tn, Tn—lr ey Tl and )Ln, )‘n—ll ey )Ll.
The following properties for a W-mapping are well known.

Theorem 2.2 (see [22, 23]). Let C be a nonempty closed convex subset of a Hilbert space E, let
Ty, Ty, ... be a family of infinitely nonexpansive mappings from C into itself such that (2, F(T;) is
nonempty, and let A1, Ay, ... be real numbers such that 0 < \; < b < 1 for any i € N. Then the
following statements hold:

(1) W, is a nonexpansive mapping and F(W,,) = N, F(T;).
(2) For each x € C and for each positive integer k, the limit lim,, _, ,oU,, x exists.

(3) The mapping W : C — C defined by Wx := lim,_, ,W,x = lim, ., U,1x, x € C,
is a nonexpansive mapping satisfying F(W) = 2, F(T:) and it is called the W-mapping
generated by Ty, Ty, ... and X1, A5 . . ..

Theorem 2.3 (see [23]). Let C be a nonempty closed convex subset of a Hilbert space H, Ty, T, . ..
be nonexpansive mappings with (2, F(T;) = @, {Ai} be a real sequence such that 0 < A; < b < 1 for
any i € N. If K is any bounded subset of C, then

lim sup|[Wx - W,x|| = 0. (2.9)

TP xek

In particular, if {x},cy is a bounded sequence in C, then lim,, _, o, || W x, — Wyx,|| = 0.
The following results are crucial in this paper.

Lemma 2.4 (see [19]). For a given z € H, x € C satisfies the inequality (x — z,y — x) >
0, for all y € C if and only if x = Pc(z), where Pc is a projection operator from H onto C.
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It is well known that the projection operator Pc is nonexpansive and satisfies

|| Pcx - Pey||® < (Pex - Pey,x - y), Vx,y € H. (2.10)

Lemma 2.5 (see [9]). The element u € C is a solution of (VIP)y if and only if u € C satisfies the

relation u = Pc(u — pTu), where Pc is the projection operator, p > 0 is a constant.

Lemma 2.6 (see [24]). Let {a,} be a nonnegative real sequence satisfying the following condition:

ani1 < (1= Ay)an + Apby, Vn2>mng, (2.11)

where ny is some nonnegative integer, {A,} is a sequence in (0,1) and {b,} is a sequence in R such
that

() Xz An = o0/

(ii) im sup, _, b, <0o0r 3724 A,by, is convergent.
Then lim,, _, .a, = 0.

Lemma 2.7 (see [25]). Let {x,} and {y,} be bounded sequences in a Banach space E and let {f,} be
a sequence in [0,1] with 0 < liminf, ., B, <limsup, , B, < 1. Suppose xns1 = Ppyn+(1-Pn)x,
for all integers n > 0 and limsup,,_, (|1 ~ Yull = [Xws1 = xall) < O, then Timy — col|yn — xall = .

Lemma 2.8 (see [26]). Let E be a real Banach space and J : E — 2F be the normalized duality
mapping, then for any x,y € E the following inequality holds:

lx+ylI* < 1=l + 20y, j(x +3)), Vi(x+y) € J(x+y). (212)
Especially, when E = H, then J = 1. So, from Lemma 2.8, one has
lx+y|* <llxI* +2(y, x +y), V¥x,ye€H. (2.13)

The following result is simple, but it is very useful in this paper.

Lemma 2.9. Let {a,}, {b,} be two nonnegative real sequences. If lim,_,a, = 0, then
liminf, ., (a, + b,) = liminf, _ o, b,.

3. Main Results

In this section, we construct an iteration scheme including a pair of mappings T : C —
H;and S : K — H; which are u-inverse strongly monotone to solve the split variational
inequality problem. For the purpose we first give the following Lemmas.

Lemma 3.1 (see page 3in [9]). Let T : C — H be a u-inverse strongly monotone mapping. Then
I — AT is nonexpansive for any A € [0, 2u].
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Example 3.2. Let Tx = 3x for all x € R and u = 1/6. Since
<Tx—Ty,x—y>=3|x—y|22u|Tx—Ty|2, (3.1)
T is u-inversely monotone. Let A € [0,1/3] = [0,2u]. It is easy to see that
|I-AT)x - (I-AT)y|=(1-3\)|x-y| < |x-y] (3.2)

So I — AT is nonexpansive for all A € [0, 2u].
Applying Lemma 3.1, we have the following important result.

Lemma 3.3. Let T,S : C — H be two u-inverse strongly monotone mappings and S : C — C
be a nonexpansive mapping. Then for any given sequences {r,} and {s,} in [0,2u], Pc(I - s,T),
Pc(I - 1,S), S1Pc(I - s, T) and S1Pc(I - r,S) are all nonexpansive for all n € N.

The following conclusion is immediate from Lemma 2.5.

Lemma 3.4. The element u € C is a solution of (SVIP)r 5 if and only if u € C satisfies the relation

u = Pc(u-pTu), Au = Px(u - pSAu), (3.3)

where Pc and Py are the projection operators, p > 0 is a constant.

Theorem 3.5. Let Hy, Hy be two real Hilbert spaces and C C Hy, K C H; two nonempty closed
convex sets. Let T : C — Hjand S : K — Hy be u-inversely monotone. Let A : Hy — H>
be a bounded linear operator with adjoint operator A*. Let f : C — C be a contraction with
contraction constant a. Let {T;},cy be a family of infinitely nonexpansive mappings of C into itself
and U a nonexpansive mapping of K into itself such that Q = {p € (N2 F(T;)) N VI(C,T) : Ap €
FU)NVI(K,S)} #0. Let ¢ be a real number and {A;};cy be a sequence of real numbers such that
0 <X <& <1foreveryie N. Foreachn € N, let W), be the W-mapping of C into itself generated by
Tn, Ty1,...,Tvand Ay, Ay, ..., M. Let {x,,} be a sequence generated by the following algorithm:

xo =x € C chosen arbitrarily,
Yn = Pc(I = puT)xn,
Iy = Px (I - ,S) Ay, (3.4)
zp = (1= 0)x, + OW,Pc(yy + rA*(Ul, — Ayn)),
Xne1 = nf (X)) + (1 — )z, VneNU{0},
where r € (0,1/||A||?) and 6 € (0,1) are two constants and {an oo and { P}, are two sequences
in (0,1). If {an } 5o and { P}y further satisfy the following conditions:

(Cy) limy— oty =0and X020, a, = oo,
(C2) {Pn} C [a,b] and lim,— o |Prs1 — Pn] =0, where 0 < a, b < 2u,
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then the following statements hold:

(a) there exists a unique g € Q such that Pof(q) = g;

(b) {x,} converges strongly to g.

Proof. Let p € Q. By Lemma 3.3, Pc(I — p,T), and Px(I — f,S) are nonexpansive for all n €
NU {0}. For each n € NU {0}, by (3.4) and Lemma 3.4, we obtain the following inequalities:

[y =PIl = [IPc(T = BuT)xn = Pe(I - fuT)p|| < [|lxn - p
11 = Apll = 1Pk (T = BuS) Ayn = P (1 = pnS) Ap|| < || Ay — Ap

[ 2ne1 =Pl < @ull fGen) =Pl + (= aw)[|z0 = pl| < anl| £ Gen) =pl| + |20 = -

7

, (3.5)

Let hy, = Pc(y, + rA*(Ul, — Ay,)) for n € NU {0}. Then

[Waha = pIP < 1 = pIP = | Pe i + rA° (Ul = Ayi)) = pIF < 74" (UL = Aps) = pIf
=y = pII” + A (UL = Ay) I + 27y~ p, A" (UL ~ Aya))
< llyo =pI = Ira° U1, = Ao) I
+2r(A(y, —p) + Ul, - Ay, — (UL, - Ay,),Ul, - Ay,)
= llyn=pll* + llra* Ut - Ay) |
w2r{ St - Apl + 3L - Ayl - [ Ay - Apll - |t - Ava*}

< lyn = pl* + PIA P (UL, - Aya||® - 7| UL, - Ay,

2

7

= llya=pI* = (1 - rllA"IP) ULy - Ay,

(3.6)
Iz = plI* = [|(1 = 0) (xu = p) + O(Wohtn = p) ||
< (1= 0)[|xu —pl|* + 0| Wl — p||”

< (1 =0)||xn = pll* + 6|1~ p|” (3.7)

< (1=0)xu = pl* + 0llya - pI
2
< [lxn =pll
for all n € NU {0}. Next, we will show that the conclusion is true by several steps.

Step 1. We show that all {x,}, {yn}, {zn}, {Txu}, {SAY.}, {1}, and {W,h,} are
bounded.
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To prove it, it suffices to show {x,} is bounded. Let p € Q. We claim that

l|2n =Pl Sﬁ:zmax{“xo—PHfW} Vn e NU {0}. (3.8)

Indeed, it is obvious that (3.8) is true for n = 0. Assume that (3.7) is true for n = k, k € N.
Since ||y — pll < ||xx — pll and ||zx = pll < ||xx — p|| by (3.5) and (3.7), it follows from (3.5) that

|21 = p| < ]| f (i) = p| + (1 = ) || zx = |
= ai || f (k) = f (i) + f (i) = p|| + (1= i) ||z = |
< agal|xic = p|l + ax|| f(p) =Pl + (1~ @) ||~
<A -a(l-a)||xk - pl| + || f(p) -p|l <2

(3.9)

which prove that (3.8) is true for n = k+1. By induction, (3.8) holds for all n € NU{0}. Hence,
by (3.8), we know that {x,} is bounded and so are {x,}, {y.}, {zn}, {Txn}, {SAya}, {1.}, (B0},
{W,h,}, {1,}, and {Ul,}. This also means that there exists a bounded subset C; C C such that

{xn}/{yn}/{Zn}/{Txn}r{hn}r{thn} cCy. (3.10)

Step 2. Prove limy, _, oo || Xp+1 — Xu|| = 0.
For each n € NU {0}, by Lemma 3.1,

lyns1 = yull < [Pc(I = BusaT)Xns1 = Pe(I = B T)Xn || + || P (I = BrusaT) xn = Pe(I = BuT) x|

< ”xn+1 - xn” + |ﬂn+1 - ﬁnl”Txn”
(3.11)

Similarly,
ln1 = Lnl| < ”PK (I - ﬂn+1S)Ayn+1 - Px (I - ﬁn+1S)A]/n”

+ || P (T = Bra1S) Ay — Pc(I = BS) Aya| (3.12)
< ([ Ayt = Avall + [P = Bul S Ayl ¥m €N (o).
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Since h,, = Pc(y, + rA*(Ul, — Ay,)), n € NU {0}, we have

s = Ball® < [y + 7 A" (Ulnit = Ayia) = (v + 1A (UL = Aya)) ||°
< Ny =yl + 7 A” Ul = Ay = Ul = Aya)) ||
+ 27 (Yni1 = Yn, A" (Ulps1 = Ay — (UL, — Ayn)))
< Ynst = yal|® + P2IA N | ULt = Aymsr = (UL — Aya) ||
+21r{AYni1~ AYn+Ulns1 = A = Uly = Ayn), Ulps1 = Ay — Ul — Ayn))
= 2r(Ulys1 — Ayni1 — (Ul = Ayn), Ulysy = Ayp — (UL, - Ayn))

= ywr = yall” + PIA P UL = Ayis = (UL~ Aya) ||
#20{ S U =~ UL+ 5 s = Ay = Ul = Ay = 5 | Avna= A}
= 27| ULyt = Ay = (Ul = Aya) ||*
= (1Y = yall” = (1= PIA ) [ Ui = Ay - (UL = Ay |
(UL = Ul = [| Ayt - Aya]*}
= |yt = yull® = (1 = PIAIP) [Uluss = Ayner = (UL = Aya) |
+7|Bust = Bal (ULt = ULl + || Aysr = Ay | S Ay |
< e = %l + Bt = Bl (IT2all i =l + [Pt = Bul Tl
= r (1= A1) [Ulyr = Ay = (UL, = Ay,) |
+ 7Bt = Bul (U1 = ULl + [| Ayns = Ayall) IS Ayl

< lxpa = xn”2 + |,5n+1 - ,ﬁnlMl,
(3.13)

where M; is a constant such that

(IT a1 = ]l + (B = BalITa ) + 7 (ULt = ULall + | AYnis = Ayal)) [ S AYal| < My
(3.14)
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for any n € NU {0}. Since {h,,} C C;, for each n € NU {0}, we have

||Wn+1hn+1 - thn” < ”Wn+1hn+1 - Whn+1|| + ”WhTH—l - Whn” + ”Whn - thn”

3.15
<sup||Wyaix — Wx|| + sup||[Wx — Wyx|| + ||hys1 — Bl ( )
x€Cy xeCy
IWiihna = Wahal? < [|huer = hal® + wn, (3.16)
where
wy = <sup||Wn+1x - Wx|| +sup||Wx - an||>
x€Cy xeCy
(3.17)
X <sup||Wn+1x - Wx|| +sup||[Wx - W,x|| + 2||hy1 — hn||>.
xeCq x€Cy
So, we have
||Zn+1 - Zn||2 < (1 - 9)||xn+1 - xnllz + 9||Wn+1hn+1 - thn”2
< (1 - 9)||xn+1 - xnllz + 9||hn+l - hn”z + Wy
(3.18)

< (1 - 9)||xn+1 - xn”2 + 6||xn+1 - xn”2 + |ﬁn+1 - ﬂnIMl + Wy

= ||xn+1 - xn”2 + |ﬁn+1 - ﬁnlMl + Wy,

forany n € NU {0}.
Choose a sequence {y, } such that x,;1 = y,,y,, + (1 =y,)x,, wherey,, = 1-(1-0)(1-a,),
then we have

_ anf(xn) + (1 - a,)OW,hy,

n 4

Yn

Vn e NU {0}. (3.19)

It follows that

— — ay At
[ =7 € 225+ 222 ]
1-a,.1)0 1-a,:1)0 (A-a,0
+ Q”Wnﬂhnﬂ - thn“ + ‘ ( +1) - ( ) '”thnn
Yn+1 Yn+1 n
. o (3.20)
< (an + ap)Ms + L2000 gy Wl + |2 oy |
n+1 n
(1-a,1)0

< 2(“11 + ‘xn+1)M3 + ”Wn+1hn+1 - thn”/

Yn+1
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where M3 is a constant such that sup, o) {1f (xn) /¥all, [[Wrhall} < Ms. From (3.20), (3.16),
and (3.13) we have

(1-a,1)6°
2
n+l

(1-au1)0

n+1

(1- an+1)292

”yn+1 - yn”2 < 4(an+1 + “n)2M§ + ||Wn+1hn+1 - thn”2

+ 4(an + an+1)M3 ”Wn+1hn+1 - thn”

(1- an+1)292

< 4(ap + an)*M2 + [ Bns1 — hal? +

5_,_1 Y5+1
1-0a,1)0
w4 + )M L2y W
n+1
1 - a,.1)%62 1 - ay.1)2602
< Aapa + an)2M§ + %”xnﬂ - xn”2 + %lﬂnﬂ - ﬂn|M1
n+l n+l
1 - ap)26? 1-—a,.1)0
+ (A= )07 2+1) wy +4(a, + an+1)M3—( +1) IWhs1hne1 — Wiha||.
Vo1 Yn+1
(3.21)
Applying the condition (C2), it follows from (3.21) that
lim sup{ [[%,.,, = 7, [I* = Ilw = 21} =0, (3.22)
which implies
lim sup{||¥,,,1 =, || = lxnea = xall} = 0. (3.23)
Applying Lemma 2.7, we obtain lim,, _,.||/,, — xx|| — 0 which implies that
nhjrc}()“xnﬂ — x| = nh_{rgoyfl”yn - xu| =0. (3.24)
Step 3. Prove limy, _, || Tx, — Tp|| = lim, . »»||SAy, — SAp|| = 0.
For any n € NU {0}, we have
2 2
[y =plI” = | Pc(T = BuT)xn = Pe(I = BuT)p||
2
< || (T = BuT)xn = (1= BuT)p||
(3.25)

= ||xn = pII* = 2B4(xn = p, T = Tp) + B2|| Tx - Tp||

< lxn = pI|* = Bu (20 = ) | T - Tp| |-
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Similarly,
UL, = Ap|* < Il = Apl” = | Px (T - u5) Ay - Ap* )
< Ay~ Ap|* - pu(2u~ ) S Ay, - SAp* |
From (3.5) again, we have
e ~pI < @l FGen) = pll + Nz - pI)? S @aMa+ 2 -pl,  322)

where My is a constant such that sup,, (o) {@nll f () — pl* + 2|l f (xn) = pllllze — pll} £ M. It
follows that

0 < 0B, (2u = B) | T2 = Tp||* < 0| — p||* - Ollyn — p|I*  (by (3.24))
< lxw=plI* = llza = pI*  (by 37))
< laen = plI* + anMa = [J2nir = pI* (by (326))  (328)
< (len =pll + 121 = pID X1 = Xl + aMa

— 0 asn— oo,

which yields that lim,, _, o, ||Tx, — Tp|| = 0 (by the condition 0 < a < 8, < b < 2u).
For any n € NU {0}, by (3.6), (3.7), and (3.27), we have

Or (1 - rllA*I) ULy — Ayal* < 01|y~ p* = 6 Whs = p||”

2 2
< Ollxu = plI” - 6llz: - pll

(3.29)
<O|lxn = p|I* + an M =[x —p|®
= ([0 = Il + %01 =PI xns1 = 2ull + a0 M.
So,
lim ||Ul, = Aya|| = 0. (3.30)

From (3.26) and (3.30) again, we have

0 < Bu(2u - Bu) || SAyn — SAp||” < || Aya - Ap||® - UL - Ap|)*
= (| Ayn = Ap|| + [|UL. = Ap|]) (|| Ayn = Ap|| - ||UL, - Ap]|)
< (| Ay = Ap|| + [|Ap|) (UL, — Aya||

— 0 asn— oo,

(3.31)
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which implies that lim,, ., . [|SAy, — SAp|| = 0 (by the condition 0 < a < f, < b < 2u).
On the other hand, since

11 = Ap||* = || P (I = BuS) Ay — Pic (I - BuS) Ap||®
((I = BuS)Ayn— (I - puS)Ap, I, - Ap)

= %{ I(T = BuS) Ay — (I - BuS) Ap||’

#lb = Ap|” =l ~ Ay~ pu(SAYa - SAP)|’)

IN

IN

1
5 Ay = Ap|* + (11 - Ap|* = 11 - Ava||”

+26n(ln — Ayn, SAy, - SAp) - Bi|| S Ay, - SAp|}

IN

1
5 {4y = Ap|1* + (11 = Ap|* = 11 = Ay + 26u 1 = Avall | SA - SAp| },
(3.32)

we get

11 = Apl|* < | Ay — Ap||”* = ||l = Ayall” + 2Bulll = Aya | |SAy. - SAp|l, YneNU (0}.
(3.33)

By (3.6) and (3.33), we have
[Wata = pI < llyn = I + A" (ULl — Aga) |
+2r{ S Ul = Apll* + UL - Ava” = Ay - 4p]* - |1l - Ava
< lya=pll* + [[rA* (UL, - Aya) |1
+20{ 5l = Apl*+ 3 Uth = Ayl - | Ay, - Apll - |t - A}
<y =PI + 1A (Ul - Ay |
20 {5 1L = Ayl + Bl = Ay IS Ay - Spll - 3 UL - A}

<Ny =PI+ P2UAN ULy = Ayal* - rl|UL, = Aya]|* = 7|1 = Aya]|®
+2rfl|ln = Ay ||[[SAy. - SAp||

=\l =pI” + (1= rIA°F) UL = Ayal* = 7|1 = Ay
+2rful|ln — Ay ||[[SAy. - SAp||

<Ny =pI” =7l = Ayall* + 2rBullu = Ayl SAya - SAp]|,
(3.34)
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Using (3.7), (3.27), and (3.34), we obtain

0rllt — Ayl < Olly — pII* = 01 Woho ~pl + 20, 1 — Ay, || S Ay, - Sap]
< Ol — pI = O]l — pII* + 2008, 11 - Ay [[SAy, - SAp]
< Ol pIF + M~ [0s ~ pI + 20001 — Ay [|S Ay, - Stp]
= (b= Al lenes = P b — ol @ M+ 278 — Ayl [S Ay~ SA

— 0 asn— oo,

(3.35)
which implies
71liﬁrr$||l,l - Ay, =0. (3.36)
According to (3.30) and (3.36), we derive that
nhi&uwn -1 =0. (3.37)
Step 4. Prove im,, , oo ||xn — 2|l = limy,— o ||yn — x4l = LHmy— oo||hn — x4l = 0.
Since
Jim [l = xl =0, lm [ = zall = lim || () = 24l = 0, (3.38)

we have lim,, _, o, ||x,, — z,|| = 0. For any n € NU {0}, since

Iy =Pl = [|Pc(I = BuT)xu = Pc(I - B T)p||?
(I =BuT)xn = (I = BuT)p, Y — P)

_ %{II (1= BaT)xu = (1= BT)PI + v = plI* = 120 = ¥ = Bu(Tu - Tp) ||}

IN

1
5 Il v =p I~ 10 =y I +2B0 (K=, Txa = Tp) 3| Txa=Tp |}

9

IN

1 2 2 2
§{||xn-P|| + Ny =plI™ = lxn = yul|” + 2Pl xn = yu ||| Txn - T
(3.39)

we get

=PI < lloen =PI = 100 = yall” + 2Bul|x0 = vl I T = T (3.40)
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It follows from (3.27), (3.7), and (3.40) that

wa = pII” < M + |20 -
< auMy+ (1= 6)|lxs —p|I* + 0llyn - pII° (3.41)

< awMa + || = pl|” = Ol = yull* + 208 0 = yull| T2 = T,
which yields that

Ollxn — yull” < auMa + [l = pII” = llawss = pII” + 2Bullu = ya 1T = T

7

< anMy+ (|[xn = p| + [|xner = plD) It = xaull + 280|200 =yl | Txn - Tpp
(3.42)

By Steps 1-3 and lim,, ., &, = 0, it follows from (3.42) that lim,, _, oo||x, — ya|| = 0.
Since ||hy, — yull < lyA*||I|l: — Aynl| for all n € NU {0}, we have lim,, o ||, — 4| = 0.
Using it with limy,—, oo||n — Y| = 0 and limy,_, o ||x, — 24|| = 0, we get limy, _, o || — By || = 0.
Step 5. Prove limy, _, oo ||Wpxy — x| = 0 and lim,, _, oo |[Wx,, — x| = 0.
Indeed, since

1
(Wyh, — x,|| = §||Zn — Xyl — 0 asn— oo, (3.43)

we have

IWaxn = x| < |Waxn = Wihy|| + ||Wihy — x| < ||x0 = Bal| + |[Whhy — x4]] — 0 as 1 — oo.

(3.44)
By Theorem 2.3, lim,, _, oo || W x,, — Wy,x,|| = 0. Since
W, = x| < [[Wxy = Wo|| + Wiy = x|l -V, (3.45)
we obtain lim, -, o, |[|[Wx, — x,|| = 0.
Step 6. There exists a unique g € Q C H such that Pof(g) = g.
Indeed, for any x, y € H,
IPaf(x) = Pof ()| < If ) = F@)l < allx -y (3.46)

Since a € [0,1), Pof is a contraction on H. Applying Banach contraction principle, there
exists a unique g € H such that g = Pof(q) € Q.

Step 7. Prove limsup, , _(fq-q,x,—q) <0.

For this purpose, we may choose subsequence {x,,} of {x,} such that

limsup(fqg-q,x,—q) = }L%(fq_qfxm - q)- (3.47)

n— oo
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Since {x,,} is a bounded sequence, there exists a subsequence of {xy,,}, which is still denoted
by {xn,}, such that x,, = x* € H. Therefore, we have

limsup(fq-q,x, —q) =(fq-9,x" -q). (3.48)

i— oo

Next we prove x* € Q.
(a) Wx* = x*. In fact, if Wx* # x*, then we have

lim inf||x,, — x*|| < lim inf||x,, — Wx*||
1— 00 1— 00
< Tim inf([xs, = Wi | + [W,, - W)
1— 00
(3.49)
< lim inf(lx, — W || + 1, - %))
1— 00
= lim inf||x,, — x*|| (by Step 5 and Lemma 2.9).
1— 00
This is a contradiction. Hence, Wx* = x*, which implies that x* € (2, F(T;) by Theorem 2.2.

(b) Prove x* € VI(C,T). Since x,,, = x* and lim; _, oo ||, — Yu,|| = 0, we have y,, — x™*.
Let

(3.50)

Tx+ Ncx, x€C,
Tlx =
@, x ¢ C.

Since T is u-inversely monotone, T is monotone and hence T; is a maximal monotone
mapping. For any given (x,z) € G(T1), since z — Tx € Ncx and y,, € C, by the definition
of N¢, we have

(X =Yn,z-Tx) >0 Vn. (3.51)
On the other hand, since y,, = Pc(I - p,T)x,, we have
(% = Y, Yn — (xn — PuTx)) > 0. (3.52)

In particular,

yn — Xn
X =Y, ﬂ—n +Tx,)>0 Vn. (3.53)
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From (3.51) and (3.53) we have
<x - ynilz> 2 <x - yni’Tx>

2 <x - yni'Tx> - <x =~ Ynis yniﬂ_ ol + Txni>

. (3.54)
- <X _ ynirTx _ T]/ni> + <x - yni/Tyni - Txni> - <x = Ynis yﬂ,ﬁnIan >

= <x B ]/n,-;T]/ni - Txni> - <x = Ynir ynip_ - >’

which implies
(x—x*,z) = im (x -y, z) > 0. (3.55)

This shows 0 € Ty x*, that is, x* € VI(C, T).
(c) Prove Ax* € VI(K, S) and Ax* € F(U). Let

N K,
Ty = {Sx+ KX, XE€E (3.56)

Then T, is a maximal monotone mapping. For any given (x, z) € G(T), since z — Sx € Ngx
and /,, € K, by the definition of Nx we have

(x=1,,z-Sx)>0 Vn. (3.57)

On the other hand, since I,, = Px (I - p,S) Ay,, we have

(x=1n, 1y — (Ayn — PuSAyY,)) >0, (3.58)

and hence
<x g _ﬂfy L SAyn> >0 Vn (3.59)
Since x,, — x* and limy, _, oo||xXp, — Y, || = 0 and limy, —, o ||ln, — Ayy,|| = 0, we have [,, — Ax™.

From (3.57) and (3.59) we have
(x =1y, z) 2 (x—1,,Sx)

Ly, = Ayn,

> (x—1Ip,Sx =Sl ) + (x =1, Sly, = SAY,,) — <x ~1L, ﬂ—n> 540)
Ly, — Ayy,

> <x_lni’l"i_Ayﬂi>_<x—lni, i yz>

:an
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So

(x— Ax",z) = lim(x - I, z) > 0. (3.61)

This shows 0 € T,Ax*, that is, Ax* € VI(K,S). In addition, by (3.36), (3.37), and Opial’s
condition, we can prove easily Ax* € F(U).
By (a), (b), and (c), x* € Q is proved. Hence

lim sup(fq—q,xn —q) = <fq—q,x* —q> <0. (3.62)

n—oo

Step 8. Prove {x,} converges strongly to g = Pof(q) € Q.
In fact, by Step 7 we have

lim sup(fq—g,x,—q) <0. (3.63)

It follows from (3.5) and Lemma 2.8 that
||xn+1 - ‘1”2 = ”“nf(xn) +(1—au)zn - qllz

< (1= an)?[|2n = q* + 20 ( f () - 4, %1 - q)

< (1= @)’ ||xa = ql|” + 2au(f (x0) = £(9) + £ (@) = 4, X1 — q)

(3.64)
2
< (1= an)’[lacn = q||” + 2ana| 20 = q| | xuer — || + 20 (f (q) = 4, X001 - q)
S(A-an(2- 20())”36,, - q”2 + a121”xn - q”2 + 2ana||xn - q”“xnﬂ = Xn||
+20a,(f(q) —q,xn1 —q) VYneNuU({0}.
Let A, = a,(2 - 2a), n € NU {0}. Then, for any n € NU {0}, we obtain
2 _ 2 _ )‘nan _ 2
@15, - qll* = 225 [, - gl
A,
2ana]| s = ql e = xall = 77 [l20n = qll %1 = 2l (3.65)
A

2e(f () = @ %nn1 = q) = 77 (f(4) =4, Xni1 ~ q)-

Set

a 1

a ”xn_q||“xn+1_xn”+ 1-a

2
by = 5l gl +

(f(q) =g Xn1—q).  (3.66)

1-a
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The condition (C1) and the boundedness of {x,} ensure lim, . (at, /(2 — 2a))||lx, — g||* = 0,
Step 2 ensure lim,, _, o (1/ (1-a))a||x,,—ql[||xn+1—-xx|| = 0, and Step 7 ensure lim sup,, _, (1/(1-
a)){f(q) = q,xn1 —q) <0,s0lim sup, , b, <0. Applying Lemma 2.6 and the inequality

%1 = ql> < (1= 0) |20 = q])” + b, (3.67)

we obtain that lim,,_, ., ||x, — g|| = 0 which means that the sequence {x,} strongly converge to
g. This completes the proof of the Theorem 3.5. O

The following convergence theorems can be established by applying Theorem 3.5 with
u=1I

Corollary 3.6. Let Hy, Hy be two real Hilbert spaces and C C Hy, K C H, two nonempty closed
convex sets. Let T : C — Hjand S : K — Hy be u-inversely monotone. A : Hi — Hjyisa
bounded linear operator with adjoint operator A*. Let f : C — C be a contraction with contraction
constant a. Let {T;};cy be a family of infinitely nonexpansive mappings of C into itself such that
Q={peNZFT)NVICT) : Ap € VI(K,S)} #0. Let ¢ be a real number and {\;},cy be a
sequence of real numbers such that 0 < A\; < ¢ < 1, for every i € N. For each n € N, let W}, be the
W-mapping of C into itself generated by T,,, Ty—1,...,T1 and Ay, Ap—1, ..., A1. Let {x,} be a sequence
generated by the following algorithm:

xo =x € C chosen arbitrarily,
Yn = Pc(I = puT)xn,
ly = Px (I - ,S) Ayn, (3.68)
zn = (1= 0)xy + OW, Pe(yn + TA* (1, — Ayn)),

Xne1 = O f (X)) + (1 — )z, VneNU{0},

where r € (0,1/||A||?) and 0 € (0,1) are two constants and {a, }2 o and { B, )5, are two sequences
in (0,1). If {ay }oro and { P} oop fuirther satisfy the following conditions:

(Cy) lim, o ay =0and 377 ay = oo;

(C2) {Pn} C [a,b] and limy, _, o5 |Brs1 — Pu| = 0, where 0 < a, b < 2u;

then the following statements hold:

(a) there exists a unique g € Q such that Pof(q) = g;

(b) {x,} converges strongly to g.
If T; = I for all i € N in Theorem 3.5, then we have the following result.

Corollary 3.7. Let Hy, H; be two real Hilbert spaces and C C Hy, K C Hj two nonempty closed
convex sets. Let T : C — Hyand S : K — Hj be u-inversely monotone. A : Hi — Hjy isa
bounded linear operator with adjoint operator A*. Let f : C — C be a contraction with contraction
constant a. Let U be a nonexpansive mapping of K into itself such that Q = {p € VI(C,T) : Ap €
FU)NVI(K,S)} #0. Let ¢ be a real number and {A;};cy be a sequence of real numbers such that



Abstract and Applied Analysis 21

0 <\ £¢ <1, forevery i € N. For each n € N, let W, be the W-mapping of C into itself generated
by T, Ty,...,Tyand Ay, Ay, ..., M. Let {x,,} be a sequence generated by the following algorithm:

xo=x € C chosen arbitrarily,
Yn = Pc(I = puT)xn,
Ly = Pic(I = BuS) Ay, (3.69)
zn = (1= 0)x, + OPc (yn + rA*(Ul, — Ayn)),

Xn41 = Onf (X)) + (1 =)z, VYVneNU{0},

where r € (0,1/||A||?) and 6 € (0,1) are two constants and {a, }i2 and { B, )iy are two sequences
in (0,1). If {an } 5y and { B} g further satisfy the following conditions:

(Cy) limy o ay = 0 and 3771 ay = oo;

(C2) {Bn} C [a,b] and limy, _, o»|Brs1 — Pul = 0, where 0 < a, b < 2u;
then the following statements hold:

(a) there exists a unique q € Q such that Pof(q) = gq;
(b) {xn} converges strongly to q.
In Theorem 3.5, if T; = I for alli € Nand U = I, then we obtain Corollary 3.8.

Corollary 3.8. Let Hy, H; be two real Hilbert spaces and C C Hy, K C H; two nonempty closed
convex sets. Let T : C — Hyand S : K — H be u-inversely monotone. A : Hi — Hj is a bounded
linear operator with adjoint operator A*. Let f : C — C be a contraction with contraction constant
a. Let {T;} ey be a family of infinitely nonexpansive mappings of C into itself and U a nonexpansive
mapping of K into itself such that Q = {p € VI(C,T) : Ap € VI(K,S)} #0. Let ¢ be a real number
and {A;};en be a sequence of real numbers such that 0 < A; < ¢ < 1, for every i € N. For each n € N,
let Wy, be the W-mapping of C into itself generated by T,,, Ty—1, ..., Th and Ay, Ap—1, ..., A1. Let {x,}
be a sequence generated by the following algorithm:

xo =x € C chosen arbitrarily,
Yn =Pc(I - puT)xn,
I, = Px(I = BnS) Ayn, (3.70)
zn = (1= 0)x, + OPc(yn + rA*(ln — Ayn)),

Xne1 = O f (X)) + (1 — )z, VneNU{0},

where r € (0,1/]|Al*) and 6 € (0,1) are two constants and {a, } 5, and {f,}, are two sequences
in (0,1). If {an } g and { B} mep further satisfy the following conditions:

(Cy) limy oy =0and 3771 ay = oo;

(C2) {Pn} C [a,b] and limy, _, o |Brus1 — Pul = 0, where 0 < a, b < 2u;
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then the following statements hold:

(a) there exists a unique q € Q such that Pof(q) = q;

(b) {xn} converges strongly to q.

In Theorem 3.5, if H; = H, C = K and A = A* = I, then we have Corollary 3.9.
Corollary 3.9. Let H be a real Hilbert space and C C H a nonempty closed convex set. Let T : C —
Hand S : C — H be u-inversely monotone. Let f : C — C be a contraction with contraction
constant a. Let U : C — C be a nonexpansive mapping and {T;};cy : C — C a family of infinitely
nonexpansive mappings such that Q = N2, F(T;) NF(U) N VI(C,T) N\ VI(K, S) #0. Let ¢ be a real
number and {\;};cy be a sequence of real numbers such that 0 < A; < ¢ < 1, for every i € N. For each
n € N, let W, be the W-mapping of C into itself generated by T, Ty_1,...,Th and Ay, Ap_1, ..., A1
Let {x,} be a sequence generated by the following algorithm:

xo=x € C chosen arbitrarily,
Yn=Pc(I - puT)xn,
Ly = Pe(I = $uS) Yu, (3.71)
zZn = (1= 0)xy + OW, (yn + (Ul — yn)),
Xne1 = Onf (x) + (1 — )z, VneNU{0},

wherer € (0,1) and 6 € (0, 1) are two constants and {a, } 5y and { B } ey are two sequences in (0,1).
If {an oo and { Pn ey further satisfy the following conditions:

(Cy) limy oy =0and 377 ay = oo;

(C2) {PBn) C [a,b] and limy, ., oo |Bns1 — Pul = 0, where 0 < a, b < 2u;
then the following statements hold:

(a) there exists a unique q € Q such that Pof(q) = q;

(b) {x,} converges strongly to q.

In Theorem 3.5, if H; = Hp, C = K A = A* =, and U = I, then we get the following
result.

Corollary 3.10. Let H be a real Hilbert space and C C H a nonempty closed convex set. Let
T:C — HandS : C — H be u-inversely monotone. Let f : C — C be a contraction with
contraction constant a. Let {Ti}ey : C — C be a family of infinitely nonexpansive mappings such
that Q = N2, F(T;) N VI(C, T) N VI(K, S) #0. Let ¢ be a real number and {A;};cy be a sequence of
real numbers such that 0 < \; < ¢ < 1, for every i € N. For each n € N, let W,, be the W-mapping
of C into itself generated by T,,, Ty—1,..., Ty and Ay, Ay_q, ..., A1. Let {x,,} be a sequence generated by
the following algorithm:

xo=x € C chosen arbitrarily,
Yn = Pc(I = puT)xn,
Ly = Pe(I = $uS) Y, (3.72)
Zp= (1= 0)xy + OW,, (v +7(Lu = yn)),

Xn41 = Onf (X)) + (1 =)z, VYVneNU{0},
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[*e]

wherer € (0,1) and 6 € (0, 1) are two constants and {a, } o and { B} are two sequences in (0, 1).
If {an )y and { B Yoo further satisfy the following conditions:

(Cy) limy o ay = 0 and 3771 ay = oo;

(C2) {Pn} C la,b] and limy, _, o |Bns1 — Pn| =0, where 0 < a, b < 2u;
then the following statements hold:

(a) there exists a unique q € Q such that Pof(q) = g;
(b) {x,} converges strongly to q.

Finally, if we let Hy = H;, C = KA =A*=1,T; = I, foralli e Nand U = I in
Theorem 3.5, then the following result can be established.

Corollary 3.11. Let H be a real Hilbert space and C C H a nonempty closed convex set. Let T : C —
Hand S : C — H be u-inversely monotone. Let f : C — C be a contraction with contraction
constant a. Suppose that Q = VI(C,T) \VI(K,S) #0. Let {x,} be a sequence generated by the
following algorithm:

xo=x € C chosen arbitrarily,
Yn=Pc(I-p,T)xu,
ln = Pc(I = BuS)Yn, (3.73)
zp=(1=0)x, +0(yn +7(Lu = yn)),

Xn41 = Onf (X)) + (1 — )z, VneNU{0},

[*e]

wherer € (0,1) and 6 € (0, 1) are two constants and {a, } o and { B} are two sequences in (0, 1).
If {an ) and { B} oo further satisfy the following conditions:

(C1) limy oo ¥y =0and 3771 ay = oo;

(C2) {Bn} C [a,b] and limy, o |Bn+1 — Pn| =0, where 0 < a, b < 2u;
then the following statements hold:

(a) there exists a unique q € Q such that Pof(q) = g;
(b) {x,} converges strongly to q.

Remark 3.12. (a) In [11, 16], the authors gave some algorithms for (u,v)-cocoercive and
u-Lipschitz continuous operator and obtain some strongly convergence theorems; see [11,
Theorems 2.1 and 2.2] and [16, Corollary 3.3]. However, the (u, v)-cocoercive and p-Lipschitz
continuous operator considered by [11, 16] is actually a strongly monotone and p-Lipschitz
continuous operator. Then, by Remark ST, such operators studied in [11, 16] are u-inverse
strongly monotone. Hence our results obtained in this paper conclude some results in [11, 16]
as special cases.

(b) Our results are different from the main results in [9-11, 16] and references therein.
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