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We present a linear backward Euler fully discrete finite volume method for the initial-boundary-
value problem of purely longitudinal motion of a homogeneous bar and an give optimal order
error estimates in L2 and H! norms. Furthermore, we obtain the superconvergence error estimate

of the generalized projection of the solution u in H I norm. Numerical experiment illustrates the
convergence and stability of this scheme.

1. Introduction

We consider the following mixed boundary-initial value problem:

(a) Uy = Uyt + f(ux)x/ (x/ t) € (0/1) X [Or T],
(b) u(x,0) =uo(x), w(x,0)=w(x), xe€(0,1), (L.1)
(c) u(0,t) =u(1,t) =0, te][0,T].

This problem (1.1) arises when one considers the purely longitudinal motion of a homoge-
neous bar [1]. The displacement of the cross-section of the bar at time f is denoted by u(x, t).
When both ends of the bar are fixed, #(0,t) = u(1,t) = 0, t € [0,T], that is the boundary
condition. u(x,0) = up(x) and u;(x,0) = u;(x) are the initial data.

In theoretical analysis, the problem (1.1) was first treated by Greenberg et al. [2], by
assuming that the function f was monotonic, that is,

f'(s) >0, Vse(-o0,+x), (1.2)



2 Abstract and Applied Analysis

and that the initial data was smooth, specifically
up € CH([0,1]),  w € C*([0,1]). (1.3)

Under these assumptions they showed the existence of a unique smooth solution which
decays the zero solution as t — oo. (See also Greenberg [3] and Greenberg and MacCamy
[4].) Andrews [1] made the hypotheses that uy € W3’°°(0,1), u € Hé(O,l), the function f is
locally Lipschitz continuous, and there exists a constant ag > 0 such that (f(s1) — f(s2))(s1 —
s2) > 0 whenever |s; —s;| > ag; then he proved the existence of a unique global weak solution.
Under the hypotheses that 1y, u; € H 2(0,1) N H& (0,1), and there exists a constant a; > 0 such
that f'(s) > a1, s € (oo, +00), Y. Liu and D. Liu [5] proved the existence of a unique global
strong solution of the problem (1.1).

Numerical simulation methods for the problem (1.1) are recently studied by several
authors ([6-11]). In [6], Gao et al. studied a finite difference method of the problem (1.1)
in the domain [0,1] x [0,T] (T > 0) and proved the convergence of the method by using
discrete functional analysis and prior estimate. In [7, 8], Jiang et al. studied two finite element
methods of (1.1) and obtained the optimal error estimates of this finite element scheme in L?
and H! norms. In [9], Z. Jiang and Y. Jiang, and in [10], Jiang and Li, studied a mixed finite
element method and a expanded mixed finite element method, respectively, and obtained
the optimal error estimates of these schemes. However, few work on finite volume methods
of (1.1) was found (see [11]). As we know, finite volume methods (also called generalized
difference methods) were proposed in eighties last century and developed very quickly. Now
this kind of method becomes one of the main numerical methods for solving differential
equations, for example, convection diffusion equations [12-14] and Navier-Stokes equations
[15].

In this paper we want to make further study of finite volume methods for the problem
(1.1). First in Section 2, we derive a finite volume weak form of (1.1) in the case that f(s) is
nonlinear, then propose a linear backward Euler fully discrete finite volume scheme of (1.1).
Existence and uniqueness of the solution of this scheme are proved. Next, in Section 3, we
give optimal error estimates in L? and H' norms and superconvergence in H' norm by using
new defined projections. Numerical experiments and computational results are presented in
Section 4, which confirm our theoretical analysis.

2. The Linear Backward Euler Fully Discrete Finite Volume Scheme

In this section, we construct the finite volume method of the problem (1.1) and prove the
existence and uniqueness of the solution of this finite volume scheme.

Firstly, let T, be a partition for the interval I = [0, 1], with itsnodes 0 = xp < x; < --- <
x, = 1. The length of the element I; = [x;_1, x;] is denoted by h; = x; — xj1,i=1,2,...,r, h =
maxXi<i<rh; is maximum of h;. We suppose T}, is regular, that is, there exists a positive constant
u>0suchthat h; > uh,i=1,2,...,r. For the definition of the finite volume scheme, the dual
partition T of T, is needed, which is 0 = xo < x1/2 < x3/2 < -+ < x;-1/2 < x, = 1. The dual
elements are denoted by I = [x¢, x1/2], I; = [xj_l/z,xj+1/2],j =1,2,...,r=1,I" = [x,_1/2, %],
where x; 1,2 = (1/2)(xj1 +x),j=1,2,...,1.

Secondly, we define the piecewise linear trial function space U}, over the partition Ty,
satisfying U, C Hé (I, where H& (I) is the Sobolev space on I. Then uy(x) = erz_ll up (x;) i (x)
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for all up(x) € Uy, where p;(x) is the basis function associated with the nodes x; (i =
1,2,...,r=1),

1- xh;x xel;
i
‘Pi(x) =31- xh_ x,, x € I, (21)
i+1
0, x ¢ Luli,.

It is easy to know that the derivative of u;, with respect to x is

up (x;) — up(xi-1)
h; !

Upx(x) = xi1<x<x;,i=1,2,...,r. (2.2)

The test function space Vj, C L*(I) associated with the dual partition T} is defined as the set
of all piecewise constants with v, (0) = v,(1) = 0 for all v,(x) € V. We may choose the basis
function ¢s;(x) of Vj, in such a way that ¢s;(x) is the characteristic function of I]i*, that is,

1, xGI]’.“,

i=1,2,...,r—1. 2.3
0, xer, j (2.3)

wi(x) = {

Then for any vy, (x) € Vj, can be expressed as vy (x) = Z;j o (x) i (x).
Obviously,

Uy c Hy(I), Vi, € LX(I),
(2.4)
dimU, =dimV,=r-1.

Meanwhile, U}, C Wg’m(I )

Thirdly, for the time interval [0, T], we give an isometric partition and denote the nodes
ti=ir,i=0,1,...,N,7=T/N.

We introduce some notations for functions u(x,t) and f(ux(x,t)):

. ; o i . L an_un+1 u"
u" = u(x,t,), uj =u(xj,t), uj = u(xj, ty), ' = ——
un+1 —2um + un—l un+1 +u"
a2 no_ un+1/2 —
tt TZ ’ 2 4
2.5)
w4+ 2y 4y Fut) + f(ul)
un,l/4 — fl/Z(uZ) — x x ,

4 ’ 2
fuath) +2f () + £ () ey 30+ f()
4 4 f(1/4) (ux) - 4 .

FA ) =
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Then we can get

82 - atun _ atun—l nl/d _ un+1/2 + un—1/2
L A S
(2.6)

%(atun + E)tu"‘1> _ %(un+1/2 _ un—1/2>'

Let u be the solution of (1.1). Integrating (1.1) a over the dual element I]’.‘ e T}, we
obtain

ij+l/2 uydx + uxt(x]',l/z) - uxt(xj+1/2) + f(ux (xl'*l/Z)) - f(ux(xf+1/2)) =0, (27)

Xj-1/2

where j =0,1,...,7, x_1/2 = X0, Xr41/2 = Xr, and 0 < t < T. The problem (2.7) can be rewritten
in a variational form. For any arbitrary v, € Vj, we multiply the integral relation in (2.7) by
vp(x;) and sum over all j =0,1,...,r to obtain

(uttrvh) + a*(utrvh) +b" (f(u),vh) = O/ Vvh € Vh/ te (OIT]I ( )
2.8
u(O) = Uy, Ui (O) =uy,

where for any arbitrary w = Z]r-;% wjy; € Vy, the bilinear forms a*(v,w), b*(f(v), w) are
defined by

r-1
a*(v,w) = Zw]-a* (v, 95), a* (v, ¢;) = vx(xj-1/2) — Vx(Xj11/2),
-1
1 ! (2.9)
b*(f(v),w) = Dwb (f),¢5), b (f(0),¢) = f(0x(xj-172)) = f (vx(xjs1/2))-
=1

Since f is a nonlinear function, we will consider the following linear finite volume
scheme: find u} € Uy, n=0,1,2,..., N such that

(éftuz,vh) +a* (0}, vp) +b* (f(l/‘l)*(uZ),vh) =0, VYo,eV,, n=1,...,N-1,
(2.10)
”2 = I, uy, u}l = ITyug + Tl uy,

where ITjup and ITyu; are the interpolation projection of uy and u; onto the trial function
space Uy, respectively, and the interpolation operator I, is defined as IT, : H} (I) — U,

r-1
Myw = > wigp;, Yw e Hy(I). (2.11)
i=1
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We also need to introduce the interpolation IT; : Hj(I) — Vj, defined by,

r-1
w =Y w;, YweHy). (2.12)
i=1

By Sobolev’s interpolation theory, we know that

lw - ITywl,, , < chz‘”‘|w|2/p, m=0,1, 1<p< oo (2.13)

In this paper we adopt the standard notation W™ (I) for Sobolev space on I with norm |||,
and seminorm |- |,,,,. In order to simplify the notations, we denote W™?(I) by H™(I) and skip
the index p = 2 when possible, thatis, | - [np = | * [m, | - [lmp = Il - [, I - llo = || - [|. We denote
by L(0,T; W™P(I)) the Banach space of all L7 integrable functions from (0, T) into W™ (1)
with the norm || - [|paqwmr) = (fOT || - I3, pdt)"/4 for g € [1, 00) and the standard modification for
q = oo. After all these denotations, we give the existence and uniqueness of the solution of
the finite volume scheme (2.10).

Theorem 2.1. The solution of the finite volume scheme (2.10) is existent and unique.

Proof. Let uj, = Zf;ll upi(x) € Uy (n=0,1,2,...,N) be the solution of (2.10). According to
u) = Iyug and u; = Ijug + TIT,u, u?l]. = uo(x;), u}zj =ug(x;) + Tur(x), j = 1,2,...,r - 1 are
known. Hence the existence and uniqueness of the solution uZ (n=0,1,2,...,N) of scheme

(2.10) are equivalent to the existence and uniqueness of {u}, }f;ll, n=2,...,N. O

Forn=2,...,N, choosing v, = ¢, j =1,2,...,7r — 1. By (2.2) we have

1 Xj+1/2
(Gt on) = [ gy = [ e
1

Xj-1/2

Xj+1/2
=— f (”Z - ZuZ‘1 + uZ‘2>dx
T2
Xj-1/2

1 (X2 r-1 ) )
_ n n— n—
== Z (uhi =2uy; +uy; >(pi(x)dx
T Xj-1/2 i=1

Xj+1/2

1 _ _
== { (qu—l - Zqu,ll + qu—21> f ¢j-1(x)dx

Xj-1/2

Xj+1/2

+ <”Zj - Zu;l’]fl + uZ]T2> j @ (x)dx

Xj-1/2

1 ) Xj+1/2
n n— n—.
+<”h;+1 = 22U + “hj+1> I

Xj-1/2

Pj+1 (x)dx}



6 Abstract and Applied Analysis

1[1 1 2
=02 { ghf <qu—1 = 2uj -y + ”Zj—l)

3 -
+ 5 U+ ) (= 205" + )
n

1
. n _ -1 n-2
+§h7+1 <uhj+1 2uy i+ “hj+1> ,

a (B on) = a* (B ) = duae! (x7-1/2) = duug! (x1/2)

n-1_ n-1 n-1 _ _n-1
Upj —Upja Upjrr ~ Up;
:at — Ut
hj hj+1
1
— n _ n _ o n-1 n-1
oty - )
_L u" e _un—l +un—1
Th],+1 hj+1 hj hj+1 hj )’

b* <f(1/4)* (uz—l>/ vh) - b (f(l/4)* (uz—l>, %)
_ f““)*(u;’i;l (xj_1/2)> — fa/ <”Z;1 (x]-+1/2)>

n-1 n-1 n-1 n-1
u,. —Uu,. Uu ..—Uu,.
_ f(1/4)* hj hj-1 —f(1/4)* hj+1 hj
h]' hj+1
n-1 _ n-1 n-2 _ n-2
B 3f Upj —Upjig . 1f Upi™ — Uy
4 hj 4 h;
] ]
n-1 n-1 n-2 n-2
3f Upjvn ~ Upj 1f Ui — Upj
4 hj 4 hj

(2.14)

Using (2.10) we obtain

11 -1 2 3 -1 -2

= [ghj <uzi_1 - ZuZ].f1 + uzi&) + §<hi + hj+1)<uzj —ZuZI. + ”Z,’ >
1h n 2 n-1 n-2

+ghi+l <uhj+1 T Uyt uhj+1>

1

n n n-1 n-1

" Th; (g — i+ i)
1

n n n-1 n-1
- Thin <”hj+1 T Up T Ui T U, )
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(2.15)
that is,
hi r 3 1 1 " hin 7\ ,
<§—h—]> h] [g(l’li+hi+1)+7—<h—j+hj+1>]uh]~+ < 3 —m>uhj+l
hf T n- 1 1 n-1
= <Z_h_j>uhj‘ll [ (hj +h]+1)+T<h—]+ h]+1>:|uh]
n-1 n-1 n-1 n-1
hin 1 372 Upjp1 ~ Uy Upi  —Upjy
(3 'm>“mu+7 N )\
1 1
ghjulq 17 (h + h]+1)” - 8h1+1”h,+21
"l'2 uZ]fl - ”Z;Z ”Z;z - MZ] 21
N I (et S W e e N I S )
4 [f ( M f n; /
(2.16)

Noticing uy, = u; = 0, the coefficient matrix of the system (2.16) is strictly diagonally

dominant matrix. So, when {u} - 1} and {uhl } _, are known, the solutlon {u] )i 11 is existent
and unique. Combining the above condltlons, the solution {uhl} (n=2,...,N) is existent

and unique when {”21} and {”;u }l 1 are known. This completes the proof

3. Error Estimates

In this section, we will prove the optimal error estimates in the L? and H' norms as well as
the superconvergence error estimates in the H' norm. This needs some assumptions about
the data.

(Hp) The nonlinear function f(s) satisfies

0<I<f'(s) <L, max{|f"(s)],|f"(s)|]} <M, se€ (—o0,+o). (3.1)

(Hy) The initial functions uy and u; satisfy

up € Hy(DNnH*(I),  w € Hy(I) n W (I). (3.2)
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(Hs) The solution u of (1.1) satisfies

uelL® (o, T; w3f1(1)), u €L (o, T, W?*(I) N W3'1(I)>,
(3.3)
Uy € L (0, T, W1 (I)), T (o, T; L2(1)>.

For any up, v, € Up, up = 377 unipi(x), vn = 377 vnitpi(x), where up; = up(x;), vpi =
vp(xi),i=1,2,...,r — 1. Using the definition of the interpolation operator I'l; we know that
Iuy, = Z,rz_ll upipi(x), I oy, = Z;—f Vhitpi(x) € Vi Noting upo = tp, = vpo = vpr = 0 and [11,
Lemma 3.1] we have

* * 1 r_l
(un, 1Ty 04) = (op, Iup) = 3 [Rittni10pi + 3(hi + hi1) UupiOni + hivipia Oni]. (3.4)
i=1
Hence
1 r-1 By
(uh, H;uh) = gz [hi(uhi + uhi+1) + Z(h, + hi+1)ufu.] + hlufﬂ. (35)
i=1

So, when uy, #0, we can get (up, [T;uy) > 0. Let |||luxllly = (uh,l'[;‘luh)ln. By [11, Lemma 3.2],

Wellave
—||{|U u || Vu, € 11 (3 6)

On the other hand, using [11, Lemma 3.3], we also have
* * . 1
a* (up, I uy) = Zﬁ(uhi — upia)” = upl}. (3.7)
i=1 't

For error estimate, we will use the generalized adjoint finite volume element projection #!"]

of the solution u of (1.1), thatis, : [0,T] — Uy, satisfies

a*(ug — iy, op) +b*(f(u) - f(#1),v5) =0, Yo,eV, 0<t<T,
3.8
ﬁ(O) = Hhuo. ( )

Let u and # denote the solutions of (1.1) and (3.8), respectively. Under the assumptions (H;),
(Hz), and (H3) together with [11, Theorems 3.4-3.5] and the one-dimensional imbedding
theorem in Sobolev space, then we can obtain the following.
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Lemma 3.1. Let u and u be the solutions of (1.1) and (3.8), respectively. If the assumptions (Hy),
(H2), and (H3) hold, then one has

\TTpu — i)y + |u — 1]y + |up — Uely + |uge — i)y <ch, te[0,T], (3.9)
llow = || + [lue = Tig|| + lluge — Tie|| < ch?®, t € [0, T]. (3.10)
Next, we give the corresponding error estimates. Choosing t = t,,_1, t,, t,4+1 in the first

equation of (2.8), then multiplying the three equations by 1/4, 1/2, 1/4, respectively, and
adding them, we have

<u?{1/4, Uh) +a <uf’1/4,vh> +b* (f1/4(u"),vh> =0, Yo,eV, n=12,...,N-1.
(3.11)

Similarly, taking t = t,_1,t,,t,+1 in the first equation of (3.8), then multiplying the three
equations by 1/4, 1/2, 1/4, respectively, and adding them, we obtain

at (u;“'“‘* - a;“/‘*,vh) +b* (f1/4(u") - f1/4(i2”),vh> =0, Yo,€Vy, n=12,...,N-1.
(3.12)

Subtracting (3.11) from (2.10) and using (3.12), we get the error equation

<6ftuz - u:‘t’l/4,vh> +a* <6tuz - ﬁ?’1/4,vh> +b* (f(1/4)*(u2) - f1/4(ﬁ”),vh> =0, Yo, €V,

(3.13)
wheren=1,2,...,N - 1. Let
up-u"=0"+p", 0"=u,-u", p'=u"-u", n=12,..., N-L (3.14)
Then the error equation (3.13) can be rewritten as
(a%ten,vh) +a*(0:0", vp) + b* ( FO= (e - f1/4(ﬁ"),vh>
= —<6t2tp",vh> + <uz’1/4 - 6t2tuz,vh> +a* (p:”l/4 - atp",vh> (3.15)

+a*<uf’1/4—6tu",vh>, Vo,eV,, n=1,2,..., N-1.

Theorem 3.2. Let {u) VN o and i be the solutions of (2.10) and (3.8), respectively. If the assumptions
(H1), (Ha), and (H3) hold, then there exists a positive constant hy, such that when h < hy

|u}1 —ﬁ1|1 = |(91'1 < c<h2 +7'2>, (3.16)

||6t<u2—ﬁ0>” = |at90| < c<h2+T>. (3.17)
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Proof. Firstly, we estimate |0'|;. Applying the Taylor formula,

7 = 7i(r) = 4(0) + Tk (0) + %#ﬁ”(g) =10+ il + %Tzﬁ“(g), ze(0,7), (3.18)

and noting the definitions of u}ll and #° in (2.10) and (3.8), respectively, we know
1_~1_pgl ~0\ _1 o
ul — it = 0" = T<Hhu1 - i) - ST, E€ O, (3.19)
SO
2
], -
1

N 1, o2\ 1 4.
T(Hhu1 - u?) - ETzutt(g) < 4T2<|Hhu1 - ulﬁ + |u1 - u?|1> + —T4|utt(§)|f.
1

2
(3.20)

Notice that u; = us(0) = u?, (2.13) and (3.9), there exists a positive constant hy such that, when
h < hg we have

2 1 ~
'] < crn+ ST (@), + ch)’ < c(Th +74) < c(ht+ 7). (321)
This implies (3.16) holds. Secondly, noting 6° = 0 and (3.19), we obtain

ateo =

1_p0n0 1
0 - o [Tyuy — 0 - 5T (@), §€(0,7), (3.22)

hence, by (2.16), (3.10), and h < hy we have

o] = H(Hhul ~a) + (1 - ) - 37 2

~ 1, -
< 4Ty = | + 4 s = 2| + 572000 @)1 (3.23)

< ch*+ %T2<Hutt(§)“ + Ch2>2 < C<h4 + T2>'

This completes the proof of (3.17). O
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Theorem 3.3. Let u, {u}] }fi\lzo and u be the solutions of (1.1), (2.10), and (3.8), respectively. Assume
that (H1), (H), and (H3) hold; then for any n = 1,2,...,N — 1, when 7 is sufficiently small and

h < hy, one has

b (f(1/4)*(u’ﬁ) - f”‘*(ﬁ"),l‘[,’;aﬁ")
11 2 2 3
2 g [0 - er) a0 ] - G

- c[(l 1011,

Hkl,_‘

9n+1

2
1O o

2
2
1] —-CcT,

where

1
a;'(—l/Z:I f’<ﬁ’;(xj_1/2) —s@’;(xj_l/z)>ds, k=n,n+1,j=12,...,r-1
0

Proof. Expanding the term b*(f/4* () — f1/%("), 117 8,0"), we have
b <f(1/4)*(uz) _f1/4(ﬁn)’nzat9n>
b (f1/4 (1) —f1/4(ﬁ"),1'[;6t6"> +b*< [f(uh) f(u 1)] H*at9">
1
- )
[ < (uh) f( n+1> H29n+1> ( (uh) f(un+1> H*9n>]

For any vy, € V}, since vj, = Zf;ll vhii(x) and vpg = vy = 0, then

r—1 r
b*(f (), on) = D omi[f (ux(xi21/2)) = f(ux(xii1/2))] = D f (ux(xic1/2)) (Vni = Oni-a)-
i1

i=1

= 5 [ (£ ) = £ 100m) b (712 () - 2 () )|
)~

1/2 (~n 1> H29n+1>]

(3.24)

(3.25)

(3.26)

(3.27)

Let 0'(x)) = 0}, thus IT; 0" = hoy, 0:4j(x) € Vy. Applying transformation of variable, we know

b* <f1/2 (uZl) _ fl/Z(ﬂm),H;9i>

—Z( — 00 ) [F72 (i (x5012)) = £ (x112))]
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=320 o) [ ) - (3 )
+[F (g (x172)) = £ (@ (x072))] |
= %,; (61 -0, ) [ars0 00 (xj12) + @ty 03 (xj1.2) |

11

= 227 (772 (% = 0) (o7 - 1)
+aiy <6; - 9}1) (9,"1 - 9;&)],

(3.28)
where
a;.‘_l/z = f: f’ <ﬁ§ (x]',l/g) + SGI; (xj,1/2)>ds,
(3.29)
0% (xj.1/2) = hlj(ef ~0%,), k=mm+1.
By (3.28), we have
* 1/2 1/2 1~ * +1 1r1 +1 +1 +12
b (F72(uy) - FU2(), T = Qz_llh—[ ar (0 o)
+a] 1 <9n+1 _ 9]’.'_+11> (6}” - 6]’.’_1>] ,
b <f1/2 <”Z_1> _ (ﬁn—l)/nzen> _ %ilhl] [a?—l/z <6]" ~ 9?_1>2
i=
(8 - o) (et - o))
(3.30)

b* (fl/z (ul) - fl/Z(ﬁn)IH26n> _ _Zh_ [ ;1+11/2 <6n+1 6;”11> <6;1 _ 9;1_1>

I\)

sal (00 - 0r 1)2],
hl[ 2 <9n+1 6n+1> (97 _ 9}1_1>
) (@

n+1 +1
] 1/2 (6 9] 1

b*<f1/2<uh 1) f1/2<~n 1>,H29n+1> _ % r
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On the other hand
b (f (up) = £ (), TG0m) =07 (£ (i) = £ (™), TT;6")
= z;:[f(”ﬁx (x7—1/2>) _f<uhx1 (x] 1/2))] [(9}”1 - 9;?:’11) — <9]" _ 9;171>]

= ;”711(1/& (“Zx(xf—l/Z) ~ uj! (xj—1/2)> (9}”1 -0} - (9}’_*11 - 9]’-’_1>> o
= —Tzila;fl o0t (x51/2) (8,07 - 07, ),
<
where
ailyy = f: [ (U (xj-172)) + S(“Zx(xj_l/z) —ujpy! (xj—1/2)>d5- (3.32)
Combining the above five equalities with (3.26), we can get
b*( (1/4)* “(ult) - YA, IT at9n>
= g 20y [ (07 -0 a0 (070
a2y (-0 o7 -0 - (67 )
+ Ezh—a (et -er ) [ort -t - (0r -0, (333)
ey (b ) O - 01) (0 -01)
—2 3 @y, (0107 - 0,07 )oueh, (xj12)

j=1

=Bl+B2+Bg+B4+B5.

Using the e-inequality, we find
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(0 -01)" 1 & (-0

1
< - R -~ + - 7 _ n|2 - n|2
_c]_:1 i - 16; m clo"[; + 1 100" [T,

-B; = i S lanfl <9n71 _9n—1>[9n_9n _ <6n+1_6n+1>]

T T RN Rl A S R j-1
]j=
1ol n-1 n-1 n-1 1 712
-1 1h—ja]._1/2<9j -017) (307 - 3,07, ) < clo +E|af9 2,
I:

T < n n
_B5 = Zj;a] 21/2 (ate 6t9]._1>atuhx (x]'_l/z)

1 1
< —6|at9"| + chZh (0] (xj-1/2))% = E|at9"|§ +1h.

j=1
(3.34)
Now we estimate I;. Noting (2.2), we have
wy-u 1
ul' (xj-1/2) = % = f ul (x)dx. (3.35)
j J ) xjan
Furthermore,
) 2 )
2 1 (9 1 (9 2
(0 (x512)) = 7 I il (x)dx ) < FI (Bl (x)) dx. (3.36)
] Y xj-1/2 ] Y xj
So
T X
L< mzzf " (el (x))2dx = cr?| ol
=1 7% (3.37)

< (0,0} + e (04" [} < c1T(0,0" ] + 7|0 .

When 7 is sufficiently small, we can take 7 suitable such that ¢;72 < 1/16, from the above
equalities we have

1 ~
I < —|at9"|1 + cT? (01" 2. (3.38)
Moreover, in view of 0;u" = (1/7) ft"” udt and (3.9), we obtain

02 _J' (B4t (x))2dx = — f <f utdt>2dx< _f f ()2 dt dox

1 Ens1 -2 1 tns1 2
= ;I |ut|1dt§ ;J‘ (Ch+|ut|1) dt <c.

tn

(3.39)
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Then
1 )2 2
I < —10:0"] + cT”. (3.40)
16
Substituting the estimate of I; into (3.34), we have

1
—B5 < §|6t9”|% + CT2,

L1, o (3.41)
_ n+ n n+ n+ n n
Be= g2 (o= ata ) (67 - 01 ) (0 - 61
I:
Since
1
ai;jll/z —ajy = fo [fl (ﬁzﬂ (xj-1/2) + 507" (xj—1/2)>
G 172 + 582Gy s
1
= [ ) [ o) - i) (42)
0

+5 (011 (xj1/2) = 02 (x12) ) | ds
=7 f: f’ (é}‘)dsatﬁﬁ (xj-172) + T JZ f" <§;‘>s dso07 (xj-12),

where ¢/ lies between U (xjo1/2) + s0 1 (xj21/2) and W(xj1/2) + s0%(xj-1/2), by (2.13), (3.9),
and the inverse estimate, we obtain

(1)1 0 < [10tl o + [t = Uty o < [Utly oo + 14 — Tlntae]y o + Tlptar — 1ty

(3.43)
< uttly g + Chltte]y o + ™2 Tlyuty = ey < [t o, + chlitsly o, + ch'/2.
Thus, when h < hy we have ||tiy||r= =) < ¢, then
|atﬁ§(xjfl/2)| = |ﬁxt(xj—1/2/ ty + ST)l < ||ﬁxt||L00(Loc) <c. (3.44)

From the assumption (H; ), we find that fé f "(g]’.‘)ds is bounded: this leads to the boundedness
of fy f"(&")dsdrdi(x;1/2) and [y f(¢")sds. So

141 [0 !
B [ [ £r()asaizeam + | £ <é7>sdsf>f9¥<xf—m>]
<

X (e;ﬁl - 97;1) (e;f - 9;1_1)
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1o )
ik U J <é?>ds6tu2<xf—m>] (0 -0 (67 -61)
11 1 n( yn n n el i1\ An
+ Z}z:;h_] fo f <§] )S ds <at67 - ath_1> <9] - 6],_1 >9x (xj—l/Z)
<c e+l j+c|97’l|% +C|9;l|0,oo g+l 1|at9n|1

9n+1

2 1
< c[(l + 16100 ) |67 + |e"|$] + 5100

(3.45)

Substituting the estimates of B, Bs, By, and Bs into (3.33), we can derive (3.24). This
completes the proof of the theorem. O

Theorem 3.4. Let u, {u} }nN:O and 1 be the solutions of (1.1), (2.10), and (3.8), respectively. Assume
that (H1), (Ha), and (H3) hold; then foranyn =1,2,..., N =1, when h and T are sufficiently small,
one has

max 3,0+ (0", < c(h*+ 7). (3.46)

1<n<N-1

Proof. Taking vy, = IT;0,0" in the error equation (3.15) and making a simple calculation yield

(830", TT;,0:0") + a* (840", TT;,8,0") + b (f /" () = fV/4(i"), 1T;0,0")
= —(3%p" 11;,0,0") + (upy* - e, TT;,0,0") (3.47)

va*(prt - 0" T1,0,0") + a (u/* = ", 11;,0,0" ).
Form (3.4), we derive that

(8:0", 1T;,3,0") - 2(8,0"", TT;0,0") + (8,6"~, TT;,0,0" )
(3.48)
= n(80" - 3,0"", I1;, (8,0" - 8,6" ) ) 2 0.
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Then
(a30", 1T;0,0m) = %(aten - 3,0", 11;,0,6")

_ %{(atenlnzaﬁ") - <6t9"_1,1_[;‘15t9"_1>

17

+[ (86", 1T,0,:0") - 280", 1T,2,0") + (9,0, 1T,06"") | }

> 5 {1 - [ o

I}

By (3.7), we get
a* (9,0",T;0,0") = 0,0"];.
Applying Taylor’s formula with integral-type remainder,

F() = fta) + f/(ta)(E—ty) 4+ + f k>(t )

(t—ta)* + f FED () (t - 5)*ds,

we have

tns1 tn
P = = U (11 = Spu()ds + | (tn_l—smu(s)ds]

n

]- i 1 tns1
- 5 | tbputtarsias = 5 [ -t shputsras

[

u n 1
Vg —f (7 - |s|>[ Sour ]utut(tﬂs)ds

[ ) 1 _ t _ 2
= J‘tnl (T - |tn - Sl) [Z - %] utttt(s)ds,

/4 . 1 |38} [} i1 ty1— S
u, " - 0" = 1 uy(s)ds + uy(s)ds| - U (s) - ds,

tVl tVl t?l

Ena1 tn-1 ()

mn n 1 n
P /4 —0p" = Z[ pu(s)ds + Ptt(S)dS] - P (s) s,
t

n n

n

Note that [T} 0:0"|| < c||0:0" |, we get

(" 007 < |03p" " el

Rt B

Ene1
< or! J’ o |[2clt + clld.67I1,
)

(3.49)

(3.50)

(3.51)

(3.52)
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ﬂ1/4_82 n

2
(ui"* - B 100" < | W S| o

Uy

50,67 < c

tn+1
Scf?’f e 2t + 06"

[

(3.53)

For ITyv = Z;;} vjgi(x) € Vi, vg = v, = 0, we have

r-1 r
a*(u,1T0) = D0j (ux (xj:1/2) = ux(Xj41/2)) = Dt (xj1/2) (0f = vj1)
j=1 j=1
( )2 1/2 1/2
r (vi—viq r
< <Z%> <thui (xj—1/2)> :
j=1 j=1

X

Uy (Xj-1/2) = U (X) —I Uxx(s)ds, x € [xj-1,%j],

Xj-1/2

X 2 X 2
ui(xf—l/z) = <ux(x) _f uxx(s)d5> < Zufc(x) + 2<I uxx(s)d5> (3.55)

Xj-1/2 Xj-1/2

- 2 N
§2u§(x)+2<f] |uxx(x)|dx> szui(x)+2hj< f ] uix(x)dx>,
x,;1 x]',l

(3.54)

Noting that

we see that
> hji(xj172) = Zj % (xjo1/2)dx < ZZI 1 (x)dx
j=1 j=1 " Xj-1
(3.56)
r x;
+ 221:;1]2.,[ 1w (x)dx < 2Jul? + 2h%|ul3,
= Xj-1
SO

o\ 172
a("1/4 ou" H*at9"> ( +h2 2) 10:0"|,

2 1 n
<c< 2>+§|at9 i

tns1 ) ) ) 1 )
< crf <|utt|1 +h |utt|2>dt + 5100,

tp-1

111/4 atu n1/4 atun

w4t aun +h2 m Bt
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tos
<P:l1/4_atp H*aten SCTI |Ptt|1+h Ipttl >dt+ |at9n|%

(]

ot

1
= CTf (lpul} +H2lul} )t + gloe"l.

[

(3.57)
Substituting (3.24), (3.49)—(3.57) into (3.47) and using the Lemma 3.1, we obtain
1 ni2 n-1 2 1 &1 n+1 n+1 n+1 2 a® n 2
o= { o - o[} + E]Z;h—,.[ @t (07 -0 ) - aty0(6) - 61
2 2
< C||at9n||2+c[<1 + |92|§,w> 6n+1 : + |9n|%+ enfl 1] (358)

+ c<7‘2 +7+ 2R + h4>.

Multiplying the above inequation by 7 and then summing it with respect to n from 1 to n, we
have

SN0 R + }sz;;hljayj;/z(e;ﬂ —or)’
%|”at60”| 42 arl (6} 9}—1>2 (3.59)

9i+1

j+ |9"|j + |6i‘1'j + c(rz + h4).

vy [||at9i||2 + (14 j022,,)
i=1
Now we make the induction hypothesis:

max
1<k<n

of| <1 (3.60)

0,00

Substituting (3.60) into (3.59) and noting (3.6) and the assumption (H;), we conclude

\[ .07 +

1 n n n n 2
< sllae"I3 + 4Zh @l (ot -er)

9n+1 9n+1

o (nate"nZ +
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<Rl < e
+CT§||atef||2+CT’§*:|ef|j+c<Tz+h4>
<o oo <[]+ nt oS oo | Sl

(3.61)

Taking 7 is sufficiently small, such that c37 < ¢ and ¢;72 < 1/16 (these ensure that
Theorem 3.3. holds), combining the above equalities and Theorem 3.2. we have

”atenHZ + 9n+1

2 T n . 5 n+l . 2
1gc<Tz+h4>+c_2<§||ate [+ 5o |1>- 62
By the discrete Gronwall’s lemma, it follows that

2
30" + o+t < C<T2 + h4), n=1,2,...,N-1. (3.63)

To complete our proof we must verify that (3.60) holds. In fact, by considering the
inverse hypothesis |0"]1 o < cih™20%;, n=1,2,...,N -1 and (3.16), we have

61

b= |91 |1,°o < cah™ (T 4 1) < csh V(7P + ). (3.64)

Thus, we can choose h, T such that h, T satisfy csh™1/2(r2 + h?) < 1 for h, T are sufficiently
small, that is, (3.60) holds for n = 1. From the proof of (3.63), as h, T are sufficiently small and
satisfy

o’ < 3T < Cp, csh™1/? <T2 + h2> <1, (3.65)

E/
then (3.63) holds for n = 1. Thus
|62|1 < c6<h2 + T). (3.66)

Hence

62

b= |62|1m < C4h*1/2|92|1 < csceh 2 (W + 7). (3.67)
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Table 1: |ju — upll -

h t=0.1 t=02 t=0.3 t=04 t=0.5 t=0.6 t=07 t=0.8 t=09
1/20 0.1025 0.0922 0.0831 0.0742 0.0671 0.0600 0.0548 0.0490 0.0447
1/40 0.0520 0.0469 0.0424 0.0374 0.0346 0.0309 0.0279 0.0253 0.0229
1/80 0.0261 0.0235 0.0212 0.0191 0.0173 0.0156 0.0141 0.0128 0.0116
1/160  0.0131 0.0116 0.0106 0.0096 0.0087 0.0078 0.0071 0.0064 0.0058

Table 2: |u — uply .

h t=0.1 t=02 t=03 t=04 t=05 t=0.6 t=07 t=0.8 t=09
1/20 0.3510 0.3165 0.2852 0.2569 0.2315 0.2088 0.1884 0.1702 0.1539
1/40 0.1736 0.1567 0.1413 0.1274 0.1150 0.1038 0.0938 0.0849 0.0768
1/80 0.0863 0.0779 0.0703 0.0634 0.0573 0.0518 0.0468 0.0424 0.0384
1/160  0.0430 0.0388 0.0351 0.0316 0.0286 0.0258 0.0234 0.0212 0.0192

Similarly, letting h, T be sufficiently small such that h, T satisfy cacsh™/2(h? + T) < 1, then we
get 16210, < 1. Furthermore, setting h, T to satisfy

1
at? < e’ 3T < ¢y, csh™/? <T2 + h2> <1, caceh™/? <h2 + T) <1, (3.68)

we conclude that (3.60) holds for n = 2. Using the above facts, we find that (3.63) holds
for n = 2 as h, T are sufficiently small and satisfy (3.68). By the induction argument for
n=12,...,N -1, we deduce that (3.60) holds as h, T satisfy (3.68). Then (3.63) holds for
n=1,2,...,N -1, which implies (3.46) is valid. This completes the proof of the theorem. [

Note that 0° = 0 and (2.13), by Theorems 3.2 and 3.4, Lemma 3.1, and the triangle
inequality, we obtain the following.

Theorem 3.5. Under the assumption of Theorem 3.4, for h, T are sufficiently small, one has

max ||uj — u"|| < c<h2 + T),
0<n<N

n_ ,n
Olg}gﬂuh u'|, <c(h+1), (3.69)

max |uj, — "], < c<h2 + T).
0<n<N

Remark 3.6. The optimal order error estimates in L?, H! norms and superconvergence error
estimates in H' norm of the solution of the finite volume scheme (2.10) are achieved in
Theorem 3.5.
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Table 3: The orders of [|u — uplly), and |u — uply j,-

Time Order For [l = unllo,p Order For [t — uply
t 0.05/0.025  0.025/0.0125  0.0125/0.00625  0.05/0.025  0.025/0.0125  0.0125/0.00625
0.1 0.9790 0.9947 1.0000 1.0157 1.0083 1.0050
0.2 0.9752 0.9969 1.0185 1.0142 1.0083 1.0056
0.3 0.9708 1.0000 1.0000 1.0132 1.0072 1.0021
0.4 0.9884 0.9695 0.9925 1.0118 1.0068 1.0046
0.5 0.9555 1.0000 0.9917 1.0094 1.0050 1.0025
0.6 0.9574 0.9861 1.0000 1.0083 1.0028 1.0056
0.7 0.9739 0.9846 0.9898 1.0061 1.0031 1.0000
0.8 0.9536 0.9830 1.0000 1.0034 1.0017 1.0000
0.9 0.9649 0.9812 1.0000 1.0028 1.0000 1.0000

4. Numerical Experiments

To test the finite volume scheme (2.10) and the theoretical analysis, we do some experiments
by considering the following problem:

a -1
(a) U = Uxxt + TMxx/ (x/ t) € (011) X (0/1]1

(b) u(x,0) =sin(orx), wu(x,0)=-sin(rx), x€(0,1), (4.1)

(c) u(0,t) =u(1,t)=0, te][0,1].

The exact solution of the problem (4.1) is u = e”' sin(orx), (x,t) € [0,1] x [0,1].

For simplicity, we choose a constant spatial step h and a constant time step 7. The
corresponding nodes are denoted by x; = ih, i = 0,1,...,2r and the time levels by t; = jT,
j=0,1,...,2N.

The discrete forms |lullo, and |ui, of forms |lu|| and |u|; are calculated by the
compound Simpson formula. Here we choose r = N; this yields h = 7. The program is
written in MATLAB and run in Windows XP. By the calculated approximate solution uy, we
get the discrete norms ||u — up||o, and |u — up|1,n, which are given in Tables 1 and 2.

From Tables 1 and 2, we can see that the scheme (2.10) is indeed efficient. For h = T,
we get the first-order optimal convergence under the discrete norm ||u||o and the discrete
norm |uly ,, respectively (see Table 3). Meanwhile, the scheme (2.10) is stable.
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